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Abstract

Wave-Domain Adaptive Filtering (WDAF) was intro-
duced as an efficient spatio-temporal generalization
of the popular Frequency-Domain Adaptive Filtering
(FDAF). Through the incorporation of the mathe-
matical foundations on wavefields, WDAF is suitable
even for massive MIMO systems with highly cross-
correlated broadband input signals. In this paper, we
present a new rigorous derivation of WDAF leading
to a whole class of powerful MIMO adaptation algo-
rithms within a compact matrix framework. We show
efficient approximations which provide both new effi-
cient WDAF realizations and interesting links to well-
known algorithms (including the various FDAF algo-
rithms). Due to the rigorous approach, we obtain im-
portant practical design rules.

1 Introduction
Multichannel techniques for signal reproduction

and acquisition offer spatial selectivity and diversity as
additional degrees of freedom over single-channel sys-
tems. An important example of broadband signals in
this context are speech and audio signals at the acous-
tic human-machine interface. Multichannel sound re-
production enhances sound realism in virtual reality
and multimedia communication systems, such as tele-
conferencing, and aims to create a three-dimensional
illusion of sound sources positioned in a virtual acous-
tical environment. However, advanced loudspeaker-
based approaches, like the 3/2-Surround format still
rely on a restrained listening area (‘sweet spot’). A
volume solution for a large listening space is offered by
the Wave Field Synthesis (WFS) method [1] which is
based on a mathematical formulation of Huygens Prin-
ciple, the Kirchhoff-Helmholtz integrals, known from
wave physics. Thus, in WFS, arrays of a large num-
ber P of individually driven loudspeakers generate a
prespecified sound field. In this case, P may lie be-
tween 20 and several hundred. On the recording side
of advanced acoustic human-machine interfaces, the
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Figure 1: Multichannel acoustic echo cancellation as
a prominent example for MIMO system identification.

use of microphone arrays [2], where the number Q of
microphones may reach up to 1000 [3], is an effective
approach to separate desired and undesired sources in
the listening environment, and to cope with reverber-
ation in the recorded signal.

A major challenge to fully exploit the potential
of array processing in practical applications lies in
the development of adaptive MIMO (multiple-input
and multiple-output) systems that are suitable for the
large number of channels in this environment. The
point-to-point optimization in adaptive MIMO sys-
tems often suffers from convergence problems and high
computational complexity so that some applications
are beyond reach with current techniques.

An important example that we consider here is
acoustic echo cancellation (AEC) [4], which is a key
component in modern systems for hands-free full-
duplex communication. Figure 1 shows the AEC setup
for the MIMO case with P loudspeakers and Q micro-
phones in the receiving room. In this case, P · Q
acoustic echo paths with impulse responses hpq(n),
p = 1, . . . , P , q = 1, . . . , Q have to be continuously
identified by an adaptive MIMO FIR filter with coef-
ficients ĥpq,ℓ, ℓ = 0, . . . , L − 1, where L denotes the
filter length. The resulting echo replica are then sub-
tracted from the received microphone signals yq(n) to



obtain the outgoing signals

eq(n) = yq(n) −

P∑

p=1

L−1∑

ℓ=0

xp(n − ℓ)ĥpq,ℓ (1)

at time instant n. Unfortunately, implementing such
a system for large loudspeaker arrays as mentioned
above, seems to be out of reach with most of the cur-
rent multichannel adaptation algorithms [5, 6]. Sim-
ilar challenging adaptive MIMO filtering problems
arise in other building blocks of the acoustic interface,
e.g., for acoustic room compensation (ARC) on the re-
production side, where a system of suitable prefilters
takes into account the actual room acoustics prior to
sound reproduction by WFS, and also for adaptive in-
terference cancellation on the recording side [2].

Common problems in such massive MIMO adaptive
filtering applications are:

• high computational complexity (P and Q may be
on the order of hundreds, and the filter length
in each sub-channel is typically on the order of
thousand)

• low adaptation performance due to the severely
ill-conditioned correlation matrix in the underly-
ing normal equation to be solved for coefficient
optimization

The ill-conditioning results from the fact that the fil-
ter input signals are not only auto-correlated but are
typically also highly cross-correlated [6].

For ill-conditioned optimization problems in adap-
tive signal processing, such as multichannel AEC, in
many ways the recursive least-squares (RLS) algo-
rithm is known to be the optimum choice in terms
of convergence speed as it exhibits properties that are
independent of the eigenvalue spread [7]. The update
equation of the MIMO RLS algorithm reads

Ĥ(n) = Ĥ(n − 1) + R−1
xx(n)x(n)eT (n), (2)

where Ĥ(n) denotes the PL×Q MIMO coefficient ma-
trix, x(n) is the length-PL input signal vector, and
e(n) denotes a length-Q vector of the error signals
according to (1). The PL × PL correlation matrix
Rxx takes all auto-correlations within, and - most
importantly for multichannel processing - all cross-
correlations between the input channels into account
(see upper left corner of Fig. 2). However, the major
problems of RLS algorithms are the very high compu-
tational complexity (mainly due to the large matrix
inversion) and potential numerical instabilities which
often limit the actual performance in practice.

An efficient and popular alternative to time-domain
algorithms are Frequency-Domain Adaptive Filtering

(FDAF) algorithms [8]. In FDAF, the adaptive fil-
ters are updated in a block-by-block fashion, using
the fast Fourier transform (FFT) as a powerful vehi-
cle. The FDAF approach has been extended to the
multichannel case (MC FDAF) by a mathematically
rigorous derivation based on a weighted least-squares
criterion, e.g., [9]. It has been shown that there is a
generic broadband frequency-domain algorithm which
is equivalent to the RLS algorithm. As a result of this
approach, the arithmetic complexity of multichannel
algorithms can be significantly reduced compared to
time-domain adaptive algorithms while the desirable
RLS-like properties and the basic structure of (2) are
maintained by an inherent block-diagonalization of the
correlation matrix as shown in the second column of
Fig. 2. This allows to perform the matrix inversion in
(2) in a frequency-bin selective way using only small

and better conditioned P ×P matrices S
(ν)
xx in the bins

ν = 0, . . . , 2L− 1. Note that all cross-correlations are
still fully taken into account by this approach.

Unfortunately, with the dramatically increased
number of highly correlated loudspeaker channels in

WFS-based systems, even the matrices S
(ν)
xx become

large and ill-conditioned so that current algorithms
cannot be used. Therefore, the basic idea of Wave-

Domain Adaptive Filtering (WDAF) is to extend the
conventional concept of MC FDAF by an explicit con-
sideration of the spatial dimensions and by exploita-
tion of wave physics as already mentioned above. This
basic idea was introduced for multichannel AEC in [10]
and it was shown to be effective in conjunction with
actual WFS audio signals.

In the present paper we develop this concept further
and give a more rigorous derivation of WDAF using
a compact matrix framework similar as for the multi-
channel FDAF in [9]. From a physical point of view,
the nice properties of FDAF result from the orthog-
onality property of the DFT basis functions, i.e., the
complex exponentials which also separate the tempo-
ral dimension of the wave equation. WDAF is based
on a suitable spatio-temporal transform domain based
on orthogonal basis functions that allow not only a
decomposition among the temporal frequencies as in
MC FDAF, but also a (perfect or approximate) spa-
tial decomposition as illustrated by the third column
of Fig. 2. These basis functions must also fulfill the
wave equation. Moreover, since the wave field is sam-
pled only on a contour enclosing the listening area,
the transformations have to take into account the
so-called Kirchhoff-Helmholtz integrals so that these



transformations depend on the array geometries. In
this way, various possible transformations which ful-
fill the above conditions can be derived, e.g., based
on wave field decompositions in circular harmonics,
spherical harmonics etc. As an example, circular ar-
rays are known to perform well in wave field anal-
ysis [11] and lead to an efficient WDAF solution in
cylindrical coordinates, e.g., [10, 12]. In this paper,
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Figure 2: Illustration of the WDAF concept and its
relation to conventional algorithms.

we focus on the general WDAF adaptation procedure
for a given set of spatial transformations. Based on
a generic formulation of suitable transformations, we
derive in this paper a whole class of efficient adaptive
MIMO filtering algorithms in the wave domain based
on an exact broadband recursive least-squares crite-
rion. Then, from the corresponding normal equation,
we rigorously derive a generic WDAF algorithm that
we formulate in different ways. As we will see, selec-
tive approximations within the generic algorithm pro-
vide both a basis for the development of new efficient
algorithms and interesting links to some well-known
algorithms, including all the major single-channel and
multichannel FDAF variants [9], i.e., with both un-
constrained (e.g., [14]) and constrained (e.g., [13]) co-
efficient updates, and also with partitioned coefficient
updates, also known as the multidelay filter (MDF)
[15, 16, 17, 18]. Due to the rigorous approach shown in
this paper, we obtain various important design rules
for practical system implementation and for perfor-
mance optimization.

The organization of this paper is as follows. In
Sect. 2 we show how to develop an exact temporal
DFT-based transformation of the system in Fig. 1.
These developments and associated matrix definitions
serve both as the basis for the brief review of the
generic MC FDAF in Sect. 3, and as the first transfor-
mation stage for the WDAF. In Sect. 4 we extend the
results of Sect. 2 by the spatial transformation stage
to obtain a compact matrix formulation. Finally, the
derivation and discussion of the generic WDAF adap-

tation algorithm is presented in Sect. 5.

2 Block Formulation and Temporal
Transformation

In order to subsequently present the generic FDAF
and WDAF algorithms and to introduce some defi-
nitions, we show in this section an exact broadband
formulation of the MIMO error equation (1) using the
temporal DFT. Thereby we follow the notation in [9].

By partitioning the impulse response ĥpq of length
L into K segments of integer length N = L/K as in
[15], (1) can be written as

eq(n) = yq(n)

−

P∑

p=1

K−1∑

k=0

N−1∑

ℓ=0

xp(n − Nk − ℓ)ĥpq,Nk+ℓ

= yq(n) −
P∑

p=1

K−1∑

k=0

xT
p,k(n)ĥpq,k, (3)

where

xp,k(n) = [xp(n − Nk), xp(n − Nk − 1), . . .

. . . , xp(n − Nk − N + 1)]T ,

ĥpq,k = [ĥpq,Nk, ĥp,Nk+1, . . . , ĥpq,Nk+N−1]
T .

Superscript T denotes transposition of a vector or a
matrix.

We now define the block error signal of length N .
Based on (3) we write

eq(m) = yq(m) −

P∑

p=1

K−1∑

k=0

UT
p,k(m)ĥpq,k, (4)

where m is the block time index, and

eq(m) = [eq(mN), . . . , eq(mN + N − 1)]T ,

yq(m) = [yq(mN), . . . , yq(mN + N − 1)]T ,

Up,k(m) = [xp,k(mN), . . . ,xp,k(mN + N − 1)].

To derive the frequency-domain algorithm, the block
error signal (4) is transformed by a DFT matrix
to its frequency-domain counterpart. The matrices
Up,k(m), k = 0, . . . , K − 1, p = 1, . . . , P are Toeplitz
matrices of size N × N . Since a Toeplitz matrix
Up,k(m) can be transformed, by doubling its size,
to a circulant matrix of size 2N × 2N , and a circu-
lant matrix can be diagonalized using the 2N × 2N -
DFT matrix F2N with elements e−j2πνn/(2N) (ν, n =
0, . . . , 2N − 1), we have

UT
p,k(m) =

[0N×N , IN×N ]
︸ ︷︷ ︸

=:W01

N×2N

F−1
2NXp,k(m)F2N [IN×N ,0N×N ]T

︸ ︷︷ ︸

=:W10

2N×N



with the diagonal matrices

Xp,k(m) = diag{F2N [xp(mN − Nk − N), . . .

. . . , xp(mN − Nk + N − 1)]T }. (5)

Underlined symbols denote frequency-domain quanti-
ties. The superscript indices ‘01’ and ‘10’ of the win-
dow matrices W01

N×2N and W10
2N×N describe the rel-

ative positions of the N × N identity matrix and the
N × N zero matrix within the windows. This finally
leads to the following MIMO block error signal

E(m) = Y(m) − W01
N×2NF−1

2NX(m)G10
2LP×LP Ĥ, (6)

where

E(m) = [e1(m), . . . , eQ(m)],

Y(m) = [y1(m), . . . ,yQ(m)],

X(m) = [X1(m), . . . ,XP (m)],

Xp(m) = [Xp,0(m), . . . ,Xp,K−1(m)],

G10
2LP×LP = Bdiag {G10

2N×N , . . . ,G10
2N×N}, (7)

G10
2N×N = F2NW10

2N×NF−1
N ,

Ĥ =






ĥ11 · · · ĥ1Q
...

. . .
...

ĥP1 · · · ĥPQ




 ,

ĥpq =
[

ĥ
T

pq,0, . . . , ĥ
T

pq,K−1

]T

,

ĥpq,k = FN ĥpq,k.

The Bdiag operator in (7) forms a block-diagonal ma-
trix with the listed submatrices on its diagonal.

3 Review of the Generic MC FDAF
Algorithm

The generic FDAF algorithm in its MIMO formu-
lation can be derived from (6) by minimizing the fol-

lowing optimization criterion [9] w.r.t. Ĥ:

J(m) = (1 − λ)

m∑

i=0

λm−itr[EH(i)E(i)], (8)

where λ (0 < λ < 1) is an exponential forgetting fac-
tor. The so-called normal equation is obtained by set-
ting the gradient equal to zero,

∇J(m, Ĥ) = 2
∂

∂Ĥ
∗
J(m, Ĥ) = 0. (9)

The generic FDAF provides the exact recursive solu-

tion of this normal equation. As shown in [9], it can
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Figure 3: Principle of the MC FDAF (N = L, Q = 1).

be summarized as

S(m) = λS(m − 1)

+(1 − λ)XH(m)G1X(m), (10)

K(m) = (1 − λ)S−1(m)XH(m), (11)

E′(m) = Y′(m) − G2X(m)Ĥ
′

(m − 1), (12)

Ĥ
′

(m) = Ĥ
′

(m − 1) + G3K(m)E′(m)

(13)

with the constraint matrices

G1 = G2 = G01
2N×2N

= F2N Bdiag{0N×N , IN×N}F−1
2N , (14)

G3 = G10
2LP×2LP

= Bdiag {G10
2N×2N , . . . ,G10

2N×2N}, (15)

G10
2N×2N = F2N Bdiag{IN×N ,0N×N}F−1

2N , (16)

and the zero-padded DFT-domain quantities

E′(m) = F2N

[
0Q×N ,ET (m)

]T
, (17)

Y′(m) = F2N

[
0Q×N ,YT (m)

]T
, (18)

Ĥ
′

(m) = G10
2LP×LP Ĥ(m). (19)

Due to the formal similarity of Eqs. (10)-(13) to the
RLS algorithm in the time domain (2), we call the
matrix K(m) the frequency-domain Kalman gain [7].



3.1 Approximation and Special Cases

The algorithm (10)-(13) is strictly equivalent to the
RLS algorithm in the time domain for a block length
N = 1. Unfortunately, the matrix S(m) in (10) is not
sparse, so the above generic algorithm still has a high
computational complexity due to the matrix inversion
in (11). In [9] it has been shown that G1 = I/2 pro-
vides a very good approximation for sufficiently large
N , and the resulting algorithms still converge to the
Wiener solution.

This approximation leads to a blockwise diagonal
structure of matrix S(m) in (10) with diagonal sub-
matrices so that the matrix inversion can be performed
in a bin-wise fashion. For K > 1 partitions the re-
sulting algorithm is called the extended multidelay
filter (EMDF) [16]. The classical multidelay filter
(MDF), originally introduced in [15] for the single-
channel case, is obtained by further approximating
S(m) by dropping the off-diagonal components, i.e.,
the inter-partition correlations. Moreover, the so-
called generalized multidelay filter (GMDF) follows
by an additional overlap of the input data blocks so
that the adaptation can be performed more frequently
[17, 18].

Approximating G3 in (13) as the unit matrix leads
to the so-called unconstrained FDAF, introduced for
the single-channel case in [14], in contrast to the con-
strained single-channel version in [13].

Some efficient multichannel implementations were
presented in [9]. Note that the illustration in the sec-
ond column of Fig. 2 shows the case N = L, i.e., K = 1
for P = 2.

4 Spatial Transformation
For the rigorous derivation of the WDAF we start

again with the MIMO formulation of the error equa-
tion (6),

E(m) = Y(m) − W01
N×2NF−1

2NX(m)Ĥ
′

. (20)

To additionally include a spatial transform, we now
reorder the elements of the blockwise diagonal matrix
X(m), so that we obtain (for N = L or for each par-
tition, respectively) a block-diagonal matrix X(m), as
illustrated in Fig. 4. In other words, we combine the
MIMO relations for each DFT bin into sub-matrices
using a suitable permutation matrix A, i.e.,

X(m) = X(m)AT . (21)

Plugging this relation into (20), we obtain

E(m) = Y(m) − W01
N×2NF−1

2NX(m)Ĥ
′

, (22)

X(m)

Ĥ
′

⇒

X(m)

AT Ĥ
′

= Ĥ
′

Figure 4: Illustration (N = L, P = Q = 3) of the
reordering of matrix elements using the permutation
matrix A according to (21).

where we defined

Ĥ
′

:= AT Ĥ
′

= AT G10
2LP×LP Ĥ. (23)

The next step is to introduce the actual spatial
transformation using the (block-diagonal) unitary ma-

trices C
′

1 and C2, so that

Ĥ
′

= C
′

1Ĥ
′

C
H

2 . (24)

This generic transformation is motivated by the sin-
gular value decomposition in the eigenspace adap-

tive filtering (EAF) approach [19] in which ideally
the (yet unknown) MIMO system is diagonalized. In
this paper, double underlined symbols denote spatio-
temporally transformed quantities, or wave-domain

quantities. Incorporating this transformation into
(22) immediately leads to

E(m) = Y(m) − W01
N×2NF−1

2NX(m)Ĥ
′

C
H

2 , (25)

where we defined

X(m) := X(m)C
′

1 = X(m)AC
′

1. (26)

Note that (25) is the wave-domain formulation of
the frequency-domain expression (20). Moreover, al-
though the transformation approach in (24) was orig-
inally system-based, it is interesting to see from (26)

that C
′

1 in fact acts as a spatial transformation of the

input signals. Similarly, since C
H

2 C2 = I, we can show
via multiplication of C2 on both sides of (25), that C2

acts as a spatial transformation of the output signals
Y(m) and E(m).

Obviously, depending on the choice of these trans-
formations, the generic algorithm to be presented in
the following section includes various important spe-

cial cases: For C
′

1 = I, C2 = I we obtain the MC



FDAF (and all its variants). The ideal EAF follows

if C
′

1 and C2 are composed of the left and right sin-
gular vectors of the MIMO system. For the practi-
cal WDAF, the transformation matrices represent the
wave transform as outlined, e.g., in [10].

Finally, before we present the generic WDAF algo-

rithm, Ĥ
′

in (25) has to be expressed by Ĥ, i.e., with-

out zero-padding (matrix G10
2LP×LP in (23)) for the

coefficient optimization. Similar to [9], we then ob-
tain both the constrained and unconstrained WDAF
as special cases. From (23), (24), and the unitarity
of the transform matrices, we immediately obtain for
the zero-padded versions of the system matrices the
relation

Ĥ
′

= C
′H

1 AT G10
2LP×LP ĤC2. (27)

On the other hand, analogously to (23) and (24) we
write for the versions without zero padding (notation
without the prime)

Ĥ = C1ĤC
H

2 = BT Ĥ, (28)

where B again denotes a suitable permutation matrix.
Introducing (27) and (28) into (25) immediately leads
to the wave-domain counterpart of (6):

E(m) = Y(m) − W01
N×2N

·F−1
2NX(m)C

′H

1 AT G10
2LP×LPBC1

︸ ︷︷ ︸

=:G̃10

2LP×LP

ĤC
H

2 . (29)

5 Generic WDAF Algorithm
5.1 Normal Equation

Having derived the broadband error signal (29),
we now minimize the optimization criterion (8) with
respect to the MIMO filter coefficients in the wave-

domain. Note that due to the unitarity of C
′

1 and
C2, the time-frequency equivalence is assured by Par-
seval’s theorem,

tr[EHE] = tr[EHE] = tr[EHE], (30)

where

E := EC2 := FNEC2. (31)

Calculation of the derivative (e.g., [20]) in

∇J(m, Ĥ) = 2
∂

∂Ĥ
∗
J(m, Ĥ) = 0 (32)

leads to the normal equation in the wave domain

Txx(m)Ĥ(m) = Txy(m), (33)

where

Txx(m) = λTxx(m − 1) + (1 − λ)
(

G̃10
2LP×LP

)H

·

·XH(m)G01
2N×2NX(m)G̃10

2LP×LP , (34)

Txy(m) = λTxy(m − 1) + (1 − λ)
(

G̃10
2LP×LP

)H

·

·XH(m)
(
G01

N×2N

)H
Y(m) (35)

and

G01
2N×2N =

(
G01

N×2N

)H
G01

N×2N , (36)

G01
N×2N = F2NW01

N×2NF−1
2N , (37)

Y = FNYC2. (38)

If the multichannel input signal is well-conditioned,
matrix Txx(m) is nonsingular. In this case, the nor-
mal equation has a unique solution which is the opti-
mum Wiener solution.

5.2 Adaptation Algorithm

The different formulations for filter adaptation dis-
cussed below, i.e., recursive updates of Ĥ(m), are all
derived directly from the normal equation (33) and
associated equations (34) and (35).

Here, we replace Txy(m) and Txy(m − 1) in the
recursive equation (35) by formulating (33) in terms
of block time indices m and m − 1, respectively. We
then eliminate Txx(m−1) from the resulting equation
using (34). Reintroducing the multichannel error sig-
nal (29), we obtain an exact recursive solution of (33)
by the following adaptation algorithm:

E(m) = Y(m) − G01
N×2NX(m)G̃10

2LP×LP Ĥ(m − 1)

(39)

Ĥ(m) = Ĥ(m − 1) + (1 − λ)T−1
xx (m)(G̃10

2LP×LP )H

·XH(m)(G01
N×2N )HE(m). (40)

Eqs. (34), (39), and (40) form the main equations of
the generic adaptive algorithm. In the same way as
shown in [9] for the FDAF, and summarized in Ap-
pendix A, these equations can be reformulated in a
practically more useful form involving only DFTs of
length 2N :

T(m) = λT(m − 1)

+(1 − λ)XH(m)G1X(m) (41)

K(m) = (1 − λ)T−1(m)XH(m) (42)

E′(m) = Y′(m) − G2X(m)Ĥ
′

(m − 1) (43)

Ĥ
′

(m) = Ĥ
′

(m − 1) + G3K(m)E′(m)

(44)
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with the constraint matrices

G1 = G2 = G01
2N×2N

G3 = G̃10
2LP×2LP ,

= C
H

1 AT G10
2LP×2LP AC1, (45)

and the zero-padded wave-domain quantities

E′(m) = F2N

[
0Q×N ,ET (m)

]T
C2, (46)

Y′(m) = F2N

[
0Q×N ,YT (m)

]T
C2. (47)

5.3 Discussion

Comparing the generic WDAF algorithm (41)-(44)
with the generic FDAF algoritm (10)-(13), we see that
the constraints G1 and G2 are the same in both cases.
This is a very useful result as it allows us to use the
same efficient approximation G1 = I/2 in both cases
(see Sect. 3.1). In contrast, the gradient constraint
G3 differs between FDAF and WDAF. In the WDAF
case it includes both spatial and temporal transfor-
mations, as illustrated in Fig. 5. Figure 5 also con-
firms that the WDAF adaptation mechanism simulta-
neously takes into account all loudspeaker channels
and all microphone channels by the transformation
matrix C2. This is in contrast to the FDAF and other
conventional adaptation algorithms.

Finally, we can explicitly relate the system-based
spatial transformation, as introduced by (24), with the
correlation-based spatial transformation illustrated in

the third column of Fig. 2: From (41) and (26) and
comparison with (10), we immediately obtain the re-
lation

T(m) = C
H

1 ATS(m)AC1. (48)

By a suitable choice of C1 this equation represents a
eigenvalue equation for S(m). It therefore provides
a direct link to the (correlation-based) multichannel
transform-domain adaptive filtering (MC TDAF) [21].
Note however, that this link between WDAF and MC
TDAF only refers to the transformation of the filter
input signals and the input correlation matrix.

6 Conclusions
In this paper, we presented a compact and versatile

matrix formulation for Wave-Domain Adaptive Filter-
ing. The WDAF concept has already proven to be
a very efficient spatio-temporal generalization of the
popular Frequency-Domain Adaptive Filtering. The
new formulation of WDAF leads to a whole class of
powerful MIMO adaptation algorithms, and it con-
tains various well-known algorithms as special cases.
The matrix framework also facilitates the derivation
of new improved MIMO algorithms and it gives some
important design rules for practical implementations.

A Practical Reformulation (41)-(44) of
the Generic WDAF Algorithm

Here, we summarize the steps leading from Eqs.
(34), (39), and (40) to the practically more useful form
(41)-(44). The advantages of this equivalent formula-
tion are that it involves exclusively DFTs of length
2N , and that the relation to several known frequency-
domain algorithms, such as the conventional MDF can
be established.

To begin with, we introduce the zero-padded co-

efficient matrix Ĥ
′

(m). Its relation to the original

length-L formulation Ĥ(m) can be expressed conve-
niently according to (29) as

Ĥ
′

(m) = G̃10
2LP×LP Ĥ(m). (49)

Consequently, the coefficient update (40) is premulti-
plied by G̃10

2LP×LP on both sides so that we obtain

Ĥ
′

(m) = Ĥ
′

(m − 1) + (1 − λ)

·G̃10
2LP×LPT−1

xx (m)(G̃10
2LP×LP )H

·XH(m)E′(m). (50)

This update equation can be simplified by introducing
the matrix T(m), defined in (41). The relation of
T(m) to Txx(m) from (34) is obviously given by

Txx(m) = (G̃10
2LP×LP )HT(m)G̃10

2LP×LP . (51)



Finally, in order to obtain the coefficient update (44)
with (42) from (50), we verify the following relation
between the inverses of the two matrices T and Txx:

G̃10
2LP×2LPT−1(m) = G̃10

2LP×LPT−1
xx (m)(G̃10

2LP×LP )H ,
(52)

The verification can be done by post-multiplying both
sides of the equation by T(m)G̃10

2LP×LP and noting

that G̃10
2LP×2LP G̃10

2LP×LP = G̃10
2LP×LP .
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