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Abstract

In unknown environments where we need to identify, model, or track unknown and time-varying channels, adaptive

filtering has been proven to be an effective tool. In this contribution, we exclusively focus on multichannel algorithms

in the frequency domain. For the single-channel case, there are many frequency-domain algorithms in the literature,

where most of them are derived from existing time-domain algorithms and different heuristical considerations. Here, we

propose a new theory for the rigorous derivation of a whole class of multichannel adaptive filtering algorithms in the

frequency domain based on a recursive least-squares criterion. Then, from the so-called normal equation, we derive a

generic adaptive algorithm in the frequency domain that we can write in different ways. An analysis of this algorithm

shows that the mean-squared error convergence is independent of the input signal statistics. We suggest a very useful

approximation, deduce some well-known algorithms, and give design rules for important parameters to optimize the

performance in practice. Due to the rigorous approach, the proposed framework inherently takes the coherence between

all input signal channels into account, while the computational complexity is kept low by introducing several new

techniques, such as a robust recursive Kalman gain computation in the frequency domain and efficient fast Fourier

transform (FFT) computation tailored for overlapping data blocks. Simulation results and real-time performance for

applications such as multichannel acoustic echo cancellation on regular personal computers show the high efficiency of

the approach.
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I. Introduction

Adaptive filtering constitutes an important part of statistical signal processing. The ability of adaptive

filters to operate satisfactorily in an unknown environment and track time variations of input statistics make

it a powerful tool in such diverse fields as communications, acoustics, radar, sonar, seismology, and biomedical

engineering. Despite of the large variety of applications, four basic classes of adaptive filtering applications

may be distinguished [1]: system identification, inverse modeling, prediction, and interference cancelling.

Especially in speech and acoustics, where all those basic classes of adaptive filtering can be found, we often

have to deal with very long filters (sometimes several thousand taps), highly time-variant environments, and

highly non-stationary and auto-correlated signals.

In addition, the simultaneous processing of multiple input streams, i.e., multichannel adaptive filtering (MC

ADF) is becoming more and more desirable for future products. Typical examples are multichannel acoustic

echo cancellation (system identification) or adaptive beamforming microphone arrays (interference cancelling).

In this article, we present a rigorous approach to adaptive MIMO (multiple input and multiple output)

systems that are updated in the frequency domain and show its high efficiency for the above mentioned

applications. The resulting generalized multichannel frequency-domain adaptive filtering has led to successful

real-time implementations of multichannel acoustic echo cancellers on regular personal computers [2], [3].

Generally, we distinguish two classes of adaptive algorithms. One class includes filters that are updated in

the time domain, sample-by-sample in general, like the classical least-mean-square (LMS) [4] and recursive

least-squares (RLS) [5] algorithms. The other class contains filters that are updated in the frequency domain,

block-by-block in general, using the fast Fourier transform (FFT) as a powerful vehicle. As a result of this

block processing, the arithmetic complexity of the algorithms that belong to the latter category is significantly

reduced compared to time-domain adaptive algorithms. The possibility to exploit the efficiency of FFT

algorithms is due to the Toeplitz structure of the matrices involved, which results from the time-shift properties

of the filter input signal. Consequently, the key for deriving a frequency-domain adaptive algorithm is to

rewrite the time-domain error criterion in a way that Toeplitz and circulant matrices are explicitly shown.

Another advantage of frequency-domain adaptive filtering is that the stepsize can be normalized indepen-

dently for each frequency bin, which results in a more uniform convergence over the entire frequency range. It

is well known [1] that the eigenvalue spread of the input signal correlation matrix determines the convergence

speed of gradient-based algorithms such as the LMS algorithm. For speech signals, the eigenvalue spread can

be relatively high. The eigenvalues approximately correspond to the power spectral density on equidistant

frequency points [6]. Therefore, it is possible to compensate for this power variation by choosing stepsizes

that are inversely proportional to the power spectral density in these frequency points.

The case of multichannel adaptive filtering (Fig. 1) has been found to be much more difficult in general,

because of the often extremely ill-conditioned correlation matrix to be inverted. In typical scenarios, the input

signals to the adaptive filter are not only auto-correlated but also highly cross-correlated which often results

in very slow convergence. This problem becomes particularly severe in multichannel acoustic echo cancellation
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[7], [8], [9].
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Fig. 1. Multichannel adaptive filtering.

Direct application of commonly used low-complexity algorithms, such as the LMS algorithm or conventional

frequency-domain adaptive filtering, to the multichannel case often leads to disappointing results as the cross-

correlations between the input channels are not taken into account [10]. In contrast to this, high-order affine

projection algorithms and RLS algorithms do take the cross-correlations into account. Indeed, it can be shown

that the RLS provides optimum convergence speed even in the multichannel case [10], but the complexity

of these algorithms is prohibitively high and, e.g., will not allow real-time implementation of multichannel

acoustic echo cancellation on regular PC hardware any time soon.

The rigorous derivation of frequency-domain adaptive filtering presented in the next section leads to a

generic algorithm with RLS-like properties. We will also see that there is an efficient approximation of this

algorithm taking the cross-correlations into account. The single-channel version of this algorithm provides a

direct link to existing frequency-domain algorithms.

Single-channel frequency-domain adaptive filtering was first introduced by Dentino et al., based on the

least-mean-squares (LMS) algorithm in the time-domain [11]. Ferrara [13] was the first to elaborate an

efficient frequency-domain adaptive filter algorithm (FLMS) that converges to the optimum (Wiener) solution.

Mansour and Gray [14] derived an even more efficient algorithm, the unconstrained FLMS (UFLMS), using

only three FFT operations per block instead of five for the FLMS, with comparable performance [15]. However,

in some applications, a major handicap with these structures is the delay introduced between input and output.

Indeed, this delay is equal to the length L of the adaptive filter, which is considerable for applications like

acoustic echo cancellation. A new structure called multi-delay filter (MDF), using the classical overlap-save

(OLS) method, was proposed in [16], [17] and generalized in [18] where the block processing N was made

independent of the filter length L; N can be chosen as small as desired, with a delay equal to N . Although

from a complexity point of view, the optimum choice is N = L, using smaller block sizes (N < L) in order

to reduce the delay is still more efficient than time-domain algorithms. A more general scheme based on

weighted overlap and add (WOLA) methods, the generalized multidelay filter (GMDFα) was proposed in [19],

[20], where α is the overlap factor. The settings α > 1 appear to be very useful in the context of adaptive

filtering, since the filter coefficients can be adapted more frequently (every N/α samples instead of every N

samples in the conventional OLS scheme). Thus, this structure introduces one more degree of freedom, but

the complexity is increased roughly by a factor α. Taking the block size in the MDF as large as the delay
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permits will increase the convergence rate of the algorithm, while choosing the overlap factor greater than 1

will increase the tracking abilities of the algorithm.

Two-channel frequency-domain adaptive filtering was first introduced in [21] in the context of stereophonic

acoustic echo cancellation and derived from the extended least-mean-squares (ELMS) algorithm [22] in the

time domain using similar considerations as for the single-channel case outlined above.

In this paper we provide a new and rigorous derivation for a class of multichannel frequency-domain adap-

tive algorithms based on a recursive least-squares criterion. It will be shown that the theory covers the above

algorithms as special cases and leads the way to computationally efficient and fast converging practical ap-

proximations. For clarity, we will confine the detailed derivation to a block size N = L. A generalization to

N ≤ L is straightforward; we will point to some interesting results along the lines.

The organization of this contribution is as follows. In Section II, we propose a frequency-domain recursive

least-squares criterion from which the so-called normal equation is derived. Then, from this normal equation,

we deduce a generic multichannel adaptive algorithm that we can write in different ways and introduce the so-

called frequency-domain Kalman gain. In Section III, we study the convergence of this algorithm. In Section

IV, we consider the general MIMO case and, in Section V, we give a very useful approximation, deduce some

well-known algorithms as special cases, and give design rules for some important parameters such as the

exponential window, regularization, and adaptation stepsize. A useful dynamical regularization method is

discussed in more detail in Section VI. Section VII introduces several methods for increasing computational

efficiency in the multi-input and MIMO cases, such as a robust recursive Kalman gain computation and FFT

computation tailored for overlapping data blocks. Section VIII presents some simulations and multichannel

real-world implementations for hands-free speech communications. Finally, conclusions are summarized in

Section IX.

II. General Derivation of Multichannel Frequency-Domain Algorithms

In the first part of this section we formulate a block recursive least-squares criterion in the frequency domain.

Once the criterion is rigorously defined, the adaptive algorithm follows immediately.

A. Optimization Criterion

From Fig. 1, it can be seen that the error signal at time k between the output of the multichannel adaptive

filter ŷ(k) and the desired output signal y(k) is given by

e(k) = y(k) − ŷ(k), (1)

with

ŷ(k) =
P
∑

p=1

xT
p (k)ĥp = xT (k)ĥ, (2)

where

xp(k) = [xp(k), xp(k − 1), · · · , xp(k − L + 1)]T (3)
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is a vector containing the latest L samples of the input signal xp of the p-th channel, and where

ĥp = [ĥp,0, ĥp,1, · · · , ĥp,L−1]
T (4)

contains the current weights of the adaptive FIR filter taps for the p-th input channel. The vectors

x(k) = [xT
1 (k),xT

2 (k), · · · ,xT
P (k)]T (5)

and

ĥ = [ĥ
T
1 , ĥ

T
2 , · · · , ĥ

T
P ]T (6)

allow a convenient notation of the multichannel algorithms. Superscript T denotes transposition of a vector

or a matrix.

We now define the block error signal of length L. From (1) and (2) follows

e(m) = y(m) − ŷ(m), (7)

with m being the block time index, and

ŷ(m) =
P
∑

p=1

UT
p (m)ĥp = UT (m)ĥ, (8)

where

e(m) = [e(mL), · · · , e(mL + L − 1)]T , (9)

y(m) = [y(mL), · · · , y(mL + L − 1)]T , (10)

ŷ(m) = [ŷ(mL), · · · , ŷ(mL + L − 1)]T , (11)

Up(m) = [xp(mL), · · · ,xp(mL + L − 1)], (12)

U(m) = [UT
1 (m), · · · ,UT

P (m)]T . (13)

It can easily be verified that Up, p = 1, . . . , P are Toeplitz matrices of size (L × L):

UT
p (m) =



















xp(mL) · · · xp(mL − L + 1)

xp(mL + 1)
. . .

...
...

. . .
...

xp(mL + L − 1) · · · xp(mL)



















These Toeplitz matrices are now diagonalized in two steps:

Step 1: Transformation of Toeplitz matrices into circulant matrices.

Any Toeplitz matrix Up can be transformed, by doubling its size, to a circulant matrix

Cp(m) =





U ′T
p (m) UT

p (m)

UT
p (m) U ′T

p (m)



 , (14)

where the U ′

p are also Toeplitz matrices and can be expressed in terms of the elements of UT
p (m), except for

an arbitrary diagonal, e.g.,

U ′T
p (m) =



















xp(mL + L) · · · xp(mL + 1)

xp(mL − L + 1)
. . .

...
...

. . .
...

xp(mL − 1) · · · xp(mL + L)



















.
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It follows

UT
p (m) = W 01

L×2LCp(m)W 10
2L×L, (15)

where we introduced the windowing matrices

W 01
L×2L = [0L×L, IL×L],

W 10
2L×L = [IL×L,0L×L]T .

Step 2: Transformation of the circulant matrices into diagonal matrices.

Using the 2L × 2L DFT matrix F 2L×2L, the circulant matrices are diagonalized as follows:

Cp(m) = F−1
2L×2LXp(m)F 2L×2L, (16)

where the diagonal matrices Xp(m) can be expressed by the first columns of Cp(m),

Xp(m) = diag{F 2L×2L[xp(mL − L + 1), · · · , xp(mL + L)]T }. (17)

Now, (15) can be rewritten equivalently as

UT
p (m) = W 01

L×2LF−1
2L×2LXp(m)F 2L×2LW 10

2L×L. (18)

Since

[AX1B, · · · ,AXP B] = A[X1, · · · ,XP ]diag{B, · · · ,B}

for any matrices A,B,Xp with compatible dimensions, it follows for the error vector using (13) and (18):

e(m) = y(m) − W 01
L×2LF−1

2L×2L[X1(m), · · · ,XP (m)]diag{F 2L×2LW 10
2L×L, · · · ,F 2L×2LW 10

2L×L}ĥ. (19)

If we multiply (19) by the DFT matrix F L×L of size L × L, we get the error signal in the frequency domain:

e(m) = y(m) − G01
L×2LX(m)G10

2LP×LP ĥ, (20)

where

e(m) = F L×Le(m), (21)

y(m) = F L×Ly(m), (22)

G01
L×2L = F L×LW 01

L×2LF−1
2L×2L, (23)

G10
2LP×LP = diag{G10

2L×L, · · · ,G10
2L×L}, (24)

G10
2L×L = F 2L×2LW 10

2L×LF−1
L×L, (25)

X(m) = [X1(m),X2(m), · · · ,XP (m)], (26)

ĥp = F L×Lĥp, (27)

ĥ = [ĥ
T
1 , ĥ

T
2 , · · · , ĥ

T
P ]T . (28)

Optimization Criterion:

Having derived a frequency-domain error signal, we now define a frequency-domain criterion for optimizing

the coefficient vector ĥ = ĥ(m):

Jf(m) = (1 − λ)
m
∑

i=0

λm−ieH(i)e(i), (29)
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where H denotes conjugate transpose and λ (0 < λ < 1) is an exponential forgetting factor. The criterion (29)

is very similar to the one leading to the well-known RLS algorithm [5]. The main advantage of using (29) is

to take advantage of the FFT in order to have low-complexity adaptive filters.

B. Normal Equation

Let ∇ ˆh
be the gradient operator with respect to ĥ. Applying the operator ∇ ˆh

to the cost function Jf, we

obtain [1], [23] the complex gradient vector:

∇ ˆh
Jf(m) =

∂Jf(m)

∂ĥ(m)
= −(1 − λ)

m
∑

i=0

λm−i(G10
2LP×LP )T XT (i)(G01

L×2L)T y∗(i) (30)

+ (1 − λ)

[

m
∑

i=0

λm−i(G10
2LP×LP )T XT (i)(G01

2L×2L)T X∗(i)(G10
2LP×LP )∗

]

ĥ
∗

(m),

where ∗ denotes complex conjugate,

G01
2L×2L = (G01

L×2L)HG01
L×2L

= F 2L×2LW 01
2L×2LF−1

2L×2L, (31)

and

W 01
2L×2L =





0L×L 0L×L

0L×L IL×L



 . (32)

By setting the gradient of the cost function equal to zero, conjugating, noting that (G01
2L×2L)H = G01

2L×2L

and defining

y
2L

(m) = (G01
L×2L)Hy(m)

= F 2L×2L





0L×1

y(m)



 , (33)

we obtain the so-called normal equation:

S(m)ĥ(m) = s(m), (34)

where

S(m) = (1 − λ)
m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)G01

2L×2LX(i)G10
2LP×LP

= λS(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP (35)

and

s(m) = (1 − λ)
m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)y

2L
(i)

= λs(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)y

2L
(m)

= λs(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)(G01

L×2L)Hy(m). (36)

If the input signal is well-conditioned, matrix S(m) is nonsingular. In this case, the normal equation has a

unique solution which is the optimum Wiener solution.
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C. Adaptive Algorithm

There are many different ways to write the adaptive algorithm, i.e., a recursive update of ĥ(m). In any

case, it is derived directly from the normal equation (34) and associated equations (35) and (36).

In the recursive equation (36), we replace s(m) and s(m − 1) by formulating (34) in terms of block time

indices m and m − 1, respectively. We then eliminate S(m − 1) from the resulting equation using (35).

Reintroducing the error signal vector (20), we obtain the following exact adaptive algorithm:

e(m) = y(m) − G01
L×2LX(m)G10

2LP×LP ĥ(m − 1) (37)

ĥ(m) = ĥ(m − 1) + (1 − λ)S−1(m)(G10
2LP×LP )HXH(m)(G01

L×2L)He(m), (38)

For practical purposes, it is useful to reformulate this algorithm equivalently. First, we multiply (37) by

(G01
L×2L)H ,

e2L(m) = y
2L

(m) − G01
2L×2LX(m)G10

2LP×LP ĥ(m − 1) (39)

ĥ(m) = ĥ(m − 1) + (1 − λ)S−1(m)(G10
2LP×LP )HXH(m)e2L(m), (40)

where we defined analogously to (33)

e2L(m) = (G01
L×2L)He(m)

= F 2L×2L





0L×1

e(m)



 . (41)

If we multiply (40) by G10
2LP×LP , we obtain the algorithm:

S(m) = λS(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP (42)

e2L(m) = y
2L

(m) − G01
2L×2LX(m)ĥ2LP (m − 1) (43)

ĥ2LP (m) = ĥ2LP (m − 1) + (1 − λ)G10
2LP×LP S−1(m)(G10

2LP×LP )HXH(m)e2L(m), (44)

where

ĥ2LP (m) = G10
2LP×LP ĥ(m)

=

[

ĥ
T
2LP,1(m), · · · , ĥ

T
2LP,P (m)

]T

,

ĥ2LP,p(m) = F 2L×2L





ĥp(m)

0L×1



 . (45)

The rank of the matrix G10
2LP×LP is equal to LP . Since we have to adapt LP unknowns, in princi-

ple (44) is equivalent to (40). Indeed, if we multiply (44) by (G10
2LP×LP )H , we obtain exactly (40) since

(G10
2LP×LP )HG10

2LP×LP = ILP×LP . It is interesting to see how naturally we have ended up using blocks of

length 2L (especially for the error signal) even though we have used an error criterion with blocks of length L.

We can do even better than that and rewrite the algorithm exclusively using FFTs of size 2L. This formulation
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is by far the most interesting one because an explicit link with existing frequency-domain algorithms can be

established. Let us first define the (2LP × 2LP ) matrix

Sd(m) = (1 − λ)
m
∑

i=0

λm−iXH(i)G01
2L×2LX(i)

= λSd(m − 1) + (1 − λ)XH(m)G01
2L×2LX(m). (46)

The relationship with S(m) is obviously given by:

S(m) = (G10
2LP×LP )HSd(m)G10

2LP×LP . (47)

Next, we define

G10
2L×2L = G10

2L×L(G10
2L×L)H

= F 2L×2LW 10
2L×2LF−1

2L×2L

and

G10
2LP×2LP = diag{G10

2L×2L · · ·G10
2L×2L}, (48)

where

W 10
2L×2L =





IL×L 0L×L

0L×L 0L×L



 . (49)

Now, we have an interesting relation between the inverse of the two matrices S and Sd:

G10
2LP×2LP S−1

d (m) = G10
2LP×LP S−1(m)(G10

2LP×LP )H . (50)

This can be verified by post-multiplying both sides of (50) by Sd(m)G10
2LP×LP and noting that

G10
2LP×2LP G10

2LP×LP = G10
2LP×LP .

Using (50), the adaptive algorithm (42)-(44) can now be written more conveniently:

Sd(m) = λSd(m − 1) + (1 − λ)XH(m)G01
2L×2LX(m) (51)

e2L(m) = y
2L

(m) − G01
2L×2LX(m)ĥ2LP (m − 1) (52)

ĥ2LP (m) = ĥ2LP (m − 1) + (1 − λ)G10
2LP×2LP S−1

d (m)XH(m)e2L(m). (53)

Due to the structure of the update equations, we introduce a frequency-domain Kalman gain matrix in

analogy to the RLS algorithm [1]:

K(m) = (1 − λ)S−1
d (m)XH(m). (54)

This 2LP × 2L matrix includes the inverse in (53) and plays an important role in practical aspects as shown

later. Figure 2 summarizes the general steps in multichannel frequency-domain adaptive filtering.

A note concerning block sizes N < L:

Analogously to (51)-(53), an algorithm can be derived straightforwardly using K = L/N sub-filters per

channel and block convolution. Using DFTs of length N and length 2N , respectively, the error criterion (29)
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Fig. 2. Multichannel frequency-domain adaptive filtering.

is then applied to length-N error vectors. In the resulting algorithm, the matrices G01
2L×2L in (51) and (52) are

replaced by the corresponding 2N × 2N -matrices G01
2N×2N . Equation (53) remains in the same form, where

G10
2LP×2LP , defined in (48), is then composed from K · P sub-matrices of size 2N × 2N ; ĥ2LP (m) and X(m)

are the concatenations of the sub-filters and diagonal sub-matrices, respectively.

III. Convergence Analysis

In this section, we analyze the convergence behaviour of the algorithm in a stationary environment using

(37) and (38).

Due to the assumed stationarity of the filter input signals, we obtain, after taking the expected value of

(35):

E{S(m)} = (1 − λ)
m
∑

i=0

λm−iSE , (55)

where

SE = E
{

(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP

}

(56)

denotes the time-independent ensemble average. Noting that in (55) we have a sum of a finite geometric

series, it can be simplified to

E{S(m)} = (1 − λm+1)SE . (57)

For a single realization, we assume that

S(m) ≈ (1 − λm+1)SE , (58)

and for the steady state we see that

S(m) ≈ SE for large m. (59)
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A. Analysis Model

To proceed with the analysis, we assume that the desired response y(k) and the tap-input vector x(k) are

related by the multiple linear regression model [1]

y(k) = xT (k)h + n(k), (60)

where the LP × 1 vector h denotes the fixed regression parameter vector of the model and the measurement

error n(k) is assumed to be a zero-mean white noise that is independent of x(k). The equivalent expression

in the frequency domain reads

y(m) = G01
L×2LX(m)G10

2LP×LP h + n(m), (61)

where h and n(m) are defined in the same way as ĥ in (28) and y(m) in (22), respectively.

B. Convergence in the Mean

By noting that

(G01
L×2L)HG01

L×2L = G01
2L×2L (62)

from (31), the coefficient update (38) can be written as

h − ĥ(m) = h − ĥ(m − 1) − (1 − λ)S−1(m)(G10
2LP×LP )HXH(m)G01

2L×2LX(m)

· G10
2LP×LP [h − ĥ(m − 1)] − (1 − λ)S−1(m)(G10

2LP×LP )HXH(m)n(m). (63)

ǫ(m) = h − ĥ(m) is the misalignment vector. Taking mathematical expectation of expression (63), using the

independence theory [1], and (56) together with (59), we deduce for large m that

E{ǫ(m)} = λE{ǫ(m − 1)}

= λmE{ǫ(0)}. (64)

Equation (64) says that the convergence rate of the algorithm is governed by λ. Most importantly, the rate

of convergence is completely independent of the input statistics. Finally, we have

lim
m→∞

E{ǫ(m)} = 0LP×1 ⇒ lim
m→∞

E{ĥ(m)} = h. (65)

Now, suppose that λt is the forgetting factor of a sample-by-sample adaptive algorithm (operating in the time

domain). To have the same effective window length for the sample-by-sample and block-by-block algorithms,

we should choose λ = λL
t . For example, the usual choice for the RLS algorithm is λt = 1 − 1/(3L). In this

case, a good choice for the frequency-domain algorithm is λ = [1 − 1/(3L)]L.

C. Convergence of the Mean-Squared Error

The convergence of the algorithm in the mean is not sufficient for mean-squared error (MSE) convergence

[1] as it only assures a bias-free estimate ĥ(m).
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The algorithm converges in the mean square if

lim
m→∞

J ′

f(m) = J ′

f,min < ∞, (66)

where

J ′

f(m) =
1

L
E
{

eH(m)e(m)
}

. (67)

From (37), the error signal e(m) can be written in terms of ǫ(m) as

e(m) = G01
L×2LX(m)G10

2LP×LP ǫ(m − 1) + n(m). (68)

Expression (67) becomes

J ′

f(m) =
1

L
Jex(m) + σ2

n, (69)

where

Jex(m) = E
{

ǫH(m − 1)(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP ǫ(m − 1)

}

(70)

is the excess mean-square error and σ2
n is the variance of the noise signal n(k). Furthermore

Jex(m) = E
{

tr
[

ǫH(m − 1)(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP ǫ(m − 1)

]}

= E
{

tr
[

(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP ǫ(m − 1)ǫH(m − 1)

]}

= tr
[

E
{

(G10
2LP×LP )HXH(m)G01

2L×2LX(m)G10
2LP×LP ǫ(m − 1)ǫH(m − 1)

}]

.

Invoking the independence assumption and using (56), we may reduce this expectation to

Jex(m) ≈ tr[SEM(m − 1)], (71)

where

M (m) = E
{

ǫ(m)ǫH(m)
}

(72)

is the misalignment correlation matrix.

We derive an expression for the misalignment vector ǫ(m) using the normal equation (34), and (36):

ǫ(m) = h − ĥ(m)

= h − S−1(m)s(m)

= h − (1 − λ)S−1(m)
m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)(G01

L×2L)Hy(i). (73)

Using y(m) from the model (61), we obtain with (62) and (35):

ǫ(m) = −(1 − λ)S−1(m)
m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)(G01

2L×2L)Hn(i). (74)

If we plug this equation into (72), we obtain, after taking the expectations, and noting that for a given input

sequence, the only random variable is the white measurement noise n(m):

M(m) = σ2
n(1 − λ)2S−1(m)

[

m
∑

i=0

λ2(m−i)(G10
2LP×LP )HXH(i)G01

2L×2LX(i)G10
2LP×LP

]

S−1(m), (75)
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where E{n(m)nH(m)} = σ2
nI. Analogously to (58), we find for the term in brackets in (75):

m
∑

i=0

λ2(m−i)(G10
2LP×LP )HXH(i)G01

2L×2LX(i)G10
2LP×LP ≈ (1 − λ2(m+1))SE . (76)

Using (58), (76), and 1 − λ2(m+1) = (1 − λm+1)(1 + λm+1), this leads to

M (m) = σ2
n(1 − λ)2

1 + λm+1

1 − λm+1
S−1

E . (77)

Finally, we obtain for (69) with (71)

J ′

f(m) =

[

(1 − λ)2
1 + λm

1 − λm
+ 1

]

σ2
n. (78)

This equation describes the convergence curve of the mean-squared error. One can see that in the steady

state, i.e., for large m, the mean-squared error converges to a constant value as desired in (66):

J ′

f(m → ∞) = J ′

f,min =
[

(1 − λ)2 + 1
]

σ2
n. (79)

Moreover, we see from (78) that the convergence behaviour of the mean-squared error is independent of the

eigenvalues of the ensemble-averaged matrix SE .

The scalar

Jmis(m) = E
{

ǫH(m)ǫ(m)
}

(80)

describes of the convergence of the misalignment, i.e. the coefficient convergence. Using (77), we deduce that

Jmis(m) = tr[M(m)]

= σ2
n(1 − λ)2

1 + λm+1

1 − λm+1
tr[S−1]

= σ2
n(1 − λ)2

1 + λm+1

1 − λm+1

L−1
∑

i=0

1

λs,i
, (81)

where the λs,i denote the eigenvalues of the ensemble-averaged matrix SE. It is important to notice the

difference between the convergence of the mean-squared error and the misalignment. While the mean-squared

error does not depend on the eigenvalues of SE , the misalignment is magnified by the inverse of the smallest

eigenvalue λs,min of SE (and thus of S(m)). The situation is worsened when the variance of the noise σ2
n

is large. So in practice, at some frequencies, where the signal is poorly excited, we may have a very large

misalignment. In order to avoid this problem and to keep the misalignment low, the adaptive algorithm

should be regularized by adding small values to the diagonal of S(m). In Section VI, this important topic is

discussed in more detail.

IV. Generalized Frequency-Domain Adaptive MIMO Filtering

In this section, we consider the extension of the algorithm proposed in Section II to the general MIMO case,

i.e., we have P input signals xp(k), p = 1, . . . , P , and Q desired signals yq(k), output signals ŷq(k), and error

signals eq(k), q = 1, . . . , Q, respectively (Fig. 3).
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+
X(m) E(m)

Y(m)

P Q

-
H
^

(m)
LPxQ

Fig. 3. Adaptive MIMO filtering in the frequency domain.

Now, the following questions are discussed: What is the optimum solution? Can correlation between the

error signals eq(k) be exploited and how do the resulting update equations look like?

Let us define signal block vectors yq(m), eq(m), y
q
(m), eq(m) for each output channel in the same way as

shown in (10), (9), (22), and (21), respectively. These quantities can be combined in the (L × Q) matrices

E(m) = [e1(m), · · · ,eQ(m)],

Y (m) = [y1(m), · · · ,yQ(m)],

E(m) = [e1(m), · · · ,eQ(m)],

Y (m) = [y
1
(m), · · · ,y

Q
(m)].

We consider three conceivable generalizations of the recursive least-squares error criterion proposed in (29):

Error criterion 1: Separate optimization

The most obvious approach to the problem is to treat each of the Q desired signal channels separately by the

algorithm proposed above:

Jf1,q(m) = (1 − λ)
m
∑

i=0

λm−ieH
q (i)eq(i) (82)

for q = 1, . . . , Q. This criterion has been traditionally used in all approaches for multichannel echo cancellation,

i.e. system identification.

Error criterion 2: Joint-optimization

A more general approach foresees to jointly optimize the MIMO filter by the following criterion:

Jf2(m) =
Q
∑

q=1

Jf1,q(m)

= (1 − λ)
m
∑

i=0

λm−i
Q
∑

q=1

eH
q (i)eq(i)

= (1 − λ)
m
∑

i=0

λm−itr[EH(i)E(i)]

= (1 − λ)
m
∑

i=0

λm−i‖diag{EH(i)E(i)}‖1,

where the matrix norm ‖ · ‖1 sums up the absolute values of all matrix elements. Introducing the (LP × Q)
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coefficient matrix in the frequency domain

ĤLP×Q =











ĥ1,1 · · · ĥ1,Q

...
. . .

...

ĥP,1 · · · ĥP,Q











, (83)

and using the same approach as in Section II, we obtain the following normal equation:

S(m)ĤLP×Q = sLP×Q(m). (84)

Fortunately, this matrix equation can be easily decomposed into Q equations (34). Therefore, criteria 1 and 2

are strictly equivalent for the behaviour of the adaptation. We note, however, that the compact formulation

(84) of the normal equation can be used, e.g. to obtain a generalized control of the adaptation for the echo

cancellation application [24].

Error criterion 3: Joint-Optimization, considering cross-correlations between error signals

The last formulation of Criterion 2 reveals an interesting possibility to take the cross-correlations between the

error signals into account by optimizing

Jf3(m) = (1 − λ)
m
∑

i=0

λm−i‖EH(i)E(i)‖1. (85)

Let us consider the optimization of the additional off-diagonal elements eH
q (i)er(i) (q 6= r) of EH(i)E(i).

According to [1], [23], we obtain
∂

∂ĥq(i)
eH

q (i)er(i) = 0, (86)

and from
∂

∂ĥr(i)
eH

q (i)er(i), (87)

we obtain the well-known normal equations (34) for ĥq.

Therefore, for all criteria, the generalized frequency-domain adaptive MIMO filter can be summarized as

Sd(m) = λSd(m − 1) + (1 − λ)XH(m)G01
2L×2LX(m) (88)

K(m) = (1 − λ)S−1
d (m)XH(m) (89)

E2L×Q(m) = Y 2L×Q(m) − G01
2L×2LX(m)Ĥ2LP×Q(m − 1) (90)

Ĥ2LP×Q(m) = Ĥ2LP×Q(m − 1) + G10
2LP×2LP K(m)E2L×Q(m) (91)

in analogy to equations (51) to (54).

Note that for block size N < L, an algorithm is obtained in the same way as mentioned in section II.

V. Approximation and Special Cases

We start this section by giving a very useful approximation of the algorithm proposed in the preceding

Section. We then derive some examples of classical and efficient algorithms. This list is not exhaustive and

several other algorithms may also be derived.
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A. Approximation of the Frequency-Domain Kalman Gain

Frequency-domain adaptive filters were first introduced to reduce the arithmetic complexity of the (single-

channel) LMS algorithm [13]. Unfortunately, the matrix Sd is generally not diagonal, so its inversion in (89)

has a high complexity and the algorithm may not be very useful in practice. Since Sd is composed of P 2

sub-matrices

Si,j = λSi,j(m − 1) + (1 − λ)X∗

i (m)G01
2L×2LXj(m), (92)

it is desirable that each of those sub-matrices be a diagonal matrix. In the next paragraph, we will argue that

G01
2L×2L can be well approximated by the identity matrix with weight1/2; accordingly, after introducing the

positive factor µ ≤ 2 in (91), we then obtain the following approximate algorithm:

S′(m) = λS′(m − 1) + (1 − λ)XH(m)X(m) (93)

K(m) = (1 − λ)S ′−1(m)XH(m) (94)

E2L×Q(m) = Y 2L×Q(m) − G01
2L×2LX(m)Ĥ2LP×Q(m − 1) (95)

Ĥ2LP×Q(m) = Ĥ2LP×Q(m − 1) + µG10
2LP×2LP K(m)E2L×Q(m), (96)

where each sub-matrix of S′ and K is now a diagonal matrix and µ ≤ 2 is a positive number. Note that the

imprecision introduced by the approximation in (93) and thus in the Kalman gain (94) will only affect the

convergence rate. Obviously, we can not permit the same kind of approximation in (95), because that would

result in approximating a linear convolution by a circular one, which of course can have a disastrous impact

in our adaptive filtering problem.

To justify the above approximation, let us examine the structure of the matrix G01
2L×2L. We have

(G01
2L×2L)∗ = F−1

2L×2LW 01
2L×2LF 2L×2L. (97)

Since W 01
2L×2L is a diagonal matrix, (G01

2L×2L)∗ is a circulant matrix. Therefore, inverse transformation of the

diagonal of W 01
2L×2L gives the first column of (G01

2L×2L)∗,

g∗ = [g∗0 , g∗1 , · · · , g
∗

2L−1]
T

= F−1
2L×2L[0, · · · , 0, 1, · · · , 1]T .

The elements of vector g can be written explicitly as:

gk =
1

2L

2L−1
∑

l=L

exp(−j2πkl/2L)

=
(−1)k

2L

L−1
∑

l=0

exp(−jπkl/L), (98)

where j2 = −1. Since gk is the sum of a finite geometric series, we have:

gk =







0.5 k = 0

(−1)k

2L
1−exp(−jπk)

1−exp(−jπk/L) k 6= 0
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=



















0.5 k = 0

0 k even

− 1
2L

[

1 − j cot
(

πk
2L

)]

k odd,

(99)

where L − 1 elements of vector g are equal to zero. Moreover, since (G01
2L×2L)HG01

2L×2L = G01
2L×2L, then

gHg = g0 = 0.5 and we have

gHg − g2
0 =

2L−1
∑

l=1

|gl|
2 = 2

L−1
∑

l=1

|gl|
2 =

1

4
. (100)

We can see from (100) that the first element of vector g, i.e., g0, is dominant in a mean-square sense, and from

(99) that the absolute values of the L first elements of g decrease rapidly to zero as k increases. Because of

the conjugate symmetry, i.e. |gk| = |g2L−k| for k = 1, . . . , L − 1, the last few elements of g are not negligible,

but this affects only the first and last columns of G01
2L×2L since this matrix is circulant with g as its first

column. All other columns have those non-negligible elements wrapped around in such a way that they are

concentrated around the main diagonal. To summarize, we can say that for L large, only the very first (few)

off-diagonals of G01
2L×2L will be non-negligible while the others can be completely neglected. We also neglect

the influence of the two isolated peaks |g2L−1| = |g1| < g0 on the lower left corner and the upper right corner,

respectively. Thus, approximating G01
2L×2L by a diagonal matrix, i.e., G01

2L×2L ≈ g0I = I/2, is reasonable,

and in this case we will have µ ≈ 1/g0 = 2 for an optimum convergence rate. For the rest of this paper, we

suppose that 0 < µ ≤ 2.

B. Special Cases

In the single-channel case P = Q = 1, S′ and K are diagonal matrices and the classical constrained

FLMS [13] follows immediately from (93)-(96). This algorithm requires the computation of 5 FFTs of length

2L per block. By approximating G10
2LP×2LP in (96) to the identity matrix, we obtain the unconstrained

FLMS (UFLMS) algorithm [14] which requires only 3 FFTs per block. Many simulations show that the two

algorithms have virtually the same performance.

Note that for N < L, Sd(m) in (88) consists of (K · P )2 sub-matrices that can be approximated as shown

above. It is interesting that for N = 1, the algorithm is strictly equivalent to the RLS algorithm in the time

domain. After the approximation, we obtain an extended multidelay filter (EMDF) for 1 < N < L that takes

the auto-correlations between the blocks into account. Finally, the classical multidelay filter is obtained by

further approximating S′(m) in (93) by

S′′(m) = diag{SMDF (m), · · · ,SMDF (m)}, (101)

where

SMDF (m) = λSMDF (m − 1) + (1 − λ)X∗

2N×2N (m)X2N×2N (m)

is a (2N × 2N) diagonal matrix.

In the multichannel case, (94) is the solution of a P × P system of linear equations of block matrices:

K(m) = [KT
1 (m), · · · ,KT

P (m)]T . (102)
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This allows decomposition of the update equation (96) into PQ single-channel update equations

ĥp,q(m) = ĥp,q(m − 1) + µG10
2L×2LKpeq(m) (103)

(p = 1, . . . , P , q = 1, . . . , Q) with the sub-matrices Kp(m) taking the cross-correlations between the input

channels into account. These decomposed update equations can then be calculated element-wise and the

(cross) power spectra are estimated recursively:

Si,j(m) = λSi,j(m − 1) + (1 − λ)X∗

i (m)Xj(m), (104)

where Sj,i(·) = S∗

i,j(·).

It is important to note that the calculation of the Kalman gain ( equations (88) and (88)), which is the

computationally most demanding part, is completely independent of the number Q of output channels and

thus, has to be calculated only once, while the remaining update equations (103) corresponds to simple

(U)FLMS algorithms.

In the case of two input channels P = 2, the Kalman gain can be written in an explicit form by block-

inversion:

K1 = D(m)S−1
1,1(m)[X∗

1(m) − S1,2(m)S−1
2,2(m)X∗

2(m)] (105)

K2 = D(m)S−1
2,2(m)[X∗

2(m) − S2,1(m)S−1
1,1(m)X∗

1(m)], (106)

with the abbreviation

D(m) = (1 − λ)[I2L×2L − S∗

1,2(m)S1,2(m){S1,1(m)S2,2(m)}−1]−1.

The solutions of (94) for more than two input channels may be formulated similarly to the corresponding

part of the stereo update equations (105) and (106) (e.g. using Cramer’s rule). These representations allow

an intuitive interpretation: as a correction of the interchannel-correlations in Ki between X∗

i and the other

input signals X∗

j , j 6= i.

For three channels, we have (omitting, for simplicity, the time index m of all matrices)

K1 = (1 − λ)D−1[X∗

1(S2,2S3,3 − S3,2S2,3) − X∗

2(S1,2S3,3 − S1,3S3,1) − X∗

3(S1,3S2,2 − S1,2S2,3)],

D := S1,1(S2,2S3,3 − S3,2S2,3) − S2,1(S1,2S3,3 − S1,3S3,1) − S3,1(S1,3S2,2 − S1,2S2,3)

as the first of the three Kalman gain components with the common factor D.

Unfortunately, for a higher number of channels, the number of update terms increases rapidly, and the

equations become too complicated for practial use. Therefore, a more efficient scheme for these cases will be

proposed in section VII.

VI. A Dynamical Regularization Strategy

In most practical scenarios, the desired signal y(k) is disturbed, e.g., by some acoustic background noise.

As shown above (c.f. (81)), the parameter estimation (i.e., misalignment) is very sensitive in poorly excited
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frequency bins. For robust adaptation the power spectral densities Si,i are replaced by regularized versions

according to S̃i,i = Si,i + diag{δi} prior to inversion in (89). The basic feature of the regularization is a

compromise between fidelity to data and fidelity to some prior information about the solution [25]. The latter

increases the robustness, but leads to biased solutions. Therefore, we propose here a bin-selective dynamical

regularization vector

δi(m) = δmax · [e−S
(0)
i,i

(m)/S0 , · · · , e−S
(2L−1)
i,i

(m)/S0 ]T (107)

with two scalar parameters δmax and S0. S
(ν)
i,i denotes the ν-th frequency component (ν = 0, · · · , 2L − 1) on

the main diagonal of Si,i. Note that for efficient implementation, e in (107) may be replaced by a basis 2 and

modified S0. δmax should be chosen according to the (estimated) disturbing noise level in the desired signal

y(k).

This exponential method provides a smooth transition between regularization for low input power and data

fidelity whenever the input power is high enough, and yields improved results compared to fixed regularization

and to the popular approach of choosing the maximum out of the respective component S
(ν)
i,i and a fixed

threshold δth (Fig. 4). It copes well with unbalanced excitation of the input channels, and most importantly,

it can be easily extended for the efficient Kalman gain calculation introduced in the next section.

S   (m)i,i
(ν)

S   (m)i,i
(ν)~

δmax

δth

constant regularization

regularization below threshold

exponential (proposed) regularization

no regularization

Fig. 4. Different regularization methods (channel i, bin ν).

VII. Efficient Multichannel Realization

As will be demonstrated by simulation results and real-world applications in Section VIII, the presented

algorithm copes well with multichannel input. The case of a larger number of filter input channels (P larger

than 2 or 3) calls for further improvement of the computational efficiency. In this section, we propose efficient

and stable recursive calculation schemes for the frequency-domain Kalman gain for and the DFTs of the

overlapping input data blocks for the case of a large number of filter input channels. Overlapping input data

blocks result from an overlap factor α > 1, originally proposed in [19]. Incorporating this extension in the

proposed algorithm is very simple. Essentially, only the way the input data matrices (17) are calculated, is

modified to

Xp(m) = diag{F 2L×2L[xp(m
L

α
− L + 1), · · · , xp(m

L

α
+ L)]T }. (108)

Simulations show that increased overlap factors α are particularly useful in the multichannel case.

A. Efficient Calculation of the Frequency-Domain Kalman Gain

For a practical implementation of a system with P > 2 channels, we propose computationally more efficient

methods to calculate (94) as follows.
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Due to the block diagonal structure of (94), it can be simply decomposed into 2L equations

K(ν)(m) = (1 − λ)(S(ν)(m))
−1

(X(ν)(m))H (109)

with (small) P × P unitary and positive definite matrices S(ν) for the components ν = 0, . . . , 2L − 1 on the

diagonals. Both K(ν) and X(ν) are vectors of length P . Note that for real input signals xi we need to solve

(109) only for L + 1 bins.

A well-known and numerically stable method for this type of problems is the Cholesky decomposition of

S(ν) followed by solution via backsubstitution, see [26]. The resulting total complexity for one output value

is then
O(P · log2(2L)) + O(P 3), (110)

where in the two-channel (stereo) case the second term O(P 3) is much smaller than the share due to the first

term.

For a large number (≥ 3) of input channels (see, e.g., the applications in Section VIII) we introduce a

recursive solution of (109) that jointly estimates the inverse power spectra (S(ν))−1 in (93) using the matrix-

inversion lemma, e.g. [1]. This lemma relates a matrix

A = B−1 + CD−1CH (111)

to its inverse according to

A−1 = B − BC(D + CHBC)−1CHB, (112)

as long as A and B are positive definite. Comparing (93) to (111), we immediately obtain from (93) an

update equation for the inverse matrices

(S(ν)(m))−1 = λ−1

[

(S(ν)(m − 1))−1 −
(S(ν)(m − 1))−1(X(ν)(m))HX(ν)(m)(S(ν)(m − 1))−1

λ(1 − λ)−1 + X(ν)(m)(S(ν)(m − 1))−1(X(ν)(m))H

]

using the decomposition (109) (making the denominator a scalar value).

Introduction of the common vector

T
(ν)
1 (m) = (S(ν)(m − 1))−1(X(ν)(m))H (113)

in the numerator and the denominator leads to

(S(ν)(m))−1 = λ−1(S(ν)(m − 1))−1 −
T

(ν)
1 (m)(T

(ν)
1 (m))H

λ2(1 − λ)−1 + λX(ν)(m)T
(ν)
1 (m)

. (114)

The Kalman gain (109) can then be efficiently calculated (using (114)) by

K(ν)(m) =
1 − λ

λ
T

(ν)
1 (m)

[

1 −
(T

(ν)
1 (m))H(X(ν)(m))H

λ(1 − λ)−1 + X(ν)(m)T
(ν)
1 (m)

]

. (115)

Again, there are common factors

T
(ν)
2 (m) = X(ν)(m)T

(ν)
1 (m) (116)

in (115) and (114).
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Note that our approach should not be confused with the classical RLS approach [5] which also makes use

of the matrix-inversion lemma. As we apply the lemma independently to small P × P systems (109), it is

numerically much less critical than in the RLS algorithm. Moreover, there is no analogon to a more efficient

fast RLS [27] due to the different matrix structures (vector X(ν)(m) does not reflect a tapped delay line).

The complexity of the different computation methods for the Kalman gains (for one output value e(k)) are

compared in Fig. 5. Note that our approach is particularly efficient for the extended multidelay filter (block
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Fig. 5. Complexity of Kalman gain.

size N < L) introduced in section V.

B. Dynamical Regularization for Proposed Kalman Gain Approach

Due to the recursion (114) the regularization according to (107) is not immediately applicable. Therefore, an

equivalent modification is applied directly to the data matrices X(ν)(m) by addition of mutually uncorrelated

white noise sequences to each channel and frequency bin, respectively.

Using the modified signal vectors, denoted by

X̃
(ν)

(m) = X(ν)(m) + N (ν)(m), (117)

where N (ν)(m) are the vectors of the white noise signals, we obtain the modified power spectral density

matrices (c.f. Eq. (93))

S̃
(ν)

(m) ≈ (1 − λ)
m
∑

q=0

λm−qX(ν)H(q)X(ν)(q) + (1 − λ)
m
∑

q=0

λm−qdiag{[|N
(ν)
1 (q)|2, · · · , |N

(ν)
P (q)|2]T }. (118)

The diagonal elements of the second term can be interpreted as a bin-selective dynamical regularization vector

δ(ν)(m) with elements (for channel i and bin ν)

δ
(ν)
i (m) = (1 − λ)

m
∑

q=0

λm−q|N
(ν)
i (q)|2,

= λδ
(ν)
i (m − 1) + (1 − λ)|N

(ν)
i (m)|2. (119)

Thus, in order to update the regularization from δ
(ν)
i (m−1) to δ

(ν)
i (m) with the appropriate speed (determined

by λ), we need to add noise with power

|N
(ν)
i (m)|2 =

δ
(ν)
i (m) − λδ

(ν)
i (m − 1)

1 − λ
. (120)
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On the other hand, according to (107), the regularization should be chosen according to

δ
(ν)
i (m) = δmax · exp



−
S

(ν)
i,i (m)

S0





= δmax · exp



−
λS

(ν)
i,i (m − 1) + (1 − λ)|X

(ν)
i (m)|2

S0



 . (121)

Now, unlike other dynamical regularization methods, the exponential regularization allows simple elimination

of the elements S
(ν)
i,i (m − 1) of the non-inverted matrix (which need not be computed at all due to the

matrix-inversion lemma (112)), since

δ
(ν)
i (m) = δmax



exp



−
S

(ν)
i,i (m − 1)

S0









λ

· exp

(

−
(1 − λ)|X

(ν)
i (m)|2

S0

)

= δ1−λ
max(δ

(ν)
i (m − 1))λ · exp

(

−
(1 − λ)|X

(ν)
i (m)|2

S0

)

. (122)

C. Efficient DFT calculation of overlapping data blocks

In this section we address the first term of the computational cost given in (110) which is mainly determined

by the DFTs of the frequency-domain adaptive filtering scheme (Fig. 2). The 2L-point DFT calculation in

(108) has to be carried out for each of the P loudspeaker signals and is therefore most costly. Moreover, as

will be discussed in Section VIII, an increased overlap factor α is often desirable in the multichannel case.

Therefore, we aim at exploiting the overlap of the input data blocks by implementing (108) recursively as

well. Note that a similar idea using a different approach was suggested in [28] for the single-channel case.

For the following derivation,

x
(k)
i (m) = xi

(

m
L

α
− L + 1 + k

)

(123)

denotes the k-th component (k = 0, . . . , 2L− 1) of the time domain vector (block index m) to be transformed

in (108). Let us now consider the ν-th element on the diagonal of Xi(m) where w = e−j2π/2L:

X
(ν)
i (m) =

2L−1
∑

k=0

x
(k)
i (m)wνk. (124)

Separating the summation into one for previous and one for new input values (Fig. 6), followed by the

introduction of the previous vector elements x
(k)
i (m − 1) leads to

X
(ν)
i (m) =

2L−L/α−1
∑

k=0

x
(k)
i (m)wνk +

2L−1
∑

k=2L−L/α

x
(k)
i (m)wνk

=
2L−1
∑

k=L/α

x
(k)
i (m − 1)wν(k−L/α−1) + ∆X

(ν)
i (m), (125)

where

∆X
(ν)
i (m) =

2L−1
∑

k=2L−L/α

x
(k)
i (m)wνk (126)

contains the new input values and will be the update term in our recursive scheme. Next, we introduce the
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0 L/2-1 L-1 3L/2-1 2L-1

x(m-1)

0 L/2-1 L-1 3L/2-1 2L-1

x(m)

previous values new values

Fig. 6. Example: overlapping data blocks, α = 2.

previous DFT output values X
(ν)
i (m − 1) by subtracting the vector elements of x

(k)
i (m − 1) of the previous

data vector shifted out of the DFT length 2L:

X
(ν)
i (m) = w−νL/α





2L−1
∑

k=0

x
(k)
i (m − 1)wνk −

L/α−1
∑

k=0

x
(k)
i (m − 1)wνk



+ ∆X
(ν)
i (m)

= wνL/αX
(ν)
i (m − 1) − wνL/α

2L−1
∑

k=2L−L/α

x
(k−2L+L/α)
i (m)wν(k−2L+L/α) + ∆X

(ν)
i (m). (127)

Using (123), we can show that

x
(k−2L+L/α)
i (m) = x

(k)
i (m − 2α + 1). (128)

Finally, be obtain

X
(ν)
i (m) = w−νL/αX

(ν)
i (m − 1) − w−ν2L∆X

(ν)
i (m − 2α + 1) + ∆X

(ν)
i (m).

Again, this recursive update needs to be carried out only for the bins ν = 0, . . . , L if x
(k)
i (m) is real-valued.

Only the update ∆X
(ν)
i (m) in this equation has to be calculated explicitly using the L/α new values of the

input vector.

With the truncation of the time-domain input vector for calculating ∆X
(ν)
i (m) in mind, we consider now the

decimation-in-frequency FFT algorithm. Figure 7 shows a simple example for 2L = 8 and α = 2. 2L − L/α

inputs (thin lines) always carry zero value. As can be seen from the figure, the first log2(α) stages do not

contain any summations while for the following stages any FFT algorithm (e.g. from highly optimized software

libraries) can be employed. Note that for the decimation-in-time approach one would need a special FFT
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Fig. 7. Illustration of decimation-in-frequency FFT with windowed input.

implementation for all stages in order to take advantage from high overlapping factors α. In summary, the
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recursive DFT approach reduces the first term of the complexity in (110) to O(P · log2(L/α)) for each output

point.

VIII. Simulations and Real-World Applications

As mentioned in the introduction, there are many areas of applications for multichannel adaptive filtering.

In the following, we demonstrate the performance of our approach in a few examples for hands-free speech

communication.

A. Multichannel Acoustic Echo Cancellation

For applications such as home entertainment, virtual reality (e.g., games, training), or advanced telecon-

ferencing, there is a growing interest in multimedia terminals with an increased number of audio channels

for sound reproduction (e.g., stereo or 5.1 channel - surround systems). In such applications, multichannel

acoustic echo cancellation is a key technology whenever hands-free and full-duplex communication is desired

(Fig. 8).
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Fig. 8. Multichannel acoustic echo cancellation.

The fundamental problem is that the multiple channels may carry linearly related signals which in turn

may make the normal equation to be solved by the adaptive algorithm singular. This implies that there

is no unique solution to the equation but an infinite number of solutions and it can be shown that all but

the true one depend on the impulse responses of the transmission room [7], [8]. It is shown in [9] that

the only solution to the nonuniqueness problem is to reduce the correlation between the different signals.

Three methods of preprocessing can be distinguished: nonlinear processing, e.g., [9], additive noise (below

the masking threshold of human hearing), e.g., [29], and time-varying filtering, e.g., [30]. For the following

simulations, a signal from a common source (in the transmission room) was convolved by P different room

impulse responses and nonlinearly, but inaudibly preprocessed according to [9] (P different nonlinearities with

factor 0.5). In this subsection we consider only one microphone in the receiving room. The convergence

behaviour is shown both in terms of system misalignment (ratio of the squared norms of (63) and the desired

response), and in terms of echo return loss enhancement (ERLE) which describes the ratio of the short-term

powers of the echo y(k)−n(k) and the residual echo e(k)−n(k). For smoothing the ERLE curves, a moving

average filter of length 256 was used.

Figure 9 illustrates the effect of taking the cross-correlations in (105) and (106) into account. As input xp(k),

a common white noise signal was convolved by the room impulse responses in the transmission room. Another
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white noise signal was added to the echo on the microphone for SNR = 35dB. Here, both the receiving room

impulse responses and the modeling filter lengths were chosen to be 1024 (solid lines: proposed, dashed lines:

classical UFLMS algorithm).
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Fig. 9. Effect of taking cross-correlation into account (P=2 channels, α = 4). (a) Misalignment, (b) ERLE.

For simulations with real-world signals, the lengths of the measured receiving room impulse responses were

4096 and the modeling filters were 1024, respectively. One common speech signal from the transmission room

serves as input signal. Figure 10 shows the misalignment convergence of the described algorithm (solid) for

the multichannel cases P = 2, 3, 4, 5, and the basic NLMS [1] (dashed) for comparison. In (a) the overlap

factor α was set to 4 in all cases, while in (b) the overlap factor α was set to 4 for P = 2, and adjusted to 8

for P = 3, 4, and to 16 for P = 5. Using these parameters, the convergence curves for the different numbers

of channels are almost indistinguishable. Figure 11 (a) shows the corresponding ERLE curves.

Figure 11 (b) compares different regularization methods (white noise distortion as above): no regularization

(uppermost curve), constant regularization (dotted), threshold (dashed), exponential with original algorithm

(dash-dot), proposed Kalman gain (lower solid line).
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Fig. 10. Misalignment convergence for the multichannel cases P=2,3,4,5. (a) Overlap α = 4, (b) overlap α adjusted.

We note that for both, stereophonic teleconferencing and hands-free speech recognition applications, real-

time systems could be successfully implemented on regular personal computers [2], [3].

B. Adaptive MIMO Filtering for Hands-Free Speech Communication

In applications such as hands-free speech recognition, it is very important to reduce interfering noise or

competing speech signals, and reverberation of the target speech signal, in addition to the acoustic echo

cancellation (Fig. 12).
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Fig. 11. (a) ERLE convergence for the multichannel cases P=2,3,4,5 and adjusted α and (b) comparison of regular-

ization methods, P=5, α=16.
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Fig. 12. Hands-free speech recognition in multimedia systems.

An efficient approach to address these problems is to replace the single microphone by a microphone array

directing a beam of increased sensitivity at the active talker [31]. In any practical system, this scenario

presents a MIMO system identification problem for the acoustic echo canceller [31], [3]. Fortunately, as noted

in Section IV, the costly calculation of the Kalman gain is necessary only once, i.e., it is independent of

the number of microphones. Figure 13 gives an example of a low-complexity structure. Echo cancellation is

applied to several beamformer (BF) output signals. The fixed beamformers do not disturb the convergence of

the echo cancellation and direct beams to all directions of interest [31]. Due to the efficient frequency-domain

approach, e.g., stereo echo cancellation (L = 4096) for 5 beams is possible on an Intel-based PC (1GHz).
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Fig. 13. A human/machine interface for hands-free speech recognition.

It is interesting to note that our divide and conquer approach (i.e. common Kalman gain calculation) is

very efficient for the frequency-domain framework, despite of the much lower complexity compared to the

basic LMS algorithm.
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C. Adaptive Beamforming

Next, we show that the proposed generalized multichannel frequency-domain adaptive filter is also an

interesting option for adaptive beamforming.

A simple and very effective structure for adaptive beamforming is the generalized sidelobe canceller (GSC)

after Griffith and Jim [32] (Fig. 14). The fixed beamformer (FBF) enhances target signal components, and

is used as reference for the adaptation of the adaptive sidelobe cancelling path, which consists of a blocking

matrix (BM) and an adaptive interference canceller (AIC). For our considerations, the AIC, a multichannel

adaptive filter as shown in Fig. 1, is of particular interest. It is driven by the interferer signals, while the

target signal is blocked by the BM.

...

...

...

g (k)
1

g  (k)P

FBF

BM

+

-

AIC

Target

Interferer

Fig. 14. Generalized Sidelobe Canceler.

To ensure robust operation (i.e., to avoid distortion of the target signal), the BM should be adaptive as well

[33]. However, for simplicity, we assumed in the simulations this matrix to be fixed, as originally proposed in

[32].

Often, if there is a dominant interferer, the underlying normal equation of the AIC is very ill-conditioned

as in the case of multichannel acoustic echo cancellation. A low level of background noise usually ensures

that there is a unique solution, but the convergence may be slowed down considerably. Figure 15 shows

the Interference Rejection (IR) of a GSC with conventional UFLMS adaption. For the simulations, P = 5

microphone signals were used. The filter lengths were L = 128 and the overlap factor was set to α = 1. In

Fig. 16 (same parameters), the cross-correlations between the microphone signals were taken into account

leading to significant improvement of the interference rejection.
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Fig. 15. Interference rejection: Generalized Sidelobe Canceller with classical UFLMS.

Note that due to the exploitation of the cross-correlations between the channels, the proposed generalized

multichannel frequency-domain adaptive filter even allows to feed any other possibly highly crosscorrelated

interference signals other than the BM outputs into the AIC module. The most obvious example would be
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Fig. 16. Interference rejection: Generalized Sidelobe Canceller taking cross-correlations into account.

known loudspeaker signals as in the case of conventional acoustic echo cancellation. However, compared to

conventional echo cancellation, this will generally lead to a suboptimum solution [12] since in that case the

(time-varying) beamformer will then appear within the echo pathes to be identified.

IX. Conclusions

In many applications where an adaptive filter is required, frequency-domain algorithms are an attractive

alternative to time-domain algorithms, expecially for the multichannel case. First, the computational complex-

ity can be low by utilizing the efficiency of the FFT. Second, the convergence is improved if crucial parameters

of these algorithms such as the exponential window, regularization, and adaptation step are properly chosen.

In this article a general framework for multichannel frequency-domain adaptive filtering was presented and

its efficiency in actual applications was demonstrated. We have shown that a generic algorithm with an MSE

convergence that is independent of the input signal statistics can be derived from the normal equation after

minimizing a block least-squares criterion in the frequency domain. We analyzed the convergence of this

algorithm and discussed some approximations that lead to well-known algorithms in the single-channel case,

such as the FLMS and UFLMS. For the multichannel case the framework is highly interesting as the cross-

correlations between all input signals are efficiently taken into account. Several simulations and real-time

implementations confirm the benefits of the multichannel algorithm. We have also presented strategies to

improve the computational efficiency further by introducing stable schemes for recursive DFT and Kalman

gain computation.
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[10] T. Gänsler and J. Benesty, “Stereophonic acoustic echo cancellation and two-channel adaptive filtering: an overview,”

International Journal of adaptive control and signal processing, Feb. 2000.

[11] M. Dentino, J. McCool, and B. Widrow, “Adaptive filtering in the frequency domain,” Proc. IEEE, vol. 66, pp.1658-1659,

Dec. 1978.

[12] W. Kellermann, “Strategies for combining acoustic echo cancellation and adaptive beamforming microphone arrays,” Proc.

ICASSP 1997, pp. 219–222.

[13] E.R. Ferrara, Jr., “Fast implementation of the LMS adaptive filter,” IEEE Trans. Acoust., Speech, Signal Processing, vol.

ASSP-28, pp. 474-475, Aug. 1980.

[14] D. Mansour and A.H. Gray, “Unconstrained Frequency-Domain Adaptive Filter,” IEEE Trans. on Acoustics, Speech, and

Signal Processing, vol.30, no.5, Oct. 1982.

[15] J.C.Lee and C.K.Un, “Performance analysis of frequency-domain block LMS adaptive digital filters,” IEEE Trans. Circuits

Syst., vol. CAS-36, pp. 173-189, Feb. 1989.

[16] J.-S. Soo and K.K. Pang, “Multidelay block frequency domain adaptive filter,” IEEE Trans. Acoust., Speech, Signal Process-

ing, vol. ASSP-38, pp. 373-376, Feb. 1990.

[17] J. Benesty and P. Duhamel, “Fast constant modulus adaptive algorithm,” IEE Proc.-F, vol. 138, pp. 379-387, Aug. 1991.

[18] J. Benesty and P. Duhamel, “A fast exact least mean square adaptive algorithm,” IEEE Trans. Signal Processing, vol. 40,

no. 12, pp. 2904-2920, Dec. 1992.

[19] E. Moulines, O. Ait Amrane, and Y. Grenier, “The generalized multidelay adaptive filter: structure and convergence analysis,”

IEEE Trans. Signal Processing, vol. 43, pp. 14-28, Jan. 1995.

[20] J. Prado and E. Moulines, “Frequency-domain adaptive filtering with applications to acoustic echo cancellation,” Ann.
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