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ABSTRACT

Combining the channels of a multiple input/multiple output (MIMO)
system into suitably chosen modes by a domain transformation of-
fers great improvements of adaptive filtering algorithms. In this pa-
per we present an algorithm for adaptive MIMO filtering, called
source-domain adaptive filtering (SDAF), with application to mul-
tichannel acoustic echo cancellation operating in an optimally ad-
justed transform domain without requiring a-priori knowledge about
the system. Experimental results show a significant performance im-
provement compared to fixed transformation bases.

Index Terms— multichannel acoustic echo cancellation, trans-
form-domain, basis estimation, adaptive filtering.

1. INTRODUCTION

Full-duplex communication in a hands-free communication sce-
nario with multichannel setup (P loudspeakers and Q microphones)
for unrestricted audio content requires acoustic echo cancellation
(AEC), where P · Q echo paths (near-end H in Fig. 1) have to be
identified by an adaptive MIMO FIR filter of length L. The fact that
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Fig. 1. Illustration of echo cancellation in transformed domain

the signals of the multichannel system are not only intrachannel cor-
related but typically also highly interchannel correlated results in an
ill-conditioned correlation matrix in the underlying normal equation
of the MIMO adaptive filter. The approach in this paper to cope with
these correlation problems is based on two-stage transformations as

illustrated in Fig. 1 that allow us to perform the adaptive filtering in
an adjusted spatio-temporal transform-domain.
It is known, that in the time-domain the recursive least-squares
(RLS) algorithm is the optimum choice in terms of convergence
speed for ill-conditioned optimization problems in adaptive filtering
based on the least-squares criterion [1]. The update equation of
MIMO RLS reads

Ĥ(n) = Ĥ(n − 1) + R−1
xx (n)x(n)eT (n) (1)

with

e(n) = y(n) − ĤT (n − 1)x(n), (2)

x(n) = [xT
1 (n),xT

2 (n), · · · ,xT
P (n)]T ,

xp(n) = [xp(n), xp(n − 1), · · · , xp(n − L + 1)]T ,

y(n) = [y1(n), y2(n), · · · , yQ(n)]T .

Ĥ(n) denotes the PL × Q MIMO coefficient matrix composed by
P ·Q subfilters, ĥpq = [ĥpq,0, ĥpq,1, · · · , ĥpq,L−1]

T and n the time
instant.
x(n) is the length-PL input signal vector (loudspeaker signals in
the near-end), and e(n) denotes a length-Q vector of the error sig-
nals. The PL × PL correlation matrix Rxx contains all inter- and
intrachannel correlations and is usually estimated by the recursive
formula with the memory factor λ.

Rxx(n) =λRxx(n) + (1 − λ)x(n)xH(n). (3)

The major problems of RLS algorithms are the very high complex-
ity, caused by inversion of large covariance matrices and potential
numerical instabilities.
Performing the adaptive filtering in convenient domains could over-
come the mentioned problems. A very efficient practical way to
solve the problems of the multichannel RLS-type algorithms is to
formulate it in the frequency domain. The resulting algorithm, Mul-
tichannel Frequency-Domain Adaptive Filtering (MC-FDAF), pre-
sented in [2] has the most important features that in addition to the
efficient use of the FFT, all the sub-matrices in the input correlation
matrix are approximately diagonalized by the DFT. Thus, on the one
hand it is possible to efficiently take into account the intrachannel
correlations by considering only the main diagonal in the Fourier
domain. On the other hand the underlying acoustic channels, mod-
eled as linear time-invariant systems, are diagonalized in the spectral
domain and the filtering can be performed as simple multiplication.
Advanced acoustical virtual reality systems being developed rely on
massive multichannel systems, e.g. the wave field synthesis method
[3], where closely spaced arrays of a large number P of individually



driven loudspeakers generate a prespecified sound field. P may lie
between 20 and several hundred. An analogous approach is possible
for wave field analysis (WFA) using microphone arrays with a large
number Q of microphones.
Building a full-duplex system with massive multichannel setup for
unrestricted audio content might be considered as the supreme disci-
pline of multichannel acoustic echo cancellation (MCAEC) research
since in this case even the P × P frequency bin-wise correlation
matrices of the loudspeaker driving signals are generally still large
and ill-conditioned after the approximate block wise diagonaliza-
tion within the frequency-domain adaptive filtering (FDAF) coef-
ficient update. It has been shown that extending the point-to-point
MIMO-model by more detailed spatial consideration could highly
improve the performance of adaptive filtering. Recently developed
wave-domain adaptive filtering WDAF [4] exploits wave physics in
an attempt to decompose the MIMO-system into independent SISO-
systems using well known eigenfunctions as plane-waves and spher-
ical harmonics, but typically, depending on the present boundary
conditions the system diagonalization is only approximate. A more
general but only theoretical approach is the eigenspace adaptive fil-
tering. Here the filtering is done in the eigenspace of the system
[5]. These two approaches for MIMO adaptive filtering are system-
based. In general AEC is a system identification problem, and the
eigenspace of the system is not known. In this paper we present a
new algorithm for massive multichannel acoustic echo cancellation,
that does not require a-priori knowledge about the system and offers
efficiency and source fidelity by a detailed mode selective optimal
filtering.

2. ADAPTIVE FILTERING IN TRANSFORM-DOMAIN

The different strategies for adaptive filtering in transform domains
share the following stages of processing: 1. temporal decoupling
(typically using the DFT)[2], 2. spatial transformation into a do-
main, in which the MIMO system can be considered as decoupled.
Most recent algorithms use a block-based formulation, which is de-
rived by combining L consecutive samples into blocks, formulat-
ing the error signal in terms of blocks and minimizing the error.
Block-based adaptation is typically computationally less complex
and therefore favorable for practical application [6, 7]. This study
aims at illustrating a scheme for adaptive filtering in an optimally
adjusted transform-domain, that we call source-domain adaptive fil-
tering. For clarity of the presentation we assume in the following
a temporal transformation based on DFT for large block lengths
(L → ∞) such that each frequency bin can be treated indepen-
dently.

2.1. Domain Transformation

By an optimal domain transformation the signals are combined into
modes that can be considered to be processed in separated manner by
the MIMO system, such that the system is decomposed into single
input/single output (SISO) systems. The transformation is given by

y(ν) := C
(ν)H

2 y(ν), x(ν) := C
(ν)H

1 x(ν), (4)

1 where ν indicates a temporal frequency bin wise quantity. In the
following we omit the DFT bin index (ν) for brevity.

1We use in this paper underlined symbols for frequency-domain quantities
and double-underlined ones for spatially transformed quantities.

2.2. Estimation of MIMO Filter Coefficients in Spatio-Temporal
Domain

Assuming least-squares as optimization criterion for echo cancella-
tion, the Wiener-Hopf equation gives the formula for optimal filter-
ing, this reads in the transform-domain2,

Ĥ(n) = T−1

xx
(n)T

xy
(n), (5)

where

T
xx

= Ê{xxH} = CH
1 SxxC1, (6)

T
xy

= Ê{xyH} = CH
1 SxyC2, (7)

Sxx = Ê{xxH}, Sxy = Ê{xyH}. (8)

Ê{·} denotes a suitable approximation of the expectation operator.
Accordingly, an optimal echo cancellation by identifying minimal
number of echo paths (only the diagonal elements of Ĥ) can be
obtained, if a basis C1, C2 can be found, that decorrelates the loud-
speaker signals as well as the microphone signals in the near-end
room for multiple time instances. In this case T

xy
and T

xx
are

diagonalized. This is equivalent to the problem of separating these
signals. C1 can be considered as separation filter with respect to HS

(the far-end room) and C2 can be considered as source separation
filter along the system cascade HS · H, see Fig. 1.
Estimating a separating filter ideally exploits all information con-
tained in the involved mixed signals. The filter estimation process
should take into account all their fundamental stochastic properties,
i.e. Non-Gaussianity, Nonwhiteness, and Nonstationarity.
Note that for the AEC problem the possible permutations of the
separated sources after the systems C1 and C2 have to be aligned,
which can be easily guaranteed since the separation is supervised in
that sense, that the input and output signals are given.

3. TRANSFORM-DOMAIN ESTIMATION

The above mentioned separation problem is known in the field of
blind source separation (BSS). BSS techniques aim at jointly diag-
onalizing the time-lagged covariance matrices of the mixed signals.
As an analytical simultaneous diagonalization is given only for two
matrices by the generalized eigenvalue decomposition, finding a
joint diagonalization matrix must be considered as an optimization
problem of a cost function on a predefined matrix norm. Most of
separation algorithms in the literature take a constraint into account
to restrict the set of matrices where the algorithm is searching for a
solution, e.g. the unitarity of the filter matrices. An approach which
solves the BSS with this constraint is [8]. Many other constraints
can be found in the literature, e.g. minimum distortion principle [9]
and the constraints made for the deconvolution problem.
In general the ideal transformation basis is non unitary [10] and
Parseval’s theorem cannot be applied unless an optimal separation
solution using the unitarity constraint is chosen.
The desired real-time processing during AEC requires a method
enabling us to determine the transformation basis iteratively. Hence,
the criteria that the basis should fulfill can be summarized as: 1.
maximal preserved variance (separation of latent variables), 2. uni-
tarity, 3. minimal reconstruction error. These criteria lead to the

2Conventionally we use R for the covariance matrix in the time domain,
for its representation in the temporal frequency domain S, and T for the
transformation of S into the spatially transformed domain.



principal component analysis approach, but since the covariance
matrices can only be estimated, the principal vectors (the source-
domain basis) should be updated. Updating the basis means taking
into account the new samples to find a space where the available
information is embedded in an optimal way. Assuming the recursive
estimation of the correlation matrices as in (3) allows us to trans-
fer the basis update problem to an incremental rank-one modified
eigenvalue problem [11].
The source-domain update can also be understood as subspace-
tracking, which can be effectively achieved using the PASTd algo-
rithms [12]. The disadvantage of this algorithm is on the one hand,
that the estimated transformation matrices are only nearly unitary, it
has been shown that reorthonormalizing the subspace eigenvectors
results in performance degradation, and on the other hand we need
in our case an immediate update of the basis when changes in the
source-domain happens to overcome the non-uniqueness problem
stated in [13]. This non-uniqueness problem is usually solved by
manipulating the transmitted signal in the near-end room, but this
manipulation should be avoided as far as possible for WFS and Am-
bisonics, where the loudspeakers driving functions are analytically
derived. In Section 4.3 we discuss some practical aspects of the
updating process.

3.1. Permutation Problem

As stated in Sec. 2.2 the possible permutations of the separated
sources have to be aligned between the loudspeaker side and micro-
phone side. The correctly aligned eigenvectors of both covariance
matrices can be approximated by singular value decomposition of
Sxy.
Let us assume the following decomposition is given by a singular
value decomposition for a given temporal frequency bin, then

Sxy = C1Txy
CH

2 ,

SxyS
H
xy = C1Txy

CH
2 C2Txy

CH
1

= C1Txy
T

xy
CH

1 , (9)

SxyS
H
xy = Ê{xyH}Ê{yxH} = σ2

ySxx. (10)

where σ2
y := Ê{yHy}. Hence, the left singular vectors of T

xy
can

be seen as eigenvectors of the weighted correlation matrix Sxx. In
a similar way it can be shown that CH

2 contains the eigenvectors of
σ2
xSyy.

4. EFFICIENT IMPLEMENTATION

4.1. Algorithm

Based on [6] together with the introduction of the transition matrices
G

C1
, G

C2
for time varying C1, C2 analogously to [7], we can

derive an exact block based MIMO algorithm. For the simplified
presentation with independent frequency bin, we obtain from (1) and
(3) the following set of equations.

T
xx

(n) =λT
xx

(n − 1) + (1 − λ)x(n)xH(n), (11)

k(n) =(1 − λ)T−1

xx
(n)x(n), (12)

G
C1

=CH
1 (n)C1(n − 1), (13)

G
C2

=CH
2 (n − 1)C2(n), (14)

e(n) =y(n) −
(
G

C1
Ĥ(n − 1)G

C2

)T

x(n), (15)

Ĥ(n) =G
C1

Ĥ(n − 1)G
C2

+ k(n)eT (n). (16)

Eqs. (13), (14) show the computational benefit of the unitarity of the
transformation matrices, since otherwise (·)H had to be replaced by
matrix inversions.

4.2. Adaptation Control

To achieve a trade-off between complexity and adaptation perfor-
mance it is necessary to ensure the quality of the chosen adaptation
domain.

4.2.1. Rank Estimation

To ensure an optimal embedding of the loudspeakers and micro-
phones signals in the chosen transform-domain a measure of re-
construction error should be defined. This is a consequence of the
fact that covariance matrices Sxx and Syy are in general rank de-
ficient and C1, C2 have the dimensions (P × r1, r1 ≤ P ), resp.
(Q×r2, r2 ≤ Q), therefore the reconstruction error should be com-
puted whenever new data is available, e.g.,

J1 :=
∥∥∥x −C1C

H
1 x

∥∥∥2

2
. (17)

If the error is greater than the noise level then basis should be up-
dated and the rank newly defined.

4.2.2. Compactness Measure

A measure of decorrelation between the modes should be used to
ensure the optimality of the adaptation, that assume diagonal covari-
ance matrices T

xx
.

An adequate and often used measure is the Frobenius norm of the
off-diagonal matrix:

J2 :=
∥∥∥off(xxH)

∥∥∥2

F
. (18)

4.3. Iterative Computation of the SVD

In terms of an iterative computation of the SVD based on the QR-
algorithm we propose a new method for rank-one incremental SVD-
update. The literature gives many algorithms for the updating pro-
cess. The theory behind the updating process is presented in [11],
where the author suggested the Newton’s algorithm to determine the
roots of the characteristic polynomial. In [14] a sophisticated inter-
polation approach was introduced. These two methods could con-
verge slowly when the new roots are close to each other. In [15] the
update strategy is optimized for appending more than one Vector to
a matrix.
The basic idea of the algorithm presented here is to precondition the
update problem to solve it efficiently with the QR-Algorithm. From
(7) and (3) we obtain

T′
xy

(n) := CH
1 (n − 1)(Sxy(n))C2(n − 1)

= CH
1 (n − 1)

(
λSxy(n − 1)

+ (1 − λ)x(n)y(n)H

)
C2(n − 1)

= λT
xy

(n − 1) + (1 − λ)x′(n)y′(n)H . (19)



Givens rotations G := GH
1 · · ·GH

P−1 after [16] can be found such
that G is in Hessenberg form and

G · x′(n) =
∥∥∥x′(n)

∥∥∥ e1, (20)

where e1 = [1, 0, · · · , 0]T . Substituting into (19) leads to

T′
xy

(n) = GH(λGT
xy

(n − 1) + (1 − λ)
∥∥∥x′(n)

∥∥∥ e1y
′(n)H).

(21)

GT
xy

(n − 1) is in Hessenberg form because it is a product of a

diagonal matrix with a Hessenberg’s matrix and G is unitary. In [16,
Algorithm 5.2.3] it is shown how to compute the QR factorization
of an upper Hessenberg matrix in O(P2) flops, so we have a QR
factorization of T′

xy
(n) and the well known QR-algorithm can be

applied to get the update matrices C′
1(n) and C′

2(n). The basis
update is then given by

C1(n) = C1(n − 1)C′
1(n), C2(n) = C2(n − 1)C′

2(n).
(22)

5. EXPERIMENTS

To illustrate the properties of the developed SDAF, a multichannel
AEC application scenario will be considered.
The implementation of the algorithm was block-based, the corre-
sponding formulation is similar to the formulation in [6, 7]. The
simulated geometrical setup consists of a near-end room with size
6 × 6 × 3 meters containing a linear loudspeaker array with P = 8
loudspeakers, and in parallel in a distance of 5 meters is a linear
microphone array with Q = 8 microphones, acoustically modeled
by the image source method with an acoustic reflection factor at the
walls of ρ = 0.9 and filter length L = 1024 at a sampling rate of
fs = 8 kHz. The spacing in both arrays is 20 cm. Noise with a
level of approximately -50 dB with respect to the echo was added to
the microphone signals, in order to simulate microphone and other
noise sources at the near-end. The far-end is a WFS system rendering
4 randomly located virtual sources of uncorrelated white noise. The
filter length of the driving functions (far-end in Fig. 1) was 128. Af-
ter 3.7 seconds one source in the the far-end jumped 5 meters along
the axis parallel to the loudspeakers array. The lowermost curve in
Fig. 2 shows the echo return loss enhancement (ERLE) for the simu-
lated scenario using a constant transform-domain, that was estimated
by averaging the covariance matrices the loudspeakers and micro-
phones signals over the time and diagonalizing them. The dashed
curve depicts the performance of the presented SDAF. The enhance-
ment reached by the adaptation of the estimation basis can be clearly
seen. The fall of the curve is caused by moving the source, but the
curve rises rapidly again to reach the room SNR because of adapt-
ing the transform-domain. Note that in these simulations we did
not apply any pre-processing [13]. As a reference, the bold curve is
produced by eigenspace adaptive filtering, where the basis was com-
puted by the singular value decomposition of the estimated system
by the presented SDAF. This curve is theoretical, because it requires
the eigenspace of the estimated system to be known. The uppermost
curve shows the theoretically ideal ERLE. This is the curve that can
be reached by EAF , when the eigenspace of the system is known.
The simulations have proved, that the presented SDAF is an efficient
technically realizable algorithm that converges to the theoretically
ideal eigenspace estimation.
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Fig. 2. Echo return loss enhancement.

6. CONCLUSION

In this paper we presented a new algorithm for massive multichannel
acoustic echo cancellation and we outlined a scheme for an adaptive
basis estimation allowing us performing optimal adaptive filtering
even in absence of a-priori knowledge about the system.
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