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Abbreviations and Acronyms

AA-LP Anti-aliasing lowpass
AC3 Adaptive transform coder 3
ACR Absolute-category rating
ADC Analog-to-digital converter
ADPCM Adaptive differential pulse-code modulation
AEC Acoustic echo cancellation / caneller
AIR Acoustic impulse response
ALP Adaptive lattice predictor
ANC Active noise control or adaptive noise canceller
AP Affine projection
APC Adaptive predictive coding
AR Auto-regressive
AS Analysis synthesis
ASA Auditory scene analysis
ASR Automatic speech recognition
ATC Adaptive transform coding
BSA Bark-spectral approximation
BSD Bark-spectral distance
BSS Blind source separation
CAN Controller area network
CASA Computational auditory scene analysis
CB Critical band
CCR Comparison-category rating
CD Cepstral distance
CELP Code-excited linear predictive (coding)
CMN Cepstral mean normalization
CMS Cepstral mean subtraction
CPU Central processing unit
DAC Digital-to-analog converter
DAM Diagnostic acceptability measure
DCR Degradation-category rating
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DCT Discrete cosine transform
DEC Dynamic equalization control
DECT Digital enhanced cordless telecommunications
DFT Discrete Fourier transform
DIVA Digital interactive virtual acoustics
DRAM Dynamic random access memory
DSP Digital signal processing or digital signal processor
DTS Digital Theater Systems Inc.
DVC Dynamic volume control
DWT Discrete wavelet transform
EDC Energy decay curve
EMDF Extended multi-delay filter
ERB Equivalent rectangular bandwidth
ERLE Echo return loss enhancement
ETSI European telecommunications standards institute
FB Filter bank
FBE Filter-bank equalizer
FBSM Filter-bank summation method
FDAF Frequency domain adaptive filter
FFT Fast Fourier transform
FIR Finite impulse response
GAL Gradient adaptive lattice
GCC Generalized cross correlation
GDCT Generalized discrete cosine transform
GDFT Generalized discrete Fourier transform
GMAF Generalized multi-delay filter
GSC Generalized sidelobe canceller
GSM Global system for mobile communications
HERB Harmonicity-based dereverberation
HINT Hearing in noise test
HMM Hidden Markov model
HOS Higher-order statistics
HP Highpass
HRIR Head related impulse response
HRTF Head related transfer function
HTK Hidden Markov model toolkit
ICA Independent component analysis
ICC In-car communication
IDEC Individual dynamic equalization control
IDFT Inverse discrete Fourier transform
IDVC Individual dynamic volume control
IEC International electrotechnical commission
IFFT Inverse fast Fourier transform
IHC Inner hair cell
IID Interaural intensity difference or independent identically distributed
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IIR Infinite impulse response
IMCRA Improved minima controlled recursive averaging
INMD In-service non-intrusive measurement device
IRS Intermediate reference system
ISDN Integrated-services digital network
ISO International standardization organization
ITD Interaural time difference
ITU International telecommunication union
IWDFT Inverse warped discrete Fourier transform
KEMAR Knowles electronic manikin for acoustic research
LAR Log-area ratio
LDF Low delay filter
LEM Loudspeaker enclosure microphone
LMS Least mean square
LOT Listening-only test
LP Linear prediction or lowpass
LPC Linear predictive coding
LPTV Linear periodically time-variant
LQ Listing quality
LS Least squares
LSA Log spectral amplitude
LSD Log spectral distance
LTI Linear time-invariant
MA Moving average
MAP Maximum a posteriori
MDF Multi-delay filter
MDS Mulit-dimensional scaling
MFCC Mel filtered cepstral coefficient
MIMO Multiple-input multiple-output
MINT Multiple input/output inverse theorem
MOS Mean-opinion score
MOST Media oriented systems transport
MSC Magnitude-squared coherence
MVDR Minimum variance distortionless response
NLMS Normalized least mean square
NPR Near-perfect reconstruction
NR Noise reduction
NS Noise suppression
OEM Original equipment manufacturer
OHC Outer hair cell
OM-LSA Optimally-modified log spectral amplitude
PARCOR Partial correlation (coefficient)
PAMS Perceptual analysis measurement system
PBFDAF Partitioned block frequency domain adaptive filter
PC Personal computer
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PCM Pulse code modulation
PDF Probability density function
PESQ Perceptual evaluation of speech quality
PHAT Phase transform
POTS Plain old telephone system
PPN Polyphase network
PR Perfect reconstruction
PSD Power spectral density
PSQM Perceptual speech quality measure
QMF Quadrature mirror filter
RAM Random access memory
RASTA Relative spectra
REMOS Reverberation modeling for speech recognition
RES Residual echo suppression
RF Radio frequency
RIR Room impulse response
RLS Recursive least-squares
RPM Revolutions per minute
RS Reverberation suppression
SAEC Stereo acoustic echo cancellation
SBC Subband coding
SC Sylvester constraint
SD Semantic differential or spectral distance
SF Smoothing filter
SFM Spectral flatness measure
SIMO Single-input multiple-output
SIR Signal-to-interference ratio
SIRP Spherically invariant random process
SNR Signal-to-noise ratio
SRA Statistical room acoustics
SRR Signal-to-reverberation ratio
SOS Second-order statistics
SPIN Speech perception in noise
SPL Sound pressure level
SQET Speech-quality evaluation tool
SRAM Static random access memory
STFT Short-time Fourier transform
TBQ Total background quality
TCM Target cancellation module
TDOA Time difference of arrival
TFRM Tolerance function of raster match
TFTM Tolerance function of triple match
TIMIT Texas Instruments (TI) and Massachusetts Institute of Technology (MIT)
TOSQA Telecommunication objective speech quality assessment
TRINICON Triple-N independent component analysis for convolutive mixtures



5

TSQ Total signal quality
TWRM Tolerance width of raster match
TWTM Tolerance width of triple match
VAD Voice activity detection
VDA Verband der Automobilindustrie (German, stands for

German association of the automotive industry)
VoIP Voice over internet protocol
WDFT Warped discrete Fourier transform
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Convolutive Blind Source Separation for Noisy

Mixtures

Robert Aichner1, Herbert Buchner2, and Walter Kellermann3

1 Microsoft Corporation, Redmond, WA, USA †

2 Deutsche Telekom Laboratories, Technical University Berlin, Germany †

3 University of Erlangen-Nuremberg, Germany

Convolutive blind source separation (BSS) is a promising technique for sep-
arating acoustic mixtures acquired by multiple microphones in reverberant
environments. In contrast to conventional beamforming methods no a-priori
knowledge about the source positions or sensor arrangement is necessary re-
sulting in a greater versatility of the algorithms. In this contribution we will
first review a general BSS framework called TRINICON which allows a unified
treatment of broadband and narrowband BSS algorithms. Efficient algorithms
will be presented and their high performance will be confirmed by experimen-
tal results in reverberant rooms. Subsequently, the BSS model will be ex-
tended by incorporating background noise. Commonly encountered realistic
noise types are examined and, based on the resulting model, pre-processing
methods for noise-robust BSS adaptation are investigated. Additionally, an
efficient post-processing technique following the BSS stage, will be presented,
which aims at simultaneous suppression of background noise and residual
cross-talk. Combining these pre- or post-processing approaches with the al-
gorithms obtained by the TRINICON framework yield versatile BSS systems
which can be applied in adverse environments as will be demonstrated by
experimental results.

1.1 Introduction

Acoustic blind source separation can be applied to scenarios where there are a
number of point sources whose signals are picked up by several microphones.
As each microphone is located at a different position, each sensor acquires
a slightly different mixture of the original source signals. The goal of blind
source separation is to recover the separated source signals from this set of

† The research underlying this work was performed while the authors were with
Multimedia Communications and Signal Processing, University of Erlangen-
Nuremberg.
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Multiple-input
multiple-output
(MIMO)

sensor signals. The term “blind” stresses the fact that the source signals and
the mixing system are assumed to be unknown and no information about
the source positions and sensor arrangement is necessary. The fundamental
assumption for BSS methods is that the original source signals are mutually
statistically independent. In reality this assumption holds for a variety of
signals, such as multiple speakers. Therefore, the problem of BSS refers to
finding a demixing system whose outputs are statistically independent.

In reverberant environments delayed and attenuated versions of the source
signals sq(n) are picked up by the microphones. Assuming point sources, this
can be modeled by a mixing system consisting of finite impulse response (FIR)
filters of length M given as

xp(n) =

Q∑

q=1

M−1∑

κ=0

hqp,κsq(n − κ) + np(n), (1.1)

where hqp,κ, κ = 0, . . . , M − 1 denote the coefficients of the FIR filter model
from the q-th source to the p-th sensor. In addition to the source signals, a
noise signal np(n) may be picked up by each sensor which contains both, back-
ground noise and sensor noise. In blind source separation, we are interested
in finding a corresponding demixing system whose output signals yq(n) are
described by

yq(n) =

P∑

p=1

L−1∑

κ=0

wpq,κxp(n − κ). (1.2)

The parameter L denotes the FIR filter length of the demixing filters wpq,κ.
The convolutive mixing model together with the demixing system is depicted
as a block diagram in Fig. 1.1. From this it is obvious that BSS can be classified
as a blind multiple-input multiple-output (MIMO) technique. Throughout
this chapter, we regard the standard BSS model where the number Q of
potentially simultaneously active source signals sq(n) is equal to the number

s1(n)

sQ(n)

h11,κ

hQ1,κ

h1P,κ

hQP,κ

x1(n)

xP (n)

n1(n)

nP (n)

w11,κ

w1Q,κ

wP1,κ

wPQ,κ

y1(n)

yQ(n)

Mixing system Demixing system

Fig. 1.1. Convolutive MIMO model for BSS.
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Nongaussianity
Higher-order statistics
Independent

component analysis
Nonwhiteness
Nonstationarity

of sensor signals xp(n), i.e., Q = P . It should be noted that in contrast to other
BSS algorithms we do not assume prior knowledge about the exact number
of active sources. Thus, even if the algorithms will be derived for the case
Q = P , the number of simultaneously active sources may change throughout
the application of the BSS algorithm and only the condition Q ≤ P has to
be fulfilled. For Q > P the demixing system cannot be computed directly so
that usually the sparseness of the sources in transform domains, such as the
discrete Fourier transform (DFT) domain, is exploited and subsequently time-
frequency masking are applied to separate the sources. This research field is
termed computational auditory scene analysis (CASA) and a recent overview
on the state-of-the-art can be found, e.g., in [29, 84] or in Chap. ?? of this
book. Alternative statistical approaches for the case of P < Q are still in an
early stage [87].

As pointed out above, the source signals sq(n) are assumed to be mutually
statistically independent. For the case P = Q considered in this chapter it was
shown in [85] that merely utilizing second-order statistics (SOS) by decorre-
lating the output signals yq(n) does not lead to a separation of the sources.
This implies that we have to force the output signals to become statistically
decoupled up to joint moments of a certain order by using additional con-
ditions. This can be realized by exploiting one of the following source signal
properties:

(a) Nongaussianity. The probability density function (PDF) of an acoustic
source signal sq(n) is in general not Gaussian. Thus, the nongaussianity can
be exploited by using higher-order statistics (HOS) yielding a statistical
decoupling of higher-order joint moments of the BSS output signals. BSS
algorithms utilizing HOS are also termed independent component analysis
(ICA) algorithms (e.g., [48, 77]).

(b)Nonwhiteness. Audio signals exhibit temporal dependencies which can
be exploited by the BSS criterion. This means that the samples of each

source signal are not independent along the time axis. However, the signal
samples from different sources are mutually independent. Based on the as-
sumption of mutual statistical independence for non-white sources, several
algorithms can be found in the literature. There, mainly the nonwhiteness
is exploited by simultaneous diagonalization of output correlation matrices
over multiple time-lags, (e.g., [54, 67, 78, 81]).

(c) Nonstationarity. Audio signals are in general assumed to be nonstation-
ary. Therefore, in most acoustic BSS applications nonstationarity of the
source signals is exploited by simultaneous diagonalization of short-time
output correlation matrices at different time instants (e.g., [50,64,73,85]).
The signals within each block, as necessary for estimating the correlation
matrices, are usually assumed to be wide-sense stationary.

A simultaneous exploitation of two or even all three signal properties leads
to improved results as was shown within the TRINICON framework [14, 16]
which will be reviewed in the next section.
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Permutation
ambiguity

Filtering ambiguity
Deconvolution
Dereverberation

It should be pointed out that, as long as the concept of BSS is solely
based on the assumption of mutual independence of the source signals, some
ambiguities are unavoidable:

• Permutation ambiguity: The ordering of the separated sources cannot be
determined.

• Filtering ambiguity: The estimated separated source signals can only be
determined up to an arbitrary filtering operation.

The permutation ambiguity cannot be resolved without additional a-priori in-
formation. However, if, e.g., the sensor positions are known, then the position
of each separated source can be determined from the demixing system [18]. For
some applications this may be sufficient for solving the permutation problem.

The filtering ambiguity is caused by the fact that in general, BSS ap-
proaches do not aim at blind dereverberation which would lead to a deconvo-
lution of the mixing system, i.e., at a recovery of the original source signals
up to an arbitrary scaling factor and a constant delay. Blind dereverberation
is a more challenging task as it requires to distinguish between the temporal
correlations introduced by the vocal tract of the human speaker and the corre-
lations originating from the reverberation of the room. This was addressed in
the extension of the TRINICON framework to blind dereverberation in [15].
However, even if we do not strive for solving the dereverberation problem
in BSS it is still desirable to avoid the arbitrariness of the filtering oper-
ation in blind source separation. Fortunately, it can be shown [8, 20] that
the filtering ambiguity reduces to a scaling ambiguity, if the demixing filter
length L is chosen less or equal to the optimum BSS demixing filter length

Lopt = (Q−1)(M−1)+1
P−Q+1 . Another popular approach to avoid the arbitrary filter-

ing is to apply a constraint which minimizes the distortion introduced by the
demixing system of the BSS algorithm. Thereby, the q-th separated source
yq(n) is constrained to be equal to the component of the desired source sq(n)
picked up, e.g., at the q-th microphone. This is done by back-projecting the
estimated sources to the sensors or by introducing a constrained optimization
scheme [49,65]. In the following we disregard these ambiguities and first con-
centrate on the fundamental BSS problem for convolutive acoustic mixtures
and then extend our treatment to noisy mixtures.

The rest of the chapter is structured as follows: In the next section the
TRINICON framework which is based on a generic time-domain optimization
criterion accounting for all three signal properties is reviewed. The minimiza-
tion of the criterion leads to a natural gradient algorithm which exhibits a
so-called Sylvester constraint. Subsequently, several approximations are dis-
cussed yielding various efficient BSS algorithms and experimental results in
reverberant environments are given. In Sec. 1.3 the framework is extended to
noisy environments. First, a model for background noise is discussed. Based on
this model several pre-processing methods and a post-processing approach are
presented which complement the BSS algorithms derived from the TRINICON
framework. Especially the most promising post-processing scheme is discussed
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Sylvester!structurein detail and experimental results demonstrate the increased versatility of the
complemented BSS algorithms.

1.2 Blind Source Separation for Acoustic Mixtures

Based on the TRINICON Framework

In this section, we introduce, based on a compact matrix notation, a generic
convolutive BSS framework which allows the simultaneous exploitation of the
three signal properties. Several efficient algorithms are presented which can be
derived from the optimization criterion of the framework and which allow real-
time separation of multiple sources in reverberant environments. Moreover,
links to well-known algorithms in the literature are illustrated.

1.2.1 Matrix Formulation

From the convolutive MIMO model illustrated in Fig. 1.1 it can be seen that
the output signals yq(n) are obtained by convolving the input signals xp(n)
with the demixing filter coefficients wpq,κ, κ = 0, . . . , L− 1. For an algorithm
which utilizes the nonwhiteness property of the source signals accounting for
D − 1 time-lags, a memory containing the current and the previous D − 1
output signal values yq(n), . . . , yq(n − D + 1) has to be introduced. The lin-
ear convolution yielding the D output signal values can be formulated using
matrix-vector notation as

yq(n) =

P∑

p=1

W T
pq xp(n), (1.3)

with the column vectors xp and yq given as1

xp(n) =
[
xp(n), . . . , xp(n − 2L + 1)

]T
, (1.4)

yq(n) =
[
yq(n), . . . , yq(n − D + 1)

]T
. (1.5)

To express the linear convolution as a matrix-vector product, the 2L × D
matrix W pq exhibits a Sylvester structure that contains all L coefficients of
the respective demixing filter in each column:

1 With respect to efficient DFT-domain implementations the vector xp contains
2L sensor signal samples instead of the L + D − 1 samples required for the linear
convolution (1 ≤ D ≤ L).
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Mutual information
TRINICON

W pq =




wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
... · · ·

...
...

0 · · · 0 0




. (1.6)

It can be seen that for the general case, 1 ≤ D ≤ L, the last L − D + 1
rows of W pq are padded with zeros to ensure compatibility with the length
of xp(n) which was chosen to 2L. Note that for D = 1, Eq. 1.3 simplifies to
the well-known vector formulation of a convolution, as it is used extensively
in the literature on supervised adaptive filtering, e.g., [41]. Finally, to allow a
convenient notation we combine all channels and thus, we can write Eq. 1.3
compactly as

y(n) = W Tx(n), (1.7)

with

x(n) =
[
xT

1 (n), . . . , xT
P (n)

]T
, (1.8)

y(n) =
[
yT

1 (n), . . . , yT
P (n)

]T
, (1.9)

W =




W 11 · · · W 1P

...
. . .

...
W P1 · · · W PP


 , (1.10)

with W exhibiting a blockwise Sylvester structure.

1.2.2 Optimization Criterion and Coefficient Update

As pointed out before, we aim at an optimization criterion simultaneously
exploiting the three signal properties nonstationarity, nonwhiteness, and non-
gaussianity. Therefore, based on a generalization of Shannon’s mutual infor-
mation [27], the following optimization criterion was defined in [14] and was
termed “ TRIple-N-Independent component analysis for CONvolutive mix-
tures” (TRINICON) as it simultaneously accounts for the three fundamental
properties Nonwhiteness, Nonstationarity, and Nongaussianity:
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Nongaussianity
Nonwhiteness
Multivariate

probability density
function

Nonstationarity

J (m, W ) =

∞∑

i=0

β(i, m)
1

N

N−1∑

j=0





log
p̂y,PD

(
y(iL + j)

)

P∏
q=1

p̂yq,D

(
yq(iL + j)

)





. (1.11)

The variable p̂yq,D(·) is the estimated or assumed multivariate probability
density function (PDF) for channel q of dimension D and p̂y,PD(·) is the joint
PDF of dimension PD over all channels. The usage of PDFs allows to exploit
the nongaussianity of the signals. Furthermore, the multivariate structure of
the PDFs, which is given by the memory length D, i.e., the number of time-
lags, models the nonwhiteness of the P signals with D chosen to 1 ≤ D ≤ L.
The expectation operator of the mutual information [27] is replaced in Eq. 1.11
by a short-time estimate of the multivariate PDFs using N time instants. To
allow for a proper estimation of the multivariate PDFs the averaging has to be
done in general for N > PD time instants. The block indices i, m refer to the
blocks which are underlying to the statistical estimation of the multivariate
PDFs. For each output signal block yq(iL+ j) containing D samples a sensor
signal block of length 2L is required according to Eq. 1.4. The nonstationarity

is taken into account by a weighting function β(i, m) with the block indices
i, m and with finite support. The weighting function is normalized according
to

∞∑

i=0

β(i, m) = 1 , (1.12)

and allows offline, online, and block-online implementations of the algorithms
[16]. As an example,

β(i, m) =

{
(1 − λ)λm−i, for 0 ≤ i ≤ m,

0, else,
(1.13)

leads to an efficient online version allowing for tracking in time-variant envi-
ronments. The forgetting factor λ is usually chosen close to, but less than 1.
A robust block-online adaptation was discussed in detail in [6].

The approach followed here is carried out with overlapping data blocks as
the sensor signal blocks of length 2L are shifted only by L samples due to the
time index iL in Eq. 1.11. Analogously to supervised block-based adaptive
filtering [41], this increases the convergence rate and reduces the signal delay.
If further overlapping is desired, then the time index iL in Eq. 1.11 is simply
replaced by iL/α. The overlap factor α with 1 ≤ α ≤ L should be chosen
suitably to obtain integer values for the time index.

The derivation of the gradient with respect to the demixing filter weights
wpq,κ for p, q = 1, . . . , P and κ = 0, . . . , L − 1 can be expressed compactly in
matrix notation by defining the matrix W̌ given as
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Sylvester!matrix
Sylvester constraint

W̌ =




w11 · · · w1P

...
. . .

...
wP1 · · · wPP


 ,

which is composed of the column vectors wpq containing the demixing filter
coefficients

wpq =
[
wpq,0, . . . , wpq,L−1

]T
. (1.14)

Then the gradient with respect to the P 2L demixing filter coefficients can be
expressed compactly as

∇W̌J (m, W ) =
∂J (m, W )

∂W̌
. (1.15)

With an iterative optimization procedure, the current demixing matrix is
obtained by the recursive update equation

W̌ (m) = W̌ (m − 1) − µ∆W̌ (m), (1.16)

where µ is a stepsize parameter, and ∆W̌ (m) is the update which is set equal
to ∇W̌J (m, W ) for gradient descent adaptation.

In order to calculate the gradient (Eq. 1.15), the TRINICON optimization
criterion J (m, W ) given in Eq. 1.11 has to be expressed in terms of the
demixing filter coefficients wpq,κ. This can be done by inserting the definition

of the linear convolution y = W Tx given in Eq. 1.7 into J (m, W ) and
subsequently transforming the output signal PDF p̂y,PD(y(iL + j)) into the
PD-dimensional input signal PDF p̂x,PD(·) using the Sylvester matrix W ,
which is considered as a mapping matrix for this linear transformation [71].
This leads to an expression of the optimization criterion 1.11 with respect to
the Sylvester matrix W . To be able to take the derivative with respect to W̌

instead of the Sylvester matrix W , the chain rule for the derivative of a scalar
function with respect to a matrix [40] was applied to the gradient (Eq. 1.15)
in [20]. There, it was shown that the chain rule leads to a Sylvester Constraint
operator (SC) which relates the gradient with respect to W̌ and with respect
to W as

∇W̌J (m, W ) = SC
{
∇WJ (m, W )

}
. (1.17)

The Sylvester constraint operator SC is illustrated for the pq-th submatrix
of ∇WJ (m, W ) in the left plot of Fig. 1.2 where it can be seen that it
corresponds (up to a scaling by the constant factor D) to an arithmetic average
over the elements on each diagonal of the 2L×D submatrices of the gradient
∇WJ (m, W ). Thus, the 2PL × PD gradient ∇WJ (m, W ) will be reduced
to the PL × P gradient ∇W̌J (m, W ).

To reduce computational complexity, two efficient approximated versions
of the Sylvester constraint SC (see Fig. 1.2) were discussed in [6] leading to
two different classes of algorithms:
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Natural gradientSC SCC SCR

DD

L

2L2L2L

D = L

Fig. 1.2. The Sylvester constraint (SC) and two popular approximations denoted as
the column Sylvester constraint SCC and row Sylvester constraint SCR all illustrated
for the gradient ∇W pqJ (m, W ) with respect to the pq-th submatrix W pq .

(1) Computing only the first column of each channel of the update matrix to
obtain the new coefficient matrix W̌ . This method is denoted as SCC .

(2) Computing only the L-th row of each channel of the update matrix to
obtain the new coefficient matrix W̌ . This method is denoted as SCR.

It can be shown that in both cases the update process is considerably sim-
plified [6]. However, in general, both choices require some tradeoff in the al-
gorithm performance. While simulations showed [4] that SCC may provide
a potentially more robust convergence behaviour, it will not work for arbi-
trary source positions (e.g., in the case of two sources, they are required to
be located in different half-planes with respect to the orientation of the mi-
crophone array), or for P > 2, which is in contrast to the more versatile
SCR [4, 6]. Note that the choice of SC also determines the appropriate coeffi-
cient initialization [4, 6].

It is known that stochastic gradient descent, i.e., ∆W̌ (m) = ∇W̌J (m, W )
suffers from slow convergence in many practical problems. In the BSS applica-
tion the gradient and thus, the separation performance depends on the MIMO
mixing system. Fortunately, a modification of the ordinary gradient, termed
the natural gradient by Amari [9] and the relative gradient by Cardoso [21]
(which is equivalent to the natural gradient in the BSS application) has been
developed that largely removes all effects of an ill-conditioned mixing ma-
trix, assuming an appropriate initialization of W and thus leads to better
performance compared to the stochastic gradient descent. The idea of the
relative gradient is based on the equivariance property. Generally speaking,
an estimator behaves equivariantly if it produces estimates that, under data
transformation, are transformed in the same way as the data [21]. In the con-
text of BSS the key property of equivariant estimators is that they exhibit
uniform performance, e.g., in terms of bias and variance, independently of the
mixing system. In [17] the natural/relative gradient has been extended to the
case of Sylvester matrices W which together with the Sylvester constraint
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yields

∇NG
W̌

J (m, W ) = SC
{

WW T∇WJ (m, W )
}

. (1.18)

This leads to the following expression for the HOS natural gradient

∇NG
W̌

J (m, W )

= SC





∞∑

i=0

β(i, m)W (i)
1

N

N−1∑

j=0

{
y(iL + j)ΦT

(
y(iL + j)

)
− I

}


 ,

(1.19)

with the general weighting function β(i, m) and the multivariate score function

Φ(y(.)) consisting of the stacked channel-wise multivariate score functions
Φq(yq(.)), q = 1, . . . , P defined as

Φ
(
y(iL + j)

)
=





−

∂p̂y1,D(y1(iL+j))

∂y1(iL+j)

p̂y1,D(y1(iL + j))




T

, ... ,


−

∂p̂yP ,D(yP (iL+j))

∂yP (iL+j)

p̂yP ,D(yP (iL + j))




T



T

:=
[
ΦT

1

(
y1(iL + j)

)
, ... , ΦT

P

(
yP (iL + j)

)]T
. (1.20)

The update in Eq. 1.19 represents a so-called holonomic algorithm as it im-
poses the constraint y(iL + j)ΦT(y(iL + j)) = I on the magnitudes of the
recovered signals. However, when the source signals are nonstationary, these
constraints may force a rapid change in the magnitude of the demixing matrix
which in turn leads to numerical instabilities in some cases (see, e.g., [25]).
By replacing I in Eq. 1.19 with the term bdiag{y(iL + j)ΦT(y(iL + j))} the
constraint on the magnitude of the recovered signals can be avoided. This is
termed the nonholonomic natural gradient algorithm which is given as

∇NG
ˇW
J (m, W ) = SC

{
∞∑

i=0

β(i, m)W (i)
1

N

N−1∑

j=0

{
y(iL + j)ΦT

(
y(iL + j)

)

− bdiag
{
y(iL + j)ΦT

(
y(iL + j)

)}}
}

.

(1.21)

Here, the bdiag operator sets all cross-channel terms to zero. Due to the
improved convergence behaviour and the nonstationary nature of acoustic
signals the remainder of this chapter will focus on the nonholonomic algorithm
(Eq. 1.21) based on the natural gradient.

1.2.3 Approximations Leading to Special Cases

The natural gradient update (Eq. 1.21) rule provides a very general basis for
BSS of convolutive mixtures. However, to apply it to real-world scenarios, the
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multivariate score function (Eq. 1.20) has to be estimated, i.e., we have to
estimate P multivariate PDFs p̂yq,D(yq(iL + j)), q = 1, . . . , P of dimension
D. In general, this is a very challenging task, as it effectively requires esti-
mation of all possible higher-order cumulants for a set of D output samples,
where D may be on the order of several hundred or thousand in real acoustic
environments.

As first shown in [14] we will present in Sec. 1.2.3.1 an efficient solution
for the problem of estimating the multivariate score function by assuming
so-called spherically invariant random processes (SIRPs). Moreover, efficient
realizations based on second-order statistics will be derived in Sec. 1.2.3.2 by
utilization of the multivariate Gaussian PDF.

1.2.3.1 Higher-Order Statistics Realization Based on Multivariate

PDFs

Early experimental measurements [28] indicated that the PDF of speech sig-
nals in the time domain can be approximated by exponential distributions
such as the Gamma or Laplacian PDF. Later on, a special class of multi-
variate PDFs based on the assumption of SIRPs was used in [13] to model
bandlimited telephone speech. The SIRP model is representative for a wide
class of stochastic processes [35,74,89] and is very attractive since multivariate
PDFs can be derived analytically from the corresponding univariate probabil-
ity density function together with the correlation matrices covering multiple
time-lags. The correlation matrices can be estimated from the data while for
the univariate PDF appropriate models can be assumed or the univariate
PDF can be estimated based on parameterized representations, such as the
Gram-Charlier or Edgeworth expansions [48].

The general model of a zero-mean non-white SIRP of D-th order for chan-
nel q is given by [13]

p̂yq,D

(
yq(iL + j)

)

=
1√

πDdet(Ryqyq
(i))

fyq,D

(
yT

q (iL + j)R−1
yqyq

(i)yq(iL + j)
)

(1.22)

with the D × D correlation matrix given as

Rypyq
(i) =

1

N

N−1∑

j=0

yp(iL + j)yT
q (iL + j), (1.23)

and the function fyq,D(·) depending on the chosen univariate PDF. As the best
known example, the multivariate Gaussian can be viewed as a special case of
the class of SIRPs. The multivariate PDFs are completely characterized by
the scalar function fyq,D(·) and Ryqyq

. Due to the quadratic form yT
q R−1

yqyq
yq,

the PDF is spherically invariant which means for the bivariate case (D = 2)
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Fig. 1.3. Illustration of a bivariate SIRP PDF (i.e., D = 2).

that independent of the choice of fyq,D(·) the bivariate PDFs based on the
SIRP model exhibit ellipsoidal or circular contour lines (see Fig. 1.3). The
function fyq,D(·) is determined by the choice of the univariate PDF and can
be calculated by using the so-called Meijer’s G-functions as detailed in [13].

By introducing SIRPs into the BSS optimization criterion we obtain a con-
siderably simplified expression for the multivariate score function (Eq. 1.20)
as first presented in [14]. After applying the chain rule to Eq. 1.22, the mul-
tivariate score function for the q-th channel can be expressed as

Φq

(
yq(iL + j)

)
= −

∂p̂yq,D(yq(iL+j))

∂yq(iL+j)

p̂yq,D(yq(iL + j))

= 2


−

∂fyq,D(uq(iL+j))

∂uq(iL+j)

fyq,D(uq(iL + j))




︸ ︷︷ ︸
:=φyq,D(uq(iL+j))

R−1
yqyq

(i)yq(iL + j). (1.24)

For convenience, we call the scalar function φyq,D(uq(iL + j)) the SIRP score

of channel q and the scalar argument given as the quadratic form is defined
as

uq(iL + j) = yT
q (iL + j)R−1

yqyq
(i)yq(iL + j). (1.25)

From Eq. 1.24 it can be seen that the estimation of multivariate PDFs reduces
to an estimation of the correlation matrix together with a computation of the
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SIRP score which can be determined by choosing suitable models for the
multivariate SIRP PDF.

In [13,34] it was shown that the spherically symmetric multivariate Lapla-

cian PDF which exhibits Laplacian marginals is a good model for long-term
properties of speech signals in the time-domain. A derivation of the multivari-
ate Laplacian based on SIRPs can be found in, e.g., [13, 31, 53] and leads to
Eq. 1.22 with the function fyq,D(uq(iL + j)) given as

fyq,D

(
uq(iL + j)

)
=

(
1√

2uq(iL + j)

)D/2−1

KD/2−1

(√
2uq(iL + j)

)
.

(1.26)
where Kν(·) denotes the ν-th order modified Bessel function of the second
kind. The SIRP score for the multivariate Laplacian SIRP PDF can be
straightforwardly derived by using the relation for the derivative of a ν-th
order modified Bessel function of the second kind given as [1]

∂Kν

(√
2uq

)

∂
√

2uq

=
ν√
2uq

Kν

(√
2uq

)
− Kν+1

(√
2uq

)
, (1.27)

and is obtained as

φyq,D

(
uq(iL + j)

)
=

1√
2uq(iL + j)

KD/2

(√
2uq(iL + j)

)

KD/2−1

(√
2uq(iL + j)

) . (1.28)

It should be noted that the formulation of Eq. 1.28 in [14] is slightly different
but equivalent. In practical implementations the ν-th order modified Bessel
function of the second kind Kν(

√
2uq) may be approximated by [1]

Kν

(√
2uq

)
=

√
π

2
√

2uq

e−
√

2uq

(
1 +

4ν2 − 1

8
√

2uq

+
(4ν2 − 1)(4ν2 − 9)

2!(8
√

2uq)2
+ . . .

)
.

(1.29)
Having derived the multivariate score function (Eq. 1.24) for the SIRP

model, we can now insert it into the generic HOS natural gradient update
equation with its nonholonomic extension (Eq. 1.21) and will find several
attractive properties that lead to significant reductions in computational
complexity relative to the general case. Considering the fact that the auto-
correlation matrices are symmetric so that (R−1

yqyq
)T = R−1

yqyq
leads to the

following expression for the nonholonomic HOS-SIRP natural gradient :

∇NG
W̌

J (m, W )

= SC
{

2

∞∑

i=0

β(i, m)W (i)

[
Ryφ(y)(i) − bdiag

{
Ryφ(y)(i)

}]
bdiag−1

{
Ryy(i)

}}

(1.30)



30 R. Aichner, H. Buchner, W. Kellermann

Second-order
statistics

Multivariate Gaussian
PDF

Multivariate score
function

with the second-order correlation matrix Ryy consisting of the channel-wise
submatrices Rypyq

defined in Eq. 1.23 and Ryφ(y) consisting of the channel-
wise submatrices Rypφ(yq) given as

Rypφ(yq)(i) =
1

N

N−1∑

j=0

yp(iL + j)φyq ,D

(
uq(iL + j)

)
yT

q (iL + j). (1.31)

The SIRP score φyq,D(·) of channel q which is a scalar value function causes
a weighting of the correlation matrix in Eq. 1.31. In Eq. 1.30 only channel-
wise submatrices have to be inverted so that it is sufficient to choose N > D
instead of N > PD for the estimation of Ryy(i) and Ryφ(y). Moreover,
from the update equation 1.30, it can be seen that the SIRP model leads to
an inherent normalization by the auto-correlation submatrices. This becomes
especially obvious if the update (Eq. 1.30) is written explicitly for a 2-by-2
MIMO system leading to

∇NG
ˇW
J (m, W )

= SC
{

2
∞∑

i=0

β(i, m)W (i)

[
0 Ry1φ(y2)

(i)R−1
y2y2

(i)

Ry2φ(y1)(i)R
−1
y1y1

(i) 0

]}
.

(1.32)

The normalization is important as it provides good convergence even for cor-
related signals such as speech and also for a large number of filter taps. The
normalization is similar as in the recursive least-squares (RLS) algorithm in
supervised adaptive filtering where also the inverse of the auto-correlation
matrix is computed [41]. To obtain efficient implementations, the normaliza-
tion by the computationally demanding inverse of the D × D matrix can be
approximated in several ways as shown in Sec. 1.2.4 and outlined in Sec. 1.2.5.

1.2.3.2 Second-Order Statistics Realization Based on the

Multivariate Gaussian PDF

Using the model of the multivariate Gaussian PDF leads to a second-order
realization of the BSS algorithm utilizing the nonstationarity and the non-
whiteness of the source signals. The multivariate Gaussian PDF

p̂yq,D

(
yq(iL + j)

)
=

1√
(2π)Ddet

(
Ryqyq

(i)
) e

− 1
2yT

q (iL+j)R−1
yqyq

(i)yq(iL+j)

(1.33)
is inserted in the expression for the multivariate score function (Eq. 1.20)
whose elements reduce to

Φq

(
yq(iL + j)

)
= R−1

yqyq
(i)yq(iL + j) . (1.34)
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Inserting Eq. 1.34 into the natural gradient update (Eq. 1.19) yields the SOS

natural gradient:

∇NG
ˇW
J (m, W )

= SC
{

∞∑

i=0

β(i, m)W (i)
[
Ryy(i) − bdiag

{
Ryy(i)

}]
bdiag−1

{
Ryy(i)

}
}

.

(1.35)

Comparing Eq. 1.35 to the HOS-SIRP update (Eq. 1.30) shows that due to the
fact that only SOS are utilized, we obtain the same update with the nonlinear-
ity (Eq. 1.28) omitted, i.e., φyq ,D(uq(iL+j)) = 1, q = 1, . . . , P . Therefore, the
SOS natural gradient update also exhibits the inherent normalization by the
auto-correlation matrices which leads to very robust convergence behaviour
in real-world environments. Moreover, due to the inversion of channel-wise
D × D submatrices, N > D instead of N > PD is again sufficient for the
estimation of the correlation matrices.

In Fig. 1.4 the structure of the cost function in the case of SOS and ideal-
ized/simplified mechanism of the adaptation update (Eq. 1.35) is illustrated.
By assuming the multivariate Gaussian PDF (Eq. 1.33) and then minimiz-
ing J (m, W ), all cross-correlations for D time-lags are reduced and thus the
algorithm exploits nonwhiteness. Nonstationarity is utilized by minimizing
the correlation matrices simultaneously for several blocks i. Ideally, the cross-
correlations will be equal to zero upon convergence which causes the update
term to be zero because then Ryy(i) − bdiag {Ryy(i)} = 0.

D

D

Each diagonal
represents
one time-lag

Auto-correlation Ry1y1 Cross-correlation Ry1y2

Fig. 1.4. Illustration of the diagonalization of the correlation matrices Ryy(i) per-
formed by the natural gradient update (Eq. 1.35) for the 2 × 2 case.

An alternative derivation of a SOS BSS algorithm leading to the same
natural gradient update as given in Eq. 1.35 was presented in [17]. There, the
derivation was based on a generalized version of the cost function used in [64],
which also simultaneously exploits nonwhiteness and nonstationarity of the
sources.



32 R. Aichner, H. Buchner, W. Kellermann

Covariance method
Correlation method
Toeplitz structure

1.2.4 Estimation of the Correlation Matrices and an Efficient

Normalization Strategy

In this section some implementation aspects are addressed which allow to
reduce the computational complexity. The first aspect is the block-based es-
timation of the short-time output correlation matrices Rypyq

(i) for nonsta-
tionary signals for which two basic methods exist: The so-called covariance

method and the correlation method as they are known from linear prediction
problems [58]. It should be emphasized that the terms covariance method
and correlation method are not based upon the standard usage of the co-
variance function as the correlation function with the means removed. In the
definition of the correlation matrices in Eq. 1.23 the more accurate covariance
method was introduced. To obtain more efficient implementations, the compu-
tationally less complex correlation method can be used which is obtained by
assuming stationarity within each block i. This leads to a Toeplitz structure
of the matrices Rypyq

(i) and thus simplifies the computation of the matrix
products [6]. Furthermore, it is important to note that regardless of the esti-
mation of the correlation matrices, the matrix product of Sylvester matrices
W pq and the remaining matrices in the update Eqs. 1.30 and 1.35 can be
described by linear convolutions due to the Sylvester structure involved.

As a second aspect, we discuss the inherent normalization by the auto-
correlation matrices in Eqs. 1.30 and 1.35 which is introduced by the usage of
multivariate PDFs as pointed out in the previous section. The normalization
is desirable as it guarantees fast convergence of the adaptive filters even for
large filter lengths and correlated input signals. On the other hand this poses
the problem of large computational complexity due to the required matrix
inversion of P matrices of size D × D. The complexity of a straightforward
implementation is O(D3) for using the covariance method and O(D2) for the
correlation method due to the Toeplitz structure involved. However, as D may
be even larger than 1000 for realistic environments this is still prohibitive for a
real-time implementation on regular PC platforms. Therefore, approximations
are desirable which reduce the complexity with minimum degradation of the
separation performance.

One possible solution is to approximate the auto-correlation matrices
Ryqyq

(i) by a diagonal matrix, i.e., by the output signal powers

Ryqyq
(i) ≈ 1

N

N−1∑

j=0

diag
{
yq(iL + j)yT

q (iL + j)
}

. (1.36)

for q = 1, . . . , P , where the operator diag{A} sets all off-diagonal elements
of matrix A to zero. This approximation is comparable to the one in the
well-known normalized least mean squares (NLMS) algorithm in supervised
adaptive filtering approximating the RLS algorithm [41]. It should be noted
that the SOS natural gradient algorithm based on Eq. 1.35 together with
the approximation 1.36 was also heuristically introduced for the case D = L
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in [2, 70] as an extension of [50] incorporating several time-lags. It should be
pointed out that also a more sophisticated approximation of the normalization
is possible. One approach which exploits the efficiency of computations in the
DFT domain is outlined in the next section.

For blocks with speech pauses and low background noise the normaliza-
tion by the auto-correlation matrix Ryqyq

leads to the inversion of an ill-
conditioned matrix or in the case of the approximation (Eq. 1.36) to a division
by very small output powers or even by zero becomes likely and thus, the esti-
mation of the filter coefficients becomes very sensitive. For a robust adaptation
Ryqyq

is replaced by a regularized version Ryqyq
+ δyq

I. The basic feature
of the regularization is a compromise between fidelity to data and fidelity to
prior information about the solution [23]. As the latter increases robustness
but leads to biased solutions, similarly to supervised adaptive filtering [19], a
dynamical regularization

δyq
= δmaxe

−σ2
yq

/σ2
0 (1.37)

can be used with two parameters δmax and σ2
0 . This exponential method pro-

vides a smooth transition between regularization for low output power σ2
yq

and data fidelity whenever the output power is large enough. Other popular
strategies are the fixed regularization which simply adds a constant value to
the output power δyq

= const and the approach of choosing the maximum out
of the output signal power σ2

yq
and a fixed threshold δth.

1.2.5 On Broadband and Narrowband BSS Algorithms in the DFT

Domain

In the previous sections it was shown how different time-domain algorithms
can be derived from the TRINICON framework. On the other hand, for con-
volutive mixtures the classical approach of frequency-domain BSS appears to
be an attractive alternative because all techniques originally developed for
instantaneous BSS can typically be applied independently in each frequency
bin, e.g., [48]. Unfortunately, this traditional narrowband approach exhibits
several limitations as identified in, e.g., [10,55,75]. In particular, the permuta-
tion problem pointed out in Sec. 1.1, which is inherent in BSS may then also
appear independently in each frequency bin so that extra repair measures
have to be taken to address this internal permutation. Moreover, problems
caused by circular convolution effects due to the narrowband approximation
are reported in, e.g., [75].

To exploit the computational efficiency it is desirable to derive approaches
in the DFT domain, but on the other hand the above-mentioned problems of
the narrowband approach should be avoided. This can be achieved by trans-
forming the equations of the TRINICON framework into the DFT domain in
a rigorous way (i.e., without any approximations) as was shown in [16, 17].
As in the case of time-domain algorithms, the resulting generic DFT-domain



34 R. Aichner, H. Buchner, W. Kellermann

Blind source
separation!broadband

Multivariate
probability density
function

Multivariate score
function

TRINICON

broadband BSS may serve both as a unifying framework for existing algo-
rithms, and also as a starting point for developing new improved algorithms
by a considerate choice of selective approximations as shown in, e.g., [7, 16].
Fig. 1.5 gives an overview on the most important classes of DFT-domain BSS
algorithms known so far (various more special cases may be developed in the
future). A very important observation from this framework using multivariate
PDFs is that the internal permutation problem is avoided. This is achieved
by the following two elements:

1. Constraint matrices (consisting of an inverse DFT followed by a zeroing
of several elements in the time domain and a subsequent DFT) appear in
the generic DFT-domain formulation (see, e.g., [16, 17]) and describe the
inter-frequency correlation between DFT components.

2. The coupling between the DFT bins is additionally ensured by the mul-
tivariate score function which is derived from the multivariate PDF [16].
As an example, for SIRPs the argument of the multivariate score function
(which is in general a nonlinear function) is yT

q (iL+ j)R−1
yqyq

(i)yq(iL+ j)

according to Eq. 1.22. Even for the simple case R−1
yqyq

(i) = I, where we

have yT
q (iL + j)yq(iL + j) = ‖yq(iL + j)‖2, i.e., the quadratic norm,

and – due to the Parseval theorem – the same in the DFT domain, i.e.,
the quadratic norm over all DFT components ensures a coupling between
all DFT bins. From this we immediately see that for the adaptation of
an individual DFT bin all DFT bins are taken into account simultane-
ously so that the internal permutation problem is at least mitigated if not
completely avoided.

This illustrates that the dependencies among all DFT components (including
higher-order dependencies) are inherently taken into account in the TRINI-
CON framework. The traditional narrowband approach (with the internal
permutation problem) would result as a special case if we assume all DFT
components to be statistically independent from each other which is of course
not the case for real-world broadband signals such as speech and audio signals.
Actually, in the traditional narrowband approach, the additionally required re-
pair mechanisms for permutation alignment try to exploit such inter-frequency
dependencies [51].

In Fig. 1.5 it can be seen that the TRINICON framework allows to in-
troduce several selective approximations which can be used to cover several
well-known algorithms and also to derive new algorithms. Among these algo-
rithms, the system described in [7] has turned out to be very efficient. There,
only the normalization by the auto-correlation matrix in the SOS BSS update
(Eq. 1.35) has been approximated by a narrowband inverse which allows to
perform for each channel a scalar inversion for each DFT bin instead of a
D × D matrix inverse. Therefore, this algorithm is included in the experi-
mental evaluation in the next section. More details and a pseudo-code of the
algorithm can be found in [7].
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1.2.6 Experimental Results for Reverberant Environments

The separation performance of various BSS algorithms derived from the
TRINICON framework is shown for a living room scenario with a reverbera-
tion time T60 = 200ms. Two sources have been placed at a distance of 1 m at
−20◦, 40◦ from a microphone pair with omnidirectional sensors and the signals
have been sampled at fs = 16kHz. To cope well with the reverberation, the
demixing filter length has been chosen to L = 1024 taps. The nonwhiteness
is exploited by the memory of D = L = 1024 introduced in the multivariate
PDFs and in the correlation matrices. For accurate estimation of these quan-
tities a block length of N = 2048 was chosen. For all examined algorithms the
Sylvester constraint SCR together with the initialization wpp,15 = 1, p = 1, 2
(all other taps are set to zero) is used due to the increased versatility [4,6] and
the correlation method is used for the estimation of the correlation matrices to
reduce computational complexity. For the iterative adaptation procedure the
block-online update with ℓmax = 5 offline iterations together with an adaptive
stepsize is used (for details, see [6]). This allows online processing of the sen-
sor signals and fast convergence when iterating ℓmax times on the same data
block.

The evaluated algorithms include the computationally complex second-
order statistics algorithm (Eq. 1.35) as well as efficient algorithms obtained
by applying several approximations to the generic algorithm. A list of all
algorithms is given in Tab. 1.1. The performance of the algorithms is mea-
sured in terms of the segmental signal-to-interference ratio (SIR) improvement
∆SIRseg. The segmental SIR measures the ratio of the power of the desired
signal versus the power of the interfering signals and then averages this quan-
tity over all P channels.

Table 1.1. List of algorithms evaluated in the reverberant living room scenario.

Identifier Algorithmic description

(A) Broadband SOS algorithm (Eq. 1.35) based on the multivariate
Gaussian PDF.

(B) Broadband SOS algorithm based on multivariate Gaussian PDF
(Eq. 1.35) with normalization approximated as a narrowband in-
verse [7].

(C) Broadband SOS algorithm based on multivariate Gaussian PDF
(Eq. 1.35) with normalization approximated as a scaling by the
output signal variance (Eq. 1.36) [6,17].

(D) Narrowband SOS algorithm based on multivariate Gaussian PDF
where the coupling between the DFT bins is ensured by one re-
maining constraint matrix [17].
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Fig. 1.6. Segmental SIR improvement ∆SIRseg for the second-order statistics algo-
rithms (A)-(D) evaluated in the living room scenario (T60 = 200 ms) for two source
position setups.

The experimental results in Fig. 1.6 show that the SOS algorithm (A)
provides the best performance. However, its high computational complex-
ity prevents a real-time implementation on current state-of-the-art hardware
platforms for such large demixing filter lengths. Therefore approximations are
needed which minimally affect the separation performance but result in com-
putationally efficient algorithms. As pointed out above, the main complexity
in the second-order statistics algorithms is caused by the inverse of the auto-
correlation matrix for each output channel. This inverse is approximated in
the broadband algorithm (B) by a narrowband inverse which leads to a scalar
inversion in each DFT bin [7]. The algorithm (B) can be implemented in
real-time on regular PC hardware and it can be seen in Fig. 1.6 that the sep-
aration performance is only slightly reduced. In the broadband algorithm (C)
the normalization is further simplified by using the variance of each output
signal [6,17] as shown in Sec. 1.2.4. This means that the normalization is not
frequency-dependent anymore. In the narrowband algorithm (D) all constraint
matrices except one are approximated [17]. This means that the narrowband
normalization is done analogously to algorithm (B), however, due to discard-
ing all constraint matrices except for one, the complete decoupling of the
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DFT bins is only prevented by the last remaining constraint matrix. Thus,
the algorithm (D) already suffers from the permutation and scaling problem
occuring in each DFT bin. This explains the inferior separation performance
compared to the broadband algorithms (A)-(C). More extensive simulations
for algorithms derived from the TRINICON framework including different
source positions and reverberation times can be found in [8].

1.3 Extensions for Blind Source Separation in Noisy

Environments

In the previous section only noiseless reverberant environments were consid-
ered with the maximum number of simultaneously active point sources Q
assumed to be equal to the number of sensors P . However, in realistic scenar-
ios, in addition to the point sources to be separated, some background noise
will usually be present. Thus, in general BSS faces two different challenges in
noisy environments:

1. The adaptation of the demixing BSS filters should be robust to the noise

signals n1(n), . . . , nP (n) to ensure high separation performance of the
desired point sources s1(n), . . . , sP (n). This means that the signal-to-
interference ratio (SIR) should not deteriorate compared to the noiseless
case.

2. The noise contribution contained in the separated BSS output signals
should be suppressed, i.e., the signal-to-noise ratio (SNR) should be max-
imized.

Both requirements must be met if BSS should be attractive for noisy environ-
ments.

According to the literature (see e.g., [25, 48] and references therein), it
has been tried to address the first point by developing noise-robust BSS al-
gorithms. However, so far this has been considered only for the instantaneous
BSS case. Additionally, several assumptions such as spatial or temporal un-
correlatedness are usually imposed on the noise signals allowing to generate
optimization criteria which are not affected by the noise signals. However,
in the case of convolutive BSS for acoustic signals these assumptions for the
noise signals are too restrictive. In the next section when discussing a model
for background noise, we will see that in realistic scenarios the background
noise at the sensors is temporally correlated and for low frequencies and/or
small microphone spacings it will also be spatially correlated. This does not
allow the application of the noise-robust instantaneous BSS algorithms pre-
sented in the literature to the noisy convolutive BSS problem.

A more promising approach for increasing the robustness of the BSS adap-
tation are pre-processing methods. In Sec. 1.3.2 we will describe single-channel
and multi-channel methods in order to remove the bias of the second-order
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Diffuse sound field
Magnitude-squared

coherence

correlation matrices caused by the noise. This will lead to a better performance
of previously discussed BSS algorithms.

Another approach to the noisy convolutive BSS problem is the application
of post-processing methods to the outputs of the BSS system. Without pre-
processing the separation performance of the BSS algorithms will decrease in
noisy environments. Therefore, the post-processing technique has to aim at the
suppression of both, background noise and residual crosstalk from interfering
point sources which could not be cancelled by the BSS demixing filters. This
will be discussed in detail in Sec. 1.3.3.

1.3.1 Model for Background Noise in Realistic Environments

A model often used to describe background noise is the 3-dimensional isotropic
sound field which is also termed diffuse sound field [56]. It can be modeled
by an infinite number of statistically independent point sources which are
uniformly distributed on a sphere. The phases of the emitted background
noise signals are uniformly distributed between 0 and 2π. If the radius of the
sphere is r → ∞, then the propagating waves from each point source picked
up be the microphones xp can be assumed to be plane waves.

The diffuse sound field allows to describe, e.g., speech babble noise in a
cafeteria, which is generated by a large number of background speakers or
exterior noise recorded in the passenger compartment of a car which is a
superposition of many different sources such as, e.g., motor, wind, or street
noise. Moreover, the diffuse sound field is also often used to model reverbera-
tion [56]. This requires that the direct sound and the reflections are assumed
to be mutually incoherent, i.e., the phase relations between the sound waves
are neglected and thus, a superposition of the sound waves only results in a
summation of the sound intensities. As the convolutive BSS demixing system
accounts for the phase relations by the FIR filters of length L only the reflec-
tions exceeding the time-delay covered by L filter taps can be considered as
being of diffuse nature. This case applies to highly reverberant environments
such as, e.g., lecture rooms, or train stations.

In the convolutive BSS model depicted in Fig. 1.1 we assumed that the
number of simultaneously active point sources Q is less or equal to the num-
ber of sensors P . Due to the limited number of point sources Q in the BSS
scenario, we thus cannot model the diffuse sound field by an infinite number
of point sources. Therefore, they are included in the BSS model in Fig. 1.1
as noise components np(n), p = 1, . . . , P which are additively mixed to each
microphone signal xp(n).

An adequate quantity to classify the sound field at the sensors is the
magnitude-squared coherence (MSC) function whose estimate for the m-th
data block and ν-th DFT bin is given by

∣∣Γ (ν)
x1x2

(m)
∣∣2 =

∣∣S(ν)
x1x2

(m)
∣∣2

S(ν)
x1x1

(m)S(ν)
x2x2

(m)
. (1.38)
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The estimation of the power-spectral densities S(ν)
xpxq

(m) for nonstationary
signals such as speech is usually performed using recursive averaging with a
forgetting factor γ given as

S(ν)
xpxq

(m) = γS(ν)
xpxq

(m − 1) + (1 − γ)X(ν)
p (m)X(ν)∗

q (m). (1.39)

A long-term estimate of the MSC can be obtained by averaging the short-term
MSC |Γ (ν)

x1x2
(m)|2 over all blocks.

In an ideally diffuse sound field the MSC between the microphone signals
x1(n) and x2(n) is given by

∣∣Γ (ν)
x1x2

∣∣2 =
sin2

(
2πνR−1fsd c−1

)

(2πνR−1fsd c−1)
2 , (1.40)

where d denotes the distance between the microphones and R is the DFT
length. This result assumes omnidirectional sensor characteristics and was
first presented in [26] (a detailed derivation can be found, e.g., in [8, 60]).
Eq. 1.40 reflects that the noise components np(n) which originated from a
diffuse sound field are strongly correlated between the sensors at low fre-
quencies but less correlated for higher frequencies. Additionally, each np(n),
p = 1, . . . , P may also contain sensor noise which is usually assumed inde-
pendent across different sensors. For comparison, the MSC for a point source
sq(n) is equal to one. In Fig. 1.7 the estimated MSC of car noise is shown. A
two-element omnidirectional microphone array was positioned in the passen-
ger compartment at the interior mirror and two different spacings of d = 4 cm
and d = 16 cm have been examined. The car noise was measured while driving
through a suburban area. The estimate of the MSC (Eq. 1.38) was obtained by
using the recursive averaging procedure (Eq. 1.39) with γ = 0.9, DFT length

R = 512, and using Hann windowing. The long-term estimate |Γ (ν)
x1x2 |2 was
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Fig. 1.7. MSC |Γ
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2 of car noise measured at two sensors x1(n) and x2(n)
positioned at the interior mirror in a car compartment for different sensor spacings d.
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Pre-processing

Bias removal
calculated by averaging over all blocks for a signal length of 20 sec. It can be
seen that the MSC of the measured data (solid) corresponds very well to the
sin2(x)/x2 characteristic of the MSC of an ideal diffuse sound field (dashed)
for both microphone spacings. Therefore, it can be concluded that the MSC
of car noise can be approximated by the MSC of a diffuse sound field. Addi-
tionally, in [62] it was shown experimentally that also office noise originating
from computer fans and hard disk drives can be assumed to exhibit the MSC
of a diffuse noise field.

1.3.2 Pre-Processing for Noise-Robust Adaptation

From the literature only few pre-processing approaches for BSS in noisy en-
vironments are known. If the number of sensors P is equal to the number of
sources Q, as considered in this chapter, then usually so-called bias removal

techniques are used which aim at estimating and subtracting the contribu-
tion of the noise in the sensor signal itself or in the second-order correlation
matrix and possibly also in the higher-order relation matrix of the sensor sig-
nals. These techniques will be discussed in the following. If more sensors than
sources are available, i.e., P > Q, then also subspace techniques can be used as
a pre-processing step to achieve a suppression of the background noise. As we
restricted ourselves in this chapter to the case P = Q the subspace approaches
will not be treated here, but a summary and an outline of possible directions
of future research can be found in [8].

The signal model in matrix-vector notation (Eq. 1.7) yields the BSS output
signals y(n) containing D output signal samples for each of the Q = P chan-
nels. If background noise np(n) is superimposed at each sensor p = 1, . . . , P ,
the signal model can be decomposed as

y(n) = W Tx(n)

= W T
(
HTs(n) + n(n)

)
(1.41)

where the background noise and speech samples are contained in the column
vectors

s(n) =
[
sT
1 (n), . . . , sT

P (n)
]T

, (1.42)

sp(n) =
[
sp(n), . . . , sp(n − 2L − M + 2)

]T
, (1.43)

n(n) =
[
nT

1 (n), . . . , nT
P (n)

]T
, (1.44)

np(n) =
[
np(n), . . . , np(n − 2L + 1)

]T
, (1.45)

and the matrix H is composed of channel-wise Sylvester matrices Hqp of size
(M + 2L− 1)× 2L containing the mixing FIR filters hqp,κ, κ = 0, . . . , M − 1.
It can be seen from the noisy signal model (Eq. 1.41) that the second-order
correlation matrix Ryy(n) and also the higher-order relation matrix Ryφ(y)(n)
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will contain a bias due to the background noise. Due to the central limit
theorem, the distribution of the diffuse background noise can be assumed to
be closer to a Gaussian than the distribution of the speech signals. Therefore,
the bias will be larger for the estimation of the cross-correlation matrix Ryy(n)
and the background noise will affect the estimation of higher-order moments
less. Therefore, we will focus on bias removal for second-order correlation
matrices. The background noise n(n) and the point-source signals s(n) are
assumed to be mutually uncorrelated so that the second-order correlation
matrix Ryy(n) with its channel-wise submatrices defined in Eq. 1.23 can be
decomposed as

Ryy(n) = W T
(
HTRss(n)H + Rnn(n)

)
W (1.46)

with the source correlation matrix Rss(n) and noise correlation matrix
Rnn(n) defined as

Rss(n) =
1

N

N−1∑

j=0

s(n + j) sT(n + j), (1.47)

Rnn(n) =
1

N

N−1∑

j=0

n(n + j)nT(n + j). (1.48)

To remove the bias introduced by the background noise it is possible to ei-
ther aim at estimating and subsequently removing the noise component in
Eq. 1.41, e.g., by using single-channel noise reduction techniques, or to esti-
mate and remove the noise correlation matrix Rnn(n). The latter approach is
already known from the literature on instantaneous BSS. There, usually spa-
tially and temporally uncorrelated Gaussian noise is assumed, i.e., Rnn(n) is
a diagonal matrix (see, e.g., [24,25,30,48]). Moreover, most approaches assume
that Rnn(n) is known a-priori and stationary. However, in realistic scenar-
ios usually temporally correlated background noise is present at the sensors.
This noise can often be described by a diffuse sound field, leading to noise
signals which are also spatially correlated for low frequencies (see Sec. 1.3.1).
Additionally, background noise is in general nonstationary and its stochastic
properties can at best be assumed slowly time-variant which thus requires a
continuous estimation of the correlation matrix Rnn(n) based on short-time
stationarity according to Eq. 1.48. The following bias removal techniques, aim-
ing at the noise signal n(n) or the noise correlation matrix Rnn(n), will be
examined under these conditions.

1.3.2.1 Single-Channel Noise Reduction

If the estimation and suppression of the noise components np(n) is desired
for each sensor signal xp(n) individually, then for each channel p = 1, . . . , P
a single-channel noise reduction algorithm can be used. The estimation and
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suppression of background noise using one channel is already a long-standing
research topic. In general, all algorithms consist of two main building blocks:

• the estimation of the noise contribution and

• the computation of a weighting rule to suppress the noise and enhance the
desired signal.

An overview of various methods can be found, e.g., in [39].

In all well-known noise estimation methods in the literature usually the
noise power spectral density (PSD) is estimated without recovering the phase
of the clean signal but using the phase of the noisy signal instead. This is
motivated by the fact that the human perception of speech is not much affected
by a modification of the phase of the clean signal [83]. However, for BSS
algorithms the relative phase of the signals acquired by different microphones
is crucial as this information is implicitly used to suppress signals depending
on their different directions of arrival. To evaluate the importance of amplitude
and phase for pre-processing techniques applied to BSS algorithms, we will in
the following generate pre-processed sensor signals by using the DFT-domain
amplitude of the clean mixture signals and the phase of the noisy mixture
signals. This corresponds to an optimum single-channel speech enhancement
algorithm which perfectly estimates the amplitude of the clean mixture signal
and thus, suppresses the background noise completely. These signals are then
used as inputs for the second-order statistics BSS algorithm described in [7].

For this experiment we use two noisy scenarios. The first one is a car
environment where a pair of omnidirectional microphones with a spacing of
20 cm was mounted to the interior mirror. The long-term SNR was adjusted to
0 dB which is a realistic value commonly encountered inside car compartments.
Analogously to the BSS experiments in Sec. 1.2.6 a male and a female speech
signal were convolved with the acoustic impulse response measured for the
driver and co-driver positions. The second scenario corresponds to the cocktail
party problem which is usually described by the task of listening to one desired
point source in the presence of speech babble noise consisting of the utterances
of many other speakers. The long-term statistics of speech babble are well
described by a diffuse sound field, however, there may also be several other
distinct noise point sources present. In our experiments we simulated such a
cocktail party scenario inside a living room environment where speech babble
noise was generated by a circular loudspeaker array with a diameter of 3m.
The two omnidirectional microphones with a spacing of 20 cm were placed
in the center of the loudspeaker array from which 16 speech signals were
reproduced to simulate the speech babble noise. Additionally, two distinct
point sources at a distance of 1m and at the angles of 0◦ and −80◦ were
used to simulate the desired and one interfering point source, respectively.
The long-term input SNR at the microphones has been adjusted for the living
room scenario to 10 dB. This is realistic, as due to the speech-like spectrum
of the background noise the microphone signals exhibiting higher SNR values
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are perceptually already as annoying as those with significantly lower SNR
values for lowpass car noise.

Due to the perfect estimation of the clean signal amplitude the background
noise is almost inaudible. However, the results in Fig. 1.8 show that due to
the noisy phase for the car environment no improvement in terms of separa-
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Fig. 1.8. Segmental SIR improvement ∆SIRseg depicted over time for two noisy
environments. Speech separation results are shown for the BSS outputs adapted with
the noisy mixtures and for BSS with pre-processing by restoring the magnitude of
the clean mixture signals but with the phase of the noisy mixtures.

tion performance can be obtained. Similarly, for the cocktail party scenario
only a small improvement in terms of separation of the point sources can
be achieved. Further experiments also indicated that when using a realistic
state-of-the-art noise reduction algorithm as, e.g., proposed in [63], then also
the improvements shown in Fig. 1.8(b) disappear. Therefore, it is concluded
that pre-processing by single-channel noise reduction algorithms only sup-
presses the background noise, but does not improve the degraded separation
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performance of the subsequent BSS algorithm. To improve the separation, it
is crucial that both, amplitude and phase of the clean mixture signals are
estimated. This usually requires multi-channel methods as presented in the
next section.

1.3.2.2 Multi-Channel Bias Removal

To also account for the phase contribution of the background noise we first
review briefly some methods initially proposed for instantaneous BSS which
aim at estimating and subsequently removing the noise correlation matrix
Rnn(n). For convolutive BSS only a few approaches have been proposed so
far: In [45] the special case of spatio-temporally white noise was addressed
and has been extended to the diffuse noise case in [46]. There, stationarity
of the noise was assumed and the preceding noise-only segments have been
used for the estimation of the correlation matrix. Already earlier in [3, 6]
a similar procedure was proposed where the minimum statistics approach
[63] was used for the estimation of the noise characteristics. This method
operates in the DFT domain and is based on the observation that the power
of a noisy speech signal frequently decays to the power of the background
noise. Hence by tracking the minima an estimate for the auto-power spectral
density of the noise is obtained. However, due to the spatial correlation not
only the auto- but also the cross-power spectral densities of the noisy signal
xp(n) and the background noise np(n) are required. They are estimated and
averaged recursively for each DFT bin whenever we detect a minimum (i.e.
speech pause) of the noisy speech signals. Thus, for slowly time-varying noise
statistics this method gives an accurate estimate of the noise spectral density
matrix used for the bias removal. In Fig. 1.9 the results of the approach in [3]
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Fig. 1.9. Segmental SIR improvement ∆SIRseg depicted over time for the noisy car
environment. Speech separation results are shown for the BSS outputs adapted with
the noisy mixtures and for BSS with pre-processing by multi-channel bias removal.
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Post-processing are shown in terms of the segmental SIR improvement for the separation of
the two point sources. It can be seen that the pre-processing slightly improves
the separation performance for the noisy car environment described in the
previous section.

In the cocktail party scenario this approach did not achieve good results
as the noise statistics is more time-variant and due to only few speech pauses
of the point sources the noise PSD cannot be estimated very well.

In contrast to the single-channel bias removal techniques, the multi-
channel approaches do not achieve any background noise reduction as they
merely aim at providing a better estimate of the correlation matrix of the point
sources which is then used for the adaptation of the demixing filter weights.
To additionally suppress the background noise, this approach would have to
be complemented by a post-processing technique. Note also that due to fewer
speech pauses it is more difficult to estimate the noise correlation matrix for
multiple active speakers compared to a single speaker as typically encountered
in single-channel speech enhancement applications. Therefore, the estimation
of the noise contribution may be done more reliably after the BSS stage where
already a partial suppression of the interfering point sources is achieved. This
will be investigated in detail for the post-processing approach discussed in
Sec. 1.3.3

1.3.3 Post-Processing for Suppression of Residual Crosstalk and

Background Noise

In Sec. 1.3.2 several pre-processing approaches have been discussed. It could
be seen that for the case P = Q only multi-channel bias removal methods
achieved some noise robustness of the BSS algorithm. For these methods a
reliable voice activity detection is crucial but might be difficult to realize
in environments with several speech point sources so that in such cases post-
processing methods are a preferable alternative. Post-processing methods have
the advantage that the BSS system already achieves a suppression of the inter-
fering point sources so that in each BSS output channel only some remaining
interference of the other point sources is present. As will be shown later,
this simplifies the estimation of the quantities required by the post-processing
method. A suitable post-processing scheme is given by a single-channel post-
filter gq,κ applied to each BSS output channel as shown in Fig. 1.10. The
motivation of using a single-channel postfilter for each BSS output channel is
twofold:

Firstly, it is desired that the remaining background noise is reduced at
the BSS output channels. In [20] it was shown that the optimum solution for
BSS leads to blind MIMO identification and thus, the BSS demixing system
can be interpreted for each output channel as a blind adaptive interference
canceller aiming at the suppression of the interfering point sources. As the
background noise is usually described by a diffuse sound field, the BSS system
achieves only limited noise suppression. However, from adaptive beamforming
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Fig. 1.10. Noisy BSS model combined with postfiltering.

(e.g., [76]) it is known that in such environments the concatenation of an
adaptive interference canceller with a single-channel postfilter can improve
the noise reduction.

Secondly, BSS algorithms are in noisy environments usually not able to
converge to the optimum solution due to the bias introduced by the back-
ground noise. Moreover, moving point sources or an insufficient demixing fil-
ter length, which only partly covers the existing room reverberation, may lead
to reduced signal separation performance and thus, to the presence of resid-
ual crosstalk from interfering point sources at the BSS output channels. In
such situations, the single-channel postfilter should be designed such that it
also provides additional separation performance. Analogously, similar consid-
erations have led to a single-channel postfilter in acoustic echo cancellation
which was first proposed in [11, 59].

The reduced separation quality due to an insufficient demixing filter length
in realistic environments was the motivation of several single-channel post-
filter approaches that have been previously proposed in the BSS literature
[22,68,69,72,80,82]. Nevertheless, a comprehensive treatment of the simultane-
ous suppression of residual crosstalk and background noise is still missing and
will be presented in the following sections. We will first discuss in Sec. 1.3.3.1
the advantages of the implementation of the single-channel postfilter in the
DFT domain and will introduce a spectral gain function requiring the power
spectral density (PSD) estimates of the residual crosstalk and background
noise. Then, the signal model for the residual crosstalk and the background
noise will be discussed in Sec. 1.3.3.2 allowing to point out the relationships
to previous post-processing approaches. The chosen signal model will lead to
the derivation of a novel residual crosstalk PSD estimation and additionally
the estimation of the background noise will be addressed. Subsequently, ex-
perimental results will be presented which illustrate the improvements that
can be obtained by the application of single-channel postfilters both, in terms
of SIR and SNR.
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1.3.3.1 Spectral Weighting Function for a Single-Channel Postfilter

The BSS output signals yq(n), q = 1, . . . , P can be decomposed for the q-th
channel as

yq(n) = ysr,q(n) + yc,q(n) + yn,q(n), (1.49)

where ysr ,q(n) is the component containing the desired source sr(n). As a
possible permutation of the separated sources at the BSS outputs, i.e., r 6= q
does not affect the post-processing approach we will simplify the notation
and denote in the following the desired signal component in the q-th channel
as ys,q(n). The quantity yc,q(n) is the residual crosstalk component from the
remaining point sources that could not be suppressed by the BSS algorithm
and yn,q(n) denotes the contribution of the background noise.

From single-channel speech enhancement (e.g., [12]) or from the literature
on single-channel postfiltering for beamforming (e.g., [76]) it is well-known
that it is beneficial to utilize the DFT-domain representation of the signals and
estimate the single-channel postfilter in the DFT domain. Thus, Npost samples
are combined to an output signal block which is, after applying a windowing
operation, transformed by the DFT of length Rpost ≥ Npost yielding the DFT-
domain representation of the output signals as

Y (ν)
q (m) = Y (ν)

s,q (m) + Y (ν)
c,q (m) + Y (ν)

n,q(m) (1.50)

where ν = 0, . . . , Rpost − 1 is the index of the DFT bin and m denotes the
block time index. The advantage is that in the DFT domain speech signals
are sparser, i.e., we can find regions in the time-frequency plane where the
individual speech sources do not overlap (see e.g., [90]). This property is often
exploited in underdetermined blind source separation where there are more
simultaneously active sources than sensors (e.g., [29,84]). Here, this sparseness
is used for the estimation of the quantities necessary for the implementation of
the spectral gain function. A block diagram showing the main building blocks
of a DFT-based postfilter is given in Fig. 1.11. There it can already be seen
that analogously to single-channel speech enhancement or post-filtering ap-
plied to beamforming or acoustic echo cancellation, the DFT bins are treated
in a narrowband manner as all computations are carried out independently
in each DFT bin. Because of the narrowband treatment we have to ensure
that circular convolution effects, appearing due to the signal modification by
the spectral weighting, are not audible. Thus, the enhanced output signal zq,
which is the estimate ŷs,q(n) of the clean desired source component, is com-
puted by the means of an inverse DFT using a weighted overlap-add method
including a tapered analysis and synthesis windows as suggested in [38]. This
is in contrast to the BSS algorithms derived from the TRINICON framework
where the linear convolution of the sensor signals with the estimated FIR
demixing system is implemented without approximations equivalently in the
DFT domain by the overlap-save method. In contrast to postfiltering, the
selective narrowband approximations which are applied in the TRINICON
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Fig. 1.11. DFT-based single-channel postfiltering depicted for the ν-th DFT bin in
the q-th channel.

framework and have been outlined in Sec. 1.2.5 have only been made in the
adaptation process of the demixing filters to obtain efficient BSS algorithms.

According to Fig. 1.11 a spectral gain function G(ν)
q (m) in the ν-th DFT

bin aiming at simultaneous suppression of residual crosstalk and background
noise has to be derived. The output signal of the post-processing scheme is
the estimate of the clean desired source signal

Z(ν)
q = Ŷ

(ν)

s,q (1.51)

and is given as
Z(ν)

q (m) = G(ν)
q (m)Y (ν)

q (m) . (1.52)

According to [5] we choose in this chapter to minimize the mean-squared error

E{(Z(ν)
q (m)−Y (ν)

s,q (m))2} with respect to G(ν)
q (m). This leads to the ν-th bin

of the well-known Wiener filter for the q-th channel given as

G(ν)
q (m) =

E
{∣∣Y (ν)

s,q (m)
∣∣2
}

E
{∣∣Y (ν)

q (m)
∣∣2
} . (1.53)

With the assumption that the desired signal component, the interfering signal
components and the background noise in the q-th channel are all mutually
uncorrelated, Eq. 1.53 can be expressed as

G(ν)
q (m) =

E
{∣∣Y (ν)

s,q (m)
∣∣2
}

E
{∣∣Y (ν)

s,q (m)
∣∣2
}

+ E
{∣∣Y (ν)

c,q (m)
∣∣2
}

+ E
{∣∣Y (ν)

n,q(m)
∣∣2
} . (1.54)
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From this equation it can be seen that for regions with desired signal and

residual crosstalk or background noise components the output signal spec-
trum is reduced, whereas in regions without crosstalk or background noise
the signal passed through. On the one hand this fulfills the requirement that
an undisturbed desired source signal passes through the Wiener filter without
any distortion. On the other hand, if crosstalk or noise is present, the mag-
nitude spectrum of the noise or crosstalk attains a shape similar to that of
the desired source signal, so that noise and crosstalk are therefore partially
masked by the desired source signal. This effect was already exploited in post-
filtering for acoustic echo cancellation aiming at the suppression of residual
echo. There, this effect has been termed “echo shaping” [61]. Moreover, it can
be observed in Eq. 1.54 that if the BSS system achieves the optimum solution,
i.e., the residual crosstalk in the q-th channel Y (ν)

c,q (m) = 0, then Eq. 1.54 re-
duces to the well-known Wiener filter for a signal with additive noise used in
single-channel speech enhancement. To realize Eq. 1.54 in a practical system,
the ensemble average E{·} has to be estimated and thus, it is usually replaced
by a time average Ê{·}. Thereby, the Wiener filter is approximated by

G(ν)
q (m) ≈

Ê
{∣∣Y (ν)

q (m)
∣∣2
}
− Ê

{∣∣Y (ν)
c,q (m)

∣∣2
}
− Ê

{∣∣Y (ν)
n,q(m)

∣∣2
}

Ê
{∣∣Y (ν)

q (m)
∣∣2
} , (1.55)

where Ê{|Y (ν)
q (m)|2}, Ê{|Y (ν)

c,q (m)|2}, and Ê{|Y (ν)
n,q(m|2} are the PSD esti-

mates of the BSS output signal, residual crosstalk, and background noise, re-
spectively. Due to the reformulation in Eq. 1.55 the unobservable desired signal
PSD E{|Y (ν)

s,q (m)|2} does not have to be estimated. However, the main diffi-
culty is still to obtain reliable estimates of the unobservable residual crosstalk
and background noise PSDs. A novel method for this estimation process lead-
ing to high noise reduction with little signal distortion will be shown in the
next section.

Moreover, an estimate of the observable BSS output signal PSD is required.
The PSD estimates can be used to implement spectral weighting algorithms
other than the Wiener filter as described, e.g., in [39].

1.3.3.2 Estimation of Residual Crosstalk and Background Noise

In this section a model for the residual crosstalk and background noise is
introduced. Subsequently, based on the residual crosstalk model an estima-
tion procedure will be given which relies on an adaptation control. Different
adaptation control strategies will be outlined. Moreover, the estimation of the
background noise PSD will be discussed.

Model of Residual Crosstalk and Background Noise

We restricted our scenario to the case that the number of microphones equals
the maximum number of simultaneously active point sources. Therefore, the
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Fig. 1.12. (a) Representation of mixing and demixing system for the case P = 2
by using the overall system FIR filters cqr. (b) Resulting model for the residual
crosstalk yc,1(n).

BSS algorithm is able to provide an estimate of one separated point source at
each output yq(n). As pointed out above, due to movement of sources or long
reverberation, the BSS algorithm might not converge fast enough to the opti-
mum solution and thus, some residual crosstalk from point source interferers,
denoted in the DFT domain by Y (ν)

c,q (m), remains in the BSS output. To ob-

tain a good estimate of the residual crosstalk PSD E{|Y (ν)
c,q (m)|2} as needed

for the post-filter in the q-th channel, we first need to set up an appropriate
model.

In Fig. 1.12(a) the concatenation of the mixing and demixing systems
are expressed by the overall filters cqr of length M + L − 1 which denote
the path from the q-th source to the r-th output. For simplicity, we have
depicted the case Q = P = 2 in Fig. 1.12. As can be seen in Fig. 1.12(a), the
crosstalk component yc,1(n) of the first output channel is determined in the
case Q = P = 2 by the source signal s2(n) and the filter c21. However, as
neither the original source signals nor the overall system matrix are observable,
the crosstalk component yc,1(n) is expressed in Fig. 1.12(b) in terms of the
desired source signal component ys,2(n) at the second output. This residual
crosstalk model could be used if a good estimate of ys,2(n) is provided by the
BSS system, i.e., if the source in the second channel is well-separated.

It should also be noted that even if ys,2(n) is available, then this model
does not allow a perfect estimation of the residual crosstalk yc,1(n). This
is due to the fact that for a perfect replica of yc,1(n) based on the input
signal ys,2(n), the filter b21 has to model the combined system of c21 and the
inverse of c22. However, c22 is in general a non-minimum phase FIR filter
and thus, cannot be inverted in an exact manner by a single-input single-
output system as was shown in [66]. Hence, analogously to single-channel
blind dereverberation approaches, it is only possible to obtain an optimum
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Fig. 1.13. Model of the residual crosstalk component yc,q contained in the q-th
BSS output channel yq illustrated for the first channel, i.e., q = 1. In contrast to
Fig. 1.12(b) this model is solely based on observable quantities.

filter b21 in the least-squares sense [66]. We will see in the following that
due to the usage of additional a-priori information this model is nevertheless
suitable for the estimation of the residual-cross talk PSD.

The model in Fig. 1.12(b) requires the desired source signal component
ys,2(n) in the second BSS output. However, in practice it cannot be assumed
that the BSS system always achieves perfect source separation. Especially in
the initial convergence phase or with moving sources, there is some residual
crosstalk remaining in all outputs. Therefore, we have to modify the residual
crosstalk model so that only observable quantities are used. Hence, in Fig. 1.13
the desired signal component ys,i(n) for the i-th channel is replaced by the
signal y̆i,q(n) which denotes the BSS output signal of the i-th channel but
without any interfering crosstalk components from the q-th point source (i.e.,
desired source sq(n)). This means that the overall filters cqi from the q-th
source to the i-th output (i = 1, . . . , P , i 6= q) are assumed to be zero. In
practice, this condition is fulfilled by an adaptation control which determines
time-frequency points where the desired source sq(n) is inactive. This a-priori
information about desired source absence is important for a good estimation of
the residual crosstalk PSD and thus, for achieving additional residual crosstalk
cancellation. A detailed discussion of the adaptation control will be given in
Sec. 1.3.3.2. Due to the bin-wise application of the single-channel postfilter we
will in the following formulate the model in the DFT domain. Consequently,
the model for the residual crosstalk in the q-th channel based on observable
quantities is expressed for the ν-th DFT bin (ν = 1, . . . , Rpost) as
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Diffuse sound field
Y (ν)

c,q (m) =

P∑

i=1,i6=q

Y̆
(ν)

i,q (m)B
(ν)
i,q (m)

= Y̆
(ν)T

q (m)B(ν)
q (m), (1.56)

where Y̆
(ν)

i,q (m) and B
(ν)
i,q (m) are the DFT-domain representations of Y̆i,q(m)

and biq(m), respectively. The variable Y̆
(ν)

q (m) is the P −1 dimensional DFT-

domain column vector containing Y̆
(ν)

i,q (m) for i = 1, . . . , P , i 6= q, and B(ν)
q (m)

is the column vector containing the unknown filter weights B
(ν)
i,q (m) for i =

1, . . . , P , i 6= q.

It should be pointed out that the adaptation control only ensures that

the desired source sq(n) is absent in the i-th BSS output channel Y̆
(ν)

i,q (m).

However, the background noise Y
(ν)
n,i (m) is still present in the i-th BSS output

channel as can also be seen in Fig. 1.13. If the background noise is spatially
correlated between the q-th and i-th BSS output channel, then the coeffi-

cient B
(ν)
i,q (m) would not only model the leakage from the separated source

in the i-th channel, but B
(ν)
i,q (m) would also be affected by the spatially cor-

related background noise. However, as an additional measure, the noise PSD
E{|Y (ν)

n,q(m)|2} is estimated individually in each channel by one of the noise es-
timation methods known from single-channel speech enhancement. Therefore,
if the background noise is already included in the residual crosstalk model,
this would lead to an overestimation of the noise PSD. In Sec. 1.3.1 the char-
acter of the background noise such as car or babble noise was examined and
the correlation of the noise sources between the sensors was evaluated using
the magnitude squared coherence (MSC). It was concluded that the MSC of
such background noise exhibits the same characteristics as a diffuse sound
field leading to strong spatial correlation for low frequencies but to very small
spatial correlation at higher frequencies. The model of the residual crosstalk
is based on the BSS output signals and hence, it is of interest how the BSS
system changes the MSC of the noise signals. In Fig. 1.14(a) and Fig. 1.14(b)
the MSC of car noise and babble noise, which was estimated recursively ac-
cording to Eq. 1.39 with the parameters R = 512, γ = 0.9 is plotted. For the
car scenario a two-microphone array with a spacing of 4 cm was mounted at
the interior mirror and the driver and co-driver were speaking simultaneously.
Then the block-online BSS algorithm given in Eq. 1.35 together with the nar-
rowband normalization [7] was applied. The same experiment was performed
with two sources in a reverberant room where the babble noise was generated
by a circular loudspeaker array using 16 individual speech signals. As pointed
out in the beginning, the BSS algorithm tries to achieve source separation
by aiming at mutual independence of the BSS output signals. From Fig. 1.14
it can be seen that in the presence of background noise this also leads to a
spatial decorrelation of the noise signals at the BSS outputs. The car noise
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Fig. 1.14. Magnitude-squared coherence (MSC) of the car (a) and speech babble (b)
background noise between the sensors and between the BSS outputs. The long-term
noise PSDs of car noise and speech babble are shown in (c) and (d), respectively.

which is dominant at low frequencies (see Fig. 1.14(c)) has a MSC close to
zero at these frequencies (see Fig. 1.14(a)). Only at higher frequencies, where
the noise signal has much less energy, a larger MSC can be observed. The
reduction of the MSC for the relevant frequencies can analogously also be
observed for the babble noise. This observation shows that the background
noise is spatially decorrelated at the BSS outputs and thus, confirms that
the model for the residual crosstalk introduced in Eq. 1.56 is valid even in
the case of background noise. This also justifies the independent estimations
of the background noise in each channel and thus, we can apply noise es-
timation methods previously derived for single-channel speech enhancement
algorithms. The residual cross-talk, however, is correlated across the output
channels. These characteristics of residual cross-talk and background noise
will be exploited in the next section to derive suitable estimation procedures.
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After introducing the residual crosstalk model and validating it for the
case of existing background noise, we briefly discuss the relationships to the
models used in previous publications on post-processing for BSS. In [72] a
Wiener-based approach for residual crosstalk cancellation is presented for the
case P = 2. There, a greatly simplified model is used where all coefficients

B
(ν)
i,q (m) (i, q = 1, 2, i 6= q) are assumed to be equal to one. Similarly, in [80]

one constant factor was chosen for all B
(ν)
i,q (m). A model closer to Eq. 1.56,

but based on magnitude spectra, was given in [22] which was then used for the
implementation of a spectral subtraction rule. In contrast to the estimation
method presented in the next section, the frequency-dependent coefficients of
the model were learned by a modified least-mean-squares (LMS) algorithm.
In [68] and [69] more sophisticated models were proposed allowing for time-
delays or FIR filtering in each DFT bin. The model parameters were estimated
by exploiting correlations between the channels or by using an NLMS algo-
rithm. In all of these single-channel approaches the information of the multi-
ple channels is only exploited to estimate the PSDs necessary for the spectral
weighting rule. Alternatively, if also the phase of Y (ν)

c,q (m) is estimated, then
it is also possible to directly subtract the estimate of the crosstalk compo-
nent Y (ν)

c,q (m) from the q-th channel. This was proposed in [57] resulting in
an adaptive noise canceller (ANC) structure [86]. The ANC was adapted by a
leaky LMS algorithm [37] which includes a variable step size to allow also for
strong desired signal activity without the necessity of an adaptation control.

The background noise component in the q-th channel Y (ν)
n,q(m) is usually

assumed to be more stationary than the desired signal component Y (ν)
s,q (m).

This assumption is necessary for the noise estimation methods known from
single-channel speech enhancement which will be used to estimate the noise
PSD Ê{|Y (ν)

n,q(m)|2} in each channel and which are briefly discussed in the
next section.

Estimation of Residual Crosstalk and Background Noise Power Spectral

Densities

After introducing the residual crosstalk model (Eq. 1.56) we need to estimate

the PSDs E{|Y (ν)
c,q (m)|2} of the residual crosstalk and E{|Y (ν)

n,q(m)|2} of the
background noise for evaluating Eq. 1.55. To obtain an estimation procedure
based on observable quantities we first calculate the cross-power spectral den-

sity vector S
(ν)

Y̆ qYc,q

(m) between Y̆
(ν)

q (m) and Y (ν)
c,q (m) given as

S
(ν)

Y̆ qYc,q

(m) = Ê
{

Y̆
(ν)∗

q (m) Y (ν)
c,q (m)

}

= Ê
{

Y̆
(ν)∗

q (m) Y̆
(ν)T

q (m)
}

B(ν)
q (m)

=: S
(ν)

Y̆ qY̆ q

(m) B(ν)
q (m) , (1.57)
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where in the first step B(ν)
q (m) was assumed to be slowly time-varying. Using

Eq. 1.56, the power spectral density estimate Ê{|Y (ν)
c,q (m)|2} can be expressed

as

Ê
{∣∣Y (ν)

c,q (m)
∣∣2
}

= Ê
{

Y (ν)H

c,q (m)Y (ν)
c,q (m)

}

= B(ν)H

q (m)S
(ν)

Y̆ qY̆ q

(m)B(ν)
q (m) . (1.58)

Solving Eq. 1.57 for B(ν)
q (m) and inserting it into Eq. 1.58 leads to

Ê
{∣∣Y (ν)

c,q (m)
∣∣2
}

= S
(ν)H

Y̆ qYc,q
(m)

(
S

(ν)

Y̆ qY̆ q
(m)

)−1

S
(ν)

Y̆ qYc,q
(m) . (1.59)

As Y (ν)
c,q (m), Y (ν)

s,q (m), and Y (ν)
n,q(m) in Fig. 1.13 are assumed to be mutu-

ally uncorrelated, S
(ν)

Y̆ qYc,q

(m) can also be estimated as the cross-power spec-

tral density S
(ν)

Y̆ qYq

(m) between Y̆
(ν)

q (m) and q-th output of the BSS system

Y (ν)
q (m) leading to the final estimation procedure:

Ê
{∣∣Y (ν)

c,q (m)
∣∣2
}

= S
(ν)H

Y̆ qYq

(m)
(
S

(ν)

Y̆ qY̆ q

(m)
)−1

S
(ν)

Y̆ qYq

(m). (1.60)

Thus, the power spectral density of the residual crosstalk for the q-th channel
can be efficiently estimated in each DFT bin ν = 0, . . . , R − 1 by computing

the 1 × P − 1 cross-power spectral density vector S
(ν)

Y̆ qYq

(m) between input

and output of the model shown in Fig. 1.13 and calculating the P − 1×P − 1

cross-power spectral density matrix S
(ν)

Y̆ qY̆ q

(m) of the inputs. One possible

implementation for estimating this expectation is given by an exponentially
weighted average

Ê
{
a(m)

}
= (1 − γ)

∑

i

γm−ia(i) , (1.61)

where a(m) is the quantity to be averaged. The advantage is that this can
also be formulated recursively leading to

S
(ν)

Y̆ qY̆ q

(m) = γ S
(ν)

Y̆ qY̆ q

(m − 1) + (1 − γ) Y̆
(ν)∗

q (m) Y̆
(ν)T

q (m) , (1.62)

S
(ν)

Y̆ qYq

(m) = γ S
(ν)

Y̆ qYq

(m − 1) + (1 − γ) Y̆
(ν)∗

q (m)Y (ν)
q (m) . (1.63)

In summary, the power spectral density of the residual crosstalk for the q-th
channel can be efficiently estimated in each DFT bin ν = 0, . . . , R − 1 using
Eq. 1.60 together with the recursive calculation of the P − 1 × P − 1 cross-
power spectral density matrix (Eq. 1.62) and the P−1×1 cross-power spectral
density vector (Eq. 1.63). It should be noted that similar estimation techniques
have been used to determine a post-filter for residual echo suppression in the
context of acoustic echo cancellation (AEC) [32, 79]. However, the methods
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Minimum statistics
Adaptation control

presented in [32, 79] are different in two ways: Firstly, in contrast to BSS
where several interfering point sources may be active, the AEC post-filter
was derived for a single channel, i.e., the residual echo originates from only
one point source and thus all quantities in Eq. 1.60 reduce to scalar values.
Secondly, in the AEC problem a reference signal for the echo is available. In

BSS however, Y̆
(ν)

q (m) is not immediately available as it can only be estimated
if the desired source signal in the q-th channel is currently inactive. Strategies
how to determine such time intervals are discussed in the next section.

The estimation of the PSD of the background noise Ê{|Y (ν)
n,q(m)|2} is al-

ready a long-standing research topic in single-channel speech enhancement
and an overview on the various methods can be found, e.g., in [39]. Usually
it is assumed that the noise PSD is at least more stationary than the desired
speech PSD. The noise estimation can be performed during speech pauses,
which have to be detected properly by a voice activity detector. As voice
activity detection algorithms are rather unreliable in low SNR conditions,
several methods have been proposed which can track the noise PSD continu-
ously. One of the most prominent methods is the minimum statistics approach
which is based on the observation that the power of a noisy speech signal fre-
quently decays to the power of the background noise. Hence, by tracking the
minima the power spectral density of the noise is obtained. In [63] a minima
tracking algorithm was proposed which includes an optimal smoothing of the
noise PSD together with a bias correction and which will be applied in the ex-
periments in Sec. 1.3.3.3. An overview of other methods providing continuous
noise PSD estimates can be found, e.g., in [39].

Adaptation Control Based on SIR Estimation

In the previous sections it was shown that the estimation of the residual
crosstalk power spectral density in the q-th channel is only possible at time
instants when the desired point source of the q-th channel is inactive. As
pointed out already above, speech signals can be assumed to be sufficiently
sparse in the time-frequency domain so that even in reverberant environments
regions can be found where one or more sources are inactive (see, e.g., [90]).
This fact will be exploited by constructing a DFT-based adaptation control
necessary for the estimation of the residual cross-talk PSD. In this section
we will first briefly review an adaptation control approach which is already
known from the literature on post-processing for BSS. Due to the similarity of
the adaptation control necessary for estimating the residual crosstalk and the
control necessary for adaptive beamformers applied to acoustic signals, also
the existing approaches in the beamforming literature will be briefly sum-
marized. A sophisticated bin-wise adaptation control proposed in [42] in the
context of adaptive beamforming will then be applied in a slightly modified
version to the post-processing scheme.

In general, all adaptation controls aim at estimating the SIR in the time
domain or in a bin-wise fashion in the DFT domain. For the latter, the SIR
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estimate is given for the ν-th DFT bin as the ratio of the desired signal PSD
and the PSD of the interfering signals. Thus, the SIR estimate at the q-th
BSS output is given as

ŜIR
(ν)

q (m) =
Ê
{∣∣Y (ν)

s,q (m)
∣∣2
}

Ê
{∣∣Y (ν)

c,q (m)
∣∣2
} . (1.64)

For the case of a BSS system with two output channels (P = 2) together with
the assumption that for the number of simultaneously active point sources Q ≤
P holds, a simple SIR estimate is given by approximating the desired signal
component Y (ν)

s,q (m) with the BSS output signal Y (ν)
q (m) of the q-th channel

and approximating the interfering signal component by the BSS output signal
of the other channel. This yields, e.g., for the approximated SIR estimate in
the first BSS output channel

ŜIR
(ν)

1 (m) ≈
Ê
{∣∣Y (ν)

1 (m)
∣∣2
}

Ê
{∣∣Y (ν)

2 (m)
∣∣2
} . (1.65)

This approximation is justified if the BSS system already provides enough
separation performance so that the BSS output signals can be seen as esti-
mates of the point sources. In [68, 69] the time-average Ê{·} in Eq. 1.65 has
been approximated by taking the instantaneous PSD values and the resulting
approximated SIR was used successfully as a decision variable for controlling

the estimation of the residual crosstalk. If ŜIR
(ν)

1 (m) < 1, then the crosstalk

Y
(ν)
c,1 (m) was estimated and for ŜIR

(ν)

1 (m) > 1 the crosstalk of the second

channel Y
(ν)
c,2 (m) was determined. In [5] this adaptation control was refined

by the introduction of a safety margin Υ to improve reliability. By compar-
ing Eq. 1.65 to a fixed threshold Υ it is ensured that a certain SIR value

ŜIR
(ν)

1 (m) < Υ has to be attained to allow the conclusion that the desired

signal is absent and thus, allow estimation of the residual crosstalk Y
(ν)
c,1 (m).

The safety margin Υ has to be chosen between 0 < Υ ≤ 1 and was set in [5]
to Υ = 0.9. For an extension of this mechanism to P, Q > 2 a suitable ap-
proximation for Ê{|Y (ν)

c,q (m)|2} in the SIR estimate (Eq. 1.64) is important.
In [5] it was suggested for P, Q > 2 to use the maximum PSD of the remaining

channels Ê{|Y (ν)
i (m)|2}, i 6= q. For increasing P, Q this requires a very careful

choice of Υ . In such scenarios, it is advantageous to replace the fixed threshold
Υ by adaptive thresholding. As we will see in the following, such sophisticated
adaptation controls were treated in the beamforming literature and will now
be applied to the BSS post-processing scheme.

If adaptive beamformers, such as the generalized sidelobe canceller (GSC)
(see, e.g., [42]), are applied to acoustic signals, then usually an adaptation
control is required for the adaptive filters aiming at interference cancella-
tion. Analogously to the residual crosstalk estimation procedure discussed
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in Sec. 1.3.3.2, the adaptation of the adaptive interference canceller has to
be stalled in the case of a strong desired signal. This analogy allows to ap-
ply the approaches in the literature on adaptive beamforming to the post-
processing of the BSS output signals. To control the adaptation of beam-
formers, a correlation-based method was proposed in [36] and recently in a
modified form also in [47]. Another approach relies on the comparison of the
outputs of a fixed beamformer with the main lobe steered towards the desired
source and a complementary beamformer which steers a spatial null towards
the desired source [44]. The ratio of the output signal powers, which consti-
tutes an estimate of the SIR is then compared to a threshold to decide if the
adaptation should be stopped. As both methods were suggested in the time-
domain, this corresponds to a full-band adaptation control, so that in case of
a strong desired signal the adaptation is stopped for all DFT bins. It has been
pointed out before that speech signals are sparse in the DFT domain and thus,
better performance of the adaptation algorithm can be expected when using
a bin-wise adaptation control. This was the motivation in [42] for transferring
the approach based on two fixed beamformer outputs to the DFT domain
leading to a frequency-dependent SIR estimate. Instead of a fixed threshold
Υ , additionally an adaptive threshold Υ (ν)

q (m) for each channel and DFT bin
has been proposed leading to a more robust decision. The application of this
adaptation control to the estimation of the residual crosstalk, which is required
for the post-processing algorithm, will be discussed in the following.

In [42] the estimate Ê{|Y (ν)
s,q (m)|2} of the desired signal required for the

SIR estimate (Eq. 1.64) is obtained by a delay-and-sum beamformer. This
requires an array of several microphones which should have a spacing that
is sufficiently large to allow the suppression of the interfering signals also at
low frequencies. Moreover, the positions of the microphones are assumed to
be known. This is in contrast to the BSS application where the sensors can be
arbitrarily positioned and where there might be only a small number of sensors
available (e.g., P = 2). Therefore, instead of a fixed beamformer output we

will use the q-th BSS output signal PSD Ê{|Y (ν)
q (m)|2} as an estimate of the

desired signal PSD Ê{|Y (ν)
s,q (m)|2}.

The estimate of the interfering signal components required for the SIR
estimate (Eq. 1.64) are obtained in [42] by a complementary beamformer
which places a spatial null towards the desired source. The difference to the
procedure in [44] is that this is done in a bin-wise manner. In our application

we will use the PSD of a complementary BSS signal Ȳ
(ν)
q which is obtained

analogously to [42] as

Ê
{∣∣Ȳ (ν)

q (m)
∣∣2
}

= Ê
{∣∣X(ν)

q (m)
∣∣2
}
− Ê

{∣∣Y (ν)
q (m)

∣∣2
}

. (1.66)

Here it is assumed that the filtering due to the BSS demixing system is ap-
proximately linear phase and that the BSS output signal and the microphone
signal have been properly time-aligned before subtracting their PSD estimates.
It should be noted that due to the usage of a broadband BSS algorithm, the
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permutation at the BSS output signals is not frequency-dependent. There-
fore, a possible permutation of the BSS output channels has no effect on the
calculation of the complementary BSS signal.

Usually a recursive average is used for the time-average indicated by the
operator Ê{·} which leads to the PSD estimates

S(ν)
xqxq

(m) = γ S(ν)
xqxq

(m − 1) + (1 − γ)
∣∣X(ν)

q (m)
∣∣2, (1.67)

S(ν)
yqyq

(m) = γ S(ν)
yqyq

(m − 1) + (1 − γ)
∣∣Y (ν)

q (m)
∣∣2, (1.68)

necessary for the estimation of the SIR in the q-th BSS output channel. The
SIR estimate (Eq. 1.64) can thus be expressed as

ŜIR
(ν)

q (m) ≈
S(ν)

yqyq
(m)

S(ν)
xqxq

(m) − S(ν)
yqyq

(m)
. (1.69)

The SIR estimate (Eq. 1.69) is then compared to an adaptive threshold

Υ (ν)
q (m). If ŜIR

(ν)

q (m) < Υ (ν)
q (m), then the absence of the desired signal

in the q-th channel can be assumed. The adaptive threshold is given as the

minimum of SIR estimate ŜIR
(ν)

q (m) which is determined for each DFT bin
by taking into account the last DΥ blocks [63]. In practice DΥ must be large
enough to bridge any peak of desired signal activity but short enough to track
the nonstationary SIR variations in case of absence of the desired signal. Here,
we choose an interval equivalent to a time period of 1.5 sec. Moreover, for small
variations

∣∣∣∣∣∣
ŜIR

(ν)

q (m) − Υ (ν)
q (m)

Υ (ν)
q (m)

∣∣∣∣∣∣
≤ ∆Υ (1.70)

the threshold Υ (ν)
q (m) is updated immediately. In Fig. 1.15 the SIR estimate

ŜIR
(ν)

q and the adaptive threshold Υ (ν)
q determined by minimum tracking are

illustrated for the DFT bin corresponding to 1 kHz. The results are based on
the output signals of the BSS system applied to the car environment. It can be
seen that due to the parameter ∆Υ = 0.3 the threshold follows small changes
of the SIR estimate immediately. Moreover, it should be pointed out that
the SIR estimate in Fig. 1.15 exhibits high positive values due to the good
convergence of the BSS algorithm. This is the reason why even in speech
pauses of the desired signal, the SIR estimate does rarely exhibit negative
SIR values.

In Fig. 1.16 the decision of the adaptation control is illustrated for the
first output channel of the BSS system applied to the car environment
(P = Q = 2). The desired component, residual crosstalk, and background
noise component at the first BSS output are depicted in (a)-(c). The deci-
sion of the adaptation control is obtained by estimating the SIR according
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Fig. 1.15. Estimate 10 log10 ŜIR
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q of the SIR and adaptive threshold Υ (ν)
q deter-

mined by minimum tracking illustrated for the DFT bin corresponding to 1 kHz.

to Eq. 1.69 solely based on observable quantities. Especially due to the exis-
tence of background noise yn,q(n) this leads to a biased SIR. Nevertheless, the

adaptation control is very robust due to the adaptive threshold Υ
(ν)
1 based

on minimum tracking and the parameter ∆Υ = 0.3 which allows for small
variation of the threshold. This can be seen, when comparing the results of
the adaptation control with the true SIR illustrated in (e) which is estimated
based on unobservable quantities according to Eq. 1.64. In case of high SIR

values ŜIR
(ν)

1 (m), the desired signal in the first channel is present and the

residual crosstalk PSD Ê{|Y (ν)
c,2 (m)|2} of the other channel is estimated. Vice

versa, a low SIR in the first channel allows to adapt Ê{|Y (ν)
c,1 (m)|2}.

In case that the adaptation control stalls the estimation of the residual
crosstalk for the ν-th DFT bin in one of the P BSS output channels, the
residual crosstalk estimate from the previous block has to be used. As speech
is a nonstationary process and therefore, the statistics of the residual crosstalk
are quickly time-varying, this would deteriorate the performance of the postfil-
ter G(ν)

q (m). On the other hand, as pointed out above, the minimum statistics
algorithm can provide continuous noise PSD estimates even in periods with
desired signal activity. Therefore, for those time instants where the estimate
of residual crosstalk cannot be updated, i.e., where the desired source signal
is dominant, a postfilter

G(ν)
n,q(m) =

Ê
{∣∣Y (ν)

q (m)
∣∣2
}
− Ê

{∣∣Y (ν)
n,q(m)

∣∣2
}

Ê
{∣∣Y (ν)

q (m)
∣∣2
} (1.71)

merely aiming at suppression of the background noise is applied.
In Tab. 1.2 the adaptation control and the resulting application of the

postfilters is outlined for the q-th BSS output channel.
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(e) SIR estimate according to Eq. 1.64

Fig. 1.16. BSS output signal components for the car environment with an input
SNR at the sensors of 0 dB showing the desired signal (a), residual crosstalk (b) and
background noise (c) in the first channel. Based on the SIR estimate (Eq. 1.69) and

the adaptive threshold Υ
(ν)
1 (m) the decision of the adaptation control is shown in

(d). For comparison, the SIR (Eq. 1.64) computed for the true signal components
in the first channel is illustrated in (e).
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Table 1.2. Adaptation control and application of the postfilter for the q-th BSS
output channel and ν-th DFT bin.

Number Algorithmic part

1. Estimate S(ν)
xqxq

(m) and S(ν)
yqyq

(m) according to Eqs. 1.67 and 1.68

2. Estimate ŜIR
(ν)

q (m) according to Eq. 1.69

3. Estimate Ê{|Y (ν)
n,q(m)|2} by minimum statistics algorithm

4. Tracking of minima of ŜIR
(ν)

q (m):

If |(ŜIR
(ν)

q (m) − Υ (ν)
q (m))/Υ (ν)

q (m)| ≤ ∆Υ

Replace all values of Υ (ν)
q (i) inside the buffer, i.e.,

Υ (ν)
q (i) = ŜIR

(ν)

q (m), i = m, . . . , m − DΥ + 1

If ŜIR
(ν)

q (m) is the minimum of Υ (ν)
q (m − i), i = 0, . . . , DΥ − 1

Set current value of buffer Υ (ν)
q (m) = ŜIR

(ν)

q (m)

5. If minimum is detected, i.e., ŜIR
(ν)

q (m) ≤ Υ (ν)
q (m):

Calculate residual crosstalk Ê{|Y (ν)
c,q (m)|2} according to Eq. 1.60

Compute postfilter (Eq. 1.55) for residual crosstalk and noise

6. If no minimum is detected, i.e., ŜIR
(ν)

q (m) > Υ (ν)
q (m):

Compute postfilter (Eq. 1.71) for noise only

1.3.3.3 Experimental Results for Reverberant and Noisy

Environments

In the evaluation of the postfiltering algorithm summarized in Tab. 1.2 the
same two noisy scenarios have been considered as in Sec. 1.3.2 and their
description is briefly summarized. The first one is a car environment where
a pair of omnidirectional microphones with a spacing of 20 cm was mounted
at the interior mirror and recorded a male and female speaker at the driver
and co-driver positions, respectively using a sampling rate of fs = 16kHz.
The long-term SNR was adjusted to 0 dB which is a realistic value commonly
encountered inside car compartments. The second scenario corresponds to the
cocktail party problem which is usually described by the task of listening to
one desired point source in the presence of speech babble noise consisting
of the utterances of many other speakers. Speech babble is well described
by a diffuse sound field, however, there may also be several other distinct
noise point sources present. In our experiments we simulated such a cocktail
party scenario inside a living room environment where speech babble noise
was generated by a circular loudspeaker array with a diameter of 3m. The
two omnidirectional microphones with a spacing of 20 cm were placed in the
center of the loudspeaker array from which 16 speech signals were reproduced
to simulate the speech babble noise. Additionally, two distinct point sources
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at a distance of 1 m and at the angles of 0◦ and −80◦ were used to simulate
the desired and one interfering point source, respectively. The long-term input
SNR at the microphones has been adjusted for the living room scenario to
10 dB. This is realistic, as due to the speech-like spectrum of the background
noise the microphone signals which exhibit higher SNR values are perceptually
already as annoying as those with significantly lower SNR values for lowpass
car noise.

The second-order statistics BSS algorithm with the narrowband normal-
ization described in [7] is applied to the two noisy scenarios. To evaluate
the performance two measures have been used: The segmental SIR which is
defined as the ratio of the signal power of the desired signal to the signal
power of the residual crosstalk stemming from point source interferers and
the segmental SNR defined as the ratio of the signal power of the desired
signal to the signal power of the possibly diffuse background noise. In both
cases, the SIR and SNR improvement due to the application of the postfilter
is measured and averaged over both channels. The segmental SIR improve-
ment ∆SIRseg(m) is plotted as a function of the block index m to illustrate
the convergence effect of the BSS system. The channel-averaged segmental
SNR improvement ∆SNRseg is given as the average over all blocks. To assess
the desired signal distortion, the unweighted log-spectral distance (SD) which
describes the Euclidean distance between logarithmic short-time magnitude
spectra has been measured between the desired signal at the input and the
output of the postfilter and is given as

SDsr,q =
1

KS

KS∑

m=1

√√√√√√
1

R

R−1∑

ν=0


20 lg

∣∣∣Z(ν)
s,q (m)

∣∣∣
∣∣∣Y (ν)

s,q (m)
∣∣∣




2

. (1.72)

The DFT length R for computing SDsr,q is usually set to be small so that
speech can be assumed stationary. In our experiments we used R = 256 and
set KS large enough to cover the whole signal length. To reduce artifacts such
as, e.g., musical noise, the postfilter (Eq. 1.55) is usually calculated using an

adaptive oversubtraction factor ξ
(ν)
q as proposed in [12]. Moreover, negative

gains of the postfilters are set to zero. Hence in the experiments the postfilter

G(ν)
q (m)

=

max

{(
Ê
{∣∣Y (ν)

q (m)
∣∣2
}
− ξ

(ν)
q

(
Ê
{∣∣Y (ν)

n,q(m)
∣∣2
}

+ Ê
{∣∣Y (ν)

c,q (m)
∣∣2
}))

, 0

}

Ê
{∣∣Y (ν)

q (m)
∣∣2
}

(1.73)

was used. For the post-processing algorithm, γ = 0.9 and a DFT length of
Rpost = 2048 was chosen. The block length Npost was equal to the DFT length
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and an overlap factor α = 4 was used. The parameters of the adaptation
control are given as ∆Υ = 0.3 and DΥ = 94 corresponding to a period of
1.5 sec over which the minimum is tracked.

In Fig. 1.17 the results for the separation of the two speech point sources
can be seen. For both scenarios the separation performance of the combined
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(a) Car environment with traffic noise (SNR = 0dB)
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(b) Living room with speech babble (SNR = 10 dB)
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Fig. 1.17. Segmental SIR improvement ∆SIRseg(m) depicted over time for two en-
vironments containing two speech point-source and additional background noise:
(a) car compartment with background noise consisting of car and traffic noise
(SNR = 0dB) and (b) living room scenario with speech babble background noise
from 16 speakers (SNR = 10 dB). Speech separation results are shown for BSS
outputs and postfilter outputs.

system of BSS and single-channel postfilter (solid) outperforms the BSS per-
formance (dashed). In contrast to the BSS system which possesses an inherent
adaptation control implied by the normalization term in the update equation,
the postfilter relies on a-priori information provided by the adaptation control.
Hence, it is possible to accurately estimate the residual crosstalk at the BSS
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Table 1.3. Segmental SNR and unweighted log-spectral distortion for both scenarios

Scenario ∆SNRseg ∆SNRseg SD
at BSS at postfilter at postfilter
outputs outputs outputs

Car 3.0 dB 4.9 dB 1.0 dB

Cocktail party 0.2 dB 1.3 dB 1.6 dB

outputs for further improvement of the speech separation performance. The
reduced absolute level of the SIR improvement in the cocktail party scenario,
i.e., in the reverberant living room (Fig. 1.17(b)) is due to longer reverberation
and especially due to the background babble noise which exhibits a speech-like
long-term spectrum.

Moreover, in both scenarios also the background noise could be partially
suppressed. In Tab. 1.3 the segmental SNR averaged over all output channels
of the BSS system and of the postfilter is shown. It can be observed that the
postfilter achieves an additional SNR gain. As the car noise is more stationary
compared to the speech babble noise, the minimum statistics algorithm can
better estimate the noise PSD and thus a higher SNR improvement can be
achieved by the postfilter.

To assess the speech quality, the SD (Eq. 1.72) between the desired signal
at the input and output of the post-filter was calculated and averaged over
both output channels. The small values in Tab. 1.3 indicate that the quality of
the desired signal is preserved. This was also confirmed by informal listening
tests where no musical noise was observed.

1.4 Conclusions

In this chapter we have presented a review of the TRINICON framework
which allows to derive BSS algorithms simultaneously exploiting the signal
properties nongaussianity, nonwhiteness, and nonstationarity. After the intro-
duction of a generic natural gradient algorithm several special cases leading
to efficient implementations have been discussed. It was also outlined how
broadband BSS algorithms can be obtained from the TRINICON framework
without introducing ambiguities appearing in narrowband algorithms. This
has been supported by experimental results in a reverberant room. Subse-
quently, the application of BSS in noisy environments has been discussed.
First, it has been shown that realistic background noise can often be de-
scribed by the diffuse sound field. As such sound fields have to be modeled by
an infinite or at least large number of point sources, the BSS approach only
achieves limited noise reduction. Therefore, the extension of the TRINICON
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framework with pre- and post-processing approaches has been examined. It
was shown that a single-channel postfilter applied to each BSS output signal
can yield better results than bias-removal techniques used for pre-processing.
The postfilter allowed to simultaneously address the cancellation of the resid-
ual crosstalk from point source interferers and the suppression of background
noise. This was achieved by developing a model for the residual crosstalk and
by using a-priori information provided by an adaptation control. The exper-
iments in a car environment and a cocktail-party scenario with background
babble noise showed good results for the complemented BSS algorithm. Thus,
it can be concluded that by applying the presented post-processing approach,
the versatility of the TRINICON BSS algorithms can be extended, resulting
in a simultaneous separation of point sources and attenuation of background
noise.

1.5 Anmerkungen der Editoren:

• Stimmen in Gl. 1.11 die Indices i von β(i, m) und p̂(...(iL+j)) zusammen?
Muesste β(i, m) nicht hinter die zweite Summe wandern und als β(iL +
j, m) geschrieben werden?
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