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Abstract
Multichannel acoustic echo cancellation (MCAEC) is a key tech-
nology whenever hands-free and full-duplex communicationin
modern systems with multichannel sound reproduction is desired.
Although the basic principle of echo cancellation has been well
known for several decades, the multichannel case poses somead-
ditional and fundamentally different challenges. Moreover, there
are even some notable differences between the two-channel case
and the general multichannel case which has been addressed bit
by bit only in recent years. The aim of this paper is twofold. On
the one hand, after a brief review of the problem of multichannel
acoustic echo cancellation, this paper gives an outline of how the
problem may be tackled based on some fundamental principles.
In this sense, the presentation in this paper brings together for the
first time ideas from system theory, information theory, psychoa-
coustics, and also wave physics. Based on this framework, and
as the other main contribution, we present in this paper somere-
cent advances in the field of MCAEC. Thereby, important issues
in the case of more than two channels are emphasized. Finally,
as an outlook, we touch on our ongoing work towards MCAEC
for massive multichannel sound reproduction, such as wave field
synthesis.

1 Introduction
For various applications, such as home entertainment, virtual re-
ality (e.g., games, simulations, training), or advanced teleconfer-
encing, multimedia terminals with an increased number of au-
dio channels for sound reproduction are highly desirable (e.g.,
stereo, 5.1 surround systems, or even beyond). In such applica-
tions, multichannel acoustic echo cancellation (MCAEC) isa key
technology whenever hands-free and full-duplex communication
is desired. Acoustic echo cancellation has already been discussed
extensively for the single-channel case and for stereo sound re-
production (e.g., [1, 2, 3, 4]). Only in recent years, AEC hasbeen
realized for more than two reproduction channels [4, 5].

Figure 1 describes a typical scenario for stereo or multi-
channel AEC. From a transmission room, a sound source (e.g.,
a speaker) is picked up byP microphones (P= 2 for stereo). The
microphone signals are transmitted to a receiving room and repro-
duced viaP loudspeakers. At the same time, a microphone in the
receiving room picks up speech from a local user. In order to pre-
vent the sound emitted from the loudspeakers coupling into the
outgoing microphone signal (which is sent back to the far-end lis-
tener or some multimedia terminal), AEC attempts to cancel out
any contributions of the incoming loudspeaker signalsxref,i(n)
from the microphone signal by subtracting filtered versionsof
the loudspeaker signals from the microphone signal. This gen-
erally requires that cancellation filters (assumed to be length-L
FIR filters) are dynamically adjusted by an adaptation algorithm
to achieve minimum error signale(n) and thus optimum cancel-
lation. This is the case when the adaptive cancellation filters

ĥi(n) =
[

ĥi,1(n), · · · , ĥi,L(n)
]T

, i = 1,2, . . . ,P (1)

accurately model the impulse responseshi from the emitting
speakers to the microphone.

It has been shown for stereo AEC that a so-callednon-
uniqueness problemexists [6]: If both loudspeaker signals are
strongly correlated, then the adaptive filters generally converge
to a solution that does not correctly model the transfer functions
between the speakers and the microphone, but merely optimizes
echo cancellation for the given particular loudspeaker signals. As
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Figure 1: Scenario for multi-channel AEC.

a consequence, a change in the characteristics of the loudspeaker
signals (e.g. due to a change of the geometric position of the
sound source in the transmission room) results in a breakdown of
the echo cancellation performance and requires a new adaptation
of the cancellation filters. In practice, from a statisticalpoint of
view, the high cross-correlations between the loudspeakersignals
lead to a highly ill-conditioned tap-input correlation matrix in the
normal equation to be solved for the minimization ofe(n) [7, 8],

Rxrefxref(n) = Ê
{

xref(n)xT
ref(n)

}

(2)

=







Rxref,1xref,1(n) · · · Rxref,1xref,P(n)
...

. . .
...

Rxref,Pxref,1(n) · · · Rxref,Pxref,P(n)






,

xref(n) =
[

xref,1(n), . . . ,xref,P(n)
]

,

xref,i(n) =
[

xref,i(n), . . . ,xref,i(n−L +1)
]T

.

To tackle this challenging problem of ill conditioning, vari-
ous techniques have been proposed mainly in the stereo context
so far. They can be distinguished into two different classesrepre-
senting separate system components, e.g., [2]:
(a) Application of a robust and fast converging adaptation algo-

rithm taking all cross-correlations into account.

(b) Preprocessing of the signals transmitted from the transmis-
sion room prior to their reproduction in the receiving room
in order topartially decorrelateall channels relative to each
other.

Due to the conflicting key requirements that on the one hand the
preprocessing must not introduce any objectionable artifacts into
the reproduced audio signals, and on the other hand for the con-
vergence enhancement, a systematic design for MCAEC based
on first principles of coefficient estimation and optimization to-
gether with a complete stochastic signal description, and human
audio perception is highly desirable. The structure of thispa-
per is motivated by a step-by-step incorporation of these first
principles. Within this framework, we place recent advances in
MCAEC with emphasis on more than two reproduction channels,
and deduce various new insights and practical results.

2 Elements from System Theory
In general, to optimally exploit the information containedin the
involved signals, the coefficient estimation process should take
into account all their fundamental stochastic properties:nongaus-
sianity, nonwhiteness, nonstationarity. A suitable broadband sig-
nal formulation for this purpose was developed within the so-
called TRINICON (’TRIple-N Independent Component Analy-
sis for CONvolutive mixtures’) framework for adaptive multiple-
input and multiple-output (MIMO) filtering [9, 10, 11]. For an
overview, see also [12] in the present conference.



In [13] the AEC problem was linked to the more general
MIMO system identification and signal separation problemas
addressed by TRINICON, and as illustrated by the two dashed
boxes in Fig. 1. The left and right dashed box correspond to
a sparse MIMO mixing system, and a corresponding MIMO
demixing system, respectively. The demixing system follows
rigorously from the ideal MIMO separation solution derivedin
[14, 15]. This formal connection facilitates the introduction of
the general formulation of stochastic signal models as multivari-
ate probability densities which capture the temporal structure by
multiple time lags and the nonstationarity by the respective time-
varying stochastic parameters, such as correlation matrices.

3 Elements from Information Theory
and Optimization

The TRINICON optimization criterion for the case of separation
(and system identification) problems is based on minimizingthe
information-theoretic quantity ofmutual informationbetween the
output channels of the demixing MIMO system using the multi-
varate densities mentioned above, i.e., in the special caseof AEC,
we separate the contributions of the loudspeaker signals from the
error signale(n) at the AEC output (Fig. 1 and [13]). In the spe-
cial case of Gaussian signals, this separation process corresponds
to a simultaneous block-diagonalization of the output correlation
matrix for multiple time instants since the local speechs(n) is as-
sumed to be uncorrelated from the loudspeaker signals [11, 13].

In this paper we generalize the information-theoretic ap-
proach in [13] tomultichannelAEC with typically highly corre-
lated loudspeaker signals. In other words, the output channels
xref,1(n), . . . ,xref,P(n) of the demixing system in Fig. 1 should
not be separated from each other. Figure 2 illustrates the output
correlation matrix with time-lags and the correspondingdesired
structure of it after convergence for the special case of Gaussian
signals andP = 2. It can be shown that the approach in [13] gen-
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Figure 2: Illustration of the AEC process for second-order statis-
tics andP = 2.

eralizes straightforwardly to the MCAEC case by just using this
modified matrix partitioning.

In [13] the update equations for TRINICON-based coeffi-
cient adaptation in AEC have been presented for the simple
case of gradient-based optimization. However, it is known that
gradient-descent algorithms (e.g., LMS/NLMS [7]) generally ex-
hibit very slow convergence for highly correlated input signals
such as in the multichannel case [7].

The so-called Newton-Raphson-type optimization procedure
is known as the canonical method for more challenging optimiza-
tion problems. A TRINICON-based Newton update can be de-
rived in a way analogous to [16]. The Newton algorithm con-
tains virtually all of the well-known adaptation schemes asspe-
cial cases, most notably the recursive least-squares (RLS)algo-
rithm. The important feature of Newton-type/RLS-type algo-
rithms is that they explicitly take all input correlations (2) into
account within their Hessian matrix [7, 16] which makes them
very attractive for the MCAEC application [2].

In addition to this desirable property of RLS-type algorithms,
the more general TRINICON-based approach inherently leadsto
a multivariateerrornonlinearityto take both the nongaussianity

and the nonwhiteness of the near-end signal into account [13].
This provides an inherent double-talk handling and a link tothe
powerful concept of robust statistics, e.g., [17, 18]. Moreover,
the block online adaptation and block averaging obtained in[13]
further speeds up the convergence (especially in MCAEC).

Note also that the general TRINICON-based approach also
leads to important insights in the case of AEC for multiple mi-
crophone channels in the receiving room, as explained further in
Sect. 5.

Finally, another aspect in the design of a real-time solution to
the MCAEC problem is its computationaly complexity. Unfortu-
nately, straightforward implementations of RLS-type algorithms
are computationally very expensive due to the required (implicit
or explicit) inversion of the Hessian matrix. A very efficient prac-
tical solution to this problem is to formulate the above-mentioned
broadband algorithm in a mathematically rigorous way in thefre-
quency domain, as shown, e.g., in [5, 11, 16], followed by the
introduction ofcarefully selectedapproximations. The most im-
portant features of this concept offrequency-domain adaptive fil-
tering (FDAF) is that in addition to the efficient use of the FFT
(gains for both, adaptation and filtering), all the sub-matrices of
the input correlation matrix (2) are approximately diagonalized
by the DFT. In this way, it is possible to efficiently take intoac-
count all cross-correlations [5]. This is possible for both, second-
order and higher-order statistics. A first MCAEC system for 5-
channel surround sound applications, based on the multichannel
FDAF algorithm has been presented in [4, 5]. This real-time im-
plementation also utilizes the concept of robust statistics [16].

4 Elements from Psychoacoustics
As mentioned in Sect. 1, among the key requirements for the tech-
niques to preprocess the signals transmitted from the transmission
room prior to their reproduction in the receiving room is thesub-
jective sound quality. While several of the known preprocessing
techniques provide enough decorrelation to achieve properAEC
convergence in the stereo case, considerations of sound quality
have frequently not been addressed adequately. In this section
we first give a brief overview of the known two-channel prepro-
cessing approaches. We then describe a recently introducednovel
approach [19], based on perceptual considerations. It easily gen-
eralizes to the multi-channel case and has been demonstrated to
be effective in surround sound echo cancellation.

4.1 Known two-channel preprocessing ap-
proaches

A first simple preprocessing method for stereo AEC was pro-
posed by Benesty et al. [8, 20] and achieves signal decorrela-
tion by adding non-linear distortions to the signals. Whilethis
approach features extremely low complexity, the introduced dis-
tortion products can become quite audible and objectionable, es-
pecially for high-quality applications using music signals. More-
over, the generalization of this approach to an arbitrary number
of channels is not straightforward.

A second well-known approach consists of adding uncorre-
lated noise to the signals. In [21], this is achieved by perceptual
audio coding / decoding of the signal which introduces uncorre-
lated quantization distortion that is masked due to the noise shap-
ing according to the coder’s psychoacoustic model. The use of
an explicit psychoacoustic model plus analysis / synthesisfilter-
banks is able to prevent audible distortions for arbitrary types of
audio signals and may be easily generalized to more than two
channels. However, the associated implementation complexity
and the introduced delay render this approach unattractivefor
most applications.

Other approaches employ switched / time-varying time-de-
lays [3] or variable all-pass filtering [22] to produce a time-
varying phase shift / signal delay between the two channels of
a stereo AEC and thus “decorrelate” both signals. Specifically,
[3] describes a preprocessing system in which the output signal
switches between the original signal and a time-delayed / filtered
version of it. As a disadvantage, this switching process mayin-
troduce unintended artifacts into the audio signal. [22] describes



a system in which an allpass preprocessor is randomly modulat-
ing its allpass filter variable. In [23], it was proposed to apply this
allpass preprocessor only to the low frequency range up to 1 kHz
due to convergence requirements.

4.2 Psychoacoustically motivated method
suitable for the multichannel case

In order to obtain a preprocessing method offering both good
decorrelation properties for the enhancement of AEC conver-
genceand minimal alteration of the perceived stereo image, the
method proposed in [19] is based on several considerations.From
the previously discussed approaches time-varying modulation of
the phase of the audio signal, as proposed in [3, 22], is an effec-
tive method which is generally unobtrusive in its perceptual ef-
fects on audio signals as compared to other methods while avoid-
ing computationally expensive masking models. Nonetheless, it
is difficult to achieve maximum decorrelation while guaranteeing
that introducing a time / phase difference between left and right
channels does not result in an alteration of the perceived stereo
image. Several aspects must be accounted for:
• Interaural phase / time difference is a relevant perceptualpa-

rameter for subjective perception of a sound stage [24] and
has been used extensively in synthesis of stereo images (e.g.
[25]). Consequently, a change in the perceived stereo image
can only be avoided if the introduced time / phase difference
stays below the threshold of perception, as it applies to audio
signals that are reproduced via loudspeakers.

• Optimal AEC convergence enhancement can be achieved if
the preprocessing introduces time / phase differences justat
the threshold of perception, i.e., applies the full amount of
tolerable change.

• As is known from psychoacoustics, the human sensitivity to
phase differences is high at low frequencies, and gradually
reduces for increasing frequencies, until it fully vanishes for
frequencies above ca. 4 kHz.

• Neither a simple time delay modulation nor a low-order
time-varying allpass filtering offer the flexibility to tailor the
amount of time / phase shifting as a function of frequency,
such that the full potential of perceptually tolerable change is
exploited.

Hence, in contrast to the earlier phase modulation approaches, the
recently proposed novel method in [19] is designed to allow aper-
ceptually motivated frequency-selective choice of phase modu-
lation parameters (modulation frequency, modulation amplitude,
and modulation waveform) by employing analysis / synthesisfil-
terbanks. The input audio signal is decomposed into subbandsig-
nals by means of an analysis filterbank. Then, the subband phases
are modified based on a set of frequency-dependent modulating
signals. According to the above considerations, subbands belong-
ing to the low frequency part of an audio signal should be left
largely untouched, while subbands corresponding to frequencies
above 4 kHz may be modulated heavily. As detailed in [19], the
frequency-selective phase modulation amplitude was optimized
by a listening procedure. Finally, the modified spectral coeffi-
cients are converted back into a time-domain representation by a
synthesis filterbank. To allow easy access to the signal’s phase,
a complex-valued filterbank [26] is used, and a phase modifica-
tion is implemented by a complex multiplication of the subband
coefficient with ejϕ(t,ν) whereϕ(t,ν) denotes the intended time
varying phase shift in subbandν. It is preferable to choose a
smooth modulating functionϕ(t,ν), such as a sine wave at a rel-
atively low frequency. Moreover, to account for the symmetry
of typical multi-channel speaker setups, such as 5.1 or 7.1,the
modulation of channel pairs is carried out in a complex conjugate
fashion. The modulation frequencies for pairs are chosen such
that they provide “orthogonal” modulation activity, as detailed in
[19].

Figure 3 shows a summary of the results of a standardized
subjective listening test carried out with 10 experienced listen-
ers in a typical surround sound listening setup. The sound qual-
ity was quantified on a scale from 0 to 100 for 5 critical mu-
sic excerpts and one speech excerpt (see [19] for further details).

The different preprocessing types are the original reference and a
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Figure 3: Results of the MUSHRA listening test (average and
95% confidence intervals).

3.5 kHz band-limited version thereof (both included as required
by the MUSHRA (‘MUlti Stimulus test with Hidden Reference
and Anchor’) listening test), individual channel mp3 en/decoding
at 48 kbit/s (‘mp3 48’), the novel perceptual phase modulation
method (‘phase’), a combination of mp3 encoding/decoding and
phase modulation (‘mp3 48 phase’) and the conventional non-
linear processing (‘NL’ after [8, 20]). It is visible from the graph
that the phase modulation method emerges as the clear winnerin
terms of sound quality. Note that the latter four methods were
tuned for comparable coefficient convergence speeds.

5 MIMO Processing and Elements
from Wave Physics

5.1 MIMO case for multiple microphones
So far in this paper, we have focused on the case of multiple re-
production channels but only one microphone in the receiving
room. The more general case of a full MIMO loudspeaker-room-
microphone system appears when combining MCAEC with a mi-
crophone array, e.g., [5]. Traditionally, in this case several par-
allel multiple-input and single-output (MISO) systems areinde-
pendently applied, which has been shown to be optimal in terms
of least-squares-based coefficient estimation.

As explained in Sect. 3, TRINICON-based AEC is generally
able to exploit the nonwhiteness of the signals in the receiving
room (upper left sub-matrix in Fig. 2). By further generalizing the
TRINICON-based AEC to the case of MIMO loudspeaker-room-
microphone systems it is also able to exploit thespatialnonwhite-
ness in the receiving room by simultaneously taking into account
all microphone signals for the adaptation process. In otherwords,
the performance may be improved with multiple microphones.

5.2 Massive multichannel systems and wave
physics

Current loudspeaker setups, such as the 5.1 format, still rely on
a restrained listening area (‘sweet spot’). A high-qualityvol-
ume solution for a large listening space is offered by the wave
field synthesis (WFS) method which is based on wave physics
[27]. The so-calledKirchhoff-Helmholtz integralswhich can be
derived from the acoustic wave equation state that at any point
within a source-free listening area, the sound pressure field can be
calculated if both the sound pressure and its gradient are known
on thecontourenclosing this area. Thus, in WFS, closely spaced
arrays of a large numberP of individually driven loudspeakers
generate a prespecified sound field.P may lie between 20 and
several hundred. An analogous approach is possible for wave
field analysis (WFA) using microphone arrays.

Building a full-duplex system with this massive multichan-
nel setup for unrestricted audio content might be considered
as the supreme discipline of MCAEC research since in this
case even theP×P frequency bin-wise correlation matrices of
the loudspeaker driving signals are generally still large and ill-
conditioned after the approximate blockwise diagonalization of



(2) within the frequency-domain adaptive filtering (FDAF) coef-
ficient update (cf. Sect. 3).

The basic idea ofwave-domain adaptive filtering (WDAF),
e.g., [28, 29], is to replace the point-to-point MIMO system
model by a more detailed spatial consideration exploiting wave-
physics foundations as in WFS/WFA. In particular, WDAF ex-
tends the conventional FDAF approach by a suitablespatio-
temporaltransform domain for efficiency. Figure 4 illustrates this
two-step transformation approach from the RLS via FDAF to-
wards WDAF in terms of the loudspeaker correlation matrix and
its approximate temporal and spatio-temporal diagonalizations.
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Figure 4: Illustration of the WDAF concept and its relation to
conventional algorithms.

Requirements for the spatio-temporal basis functions are that
they should be orthogonal and must fulfill the acoustic wave
equation (e.g., circular harmonics). Moreover, since the trans-
ducers are only placed on the contour enclosing the listening area,
corresponding transformations taking into account the Kirchhoff-
Helmholtz Integrals are necessary. These transformationsdepend
on the array geometries, and for certain setups, e.g., circular ar-
rays [28, 29], they can in fact be formulated in a compact form.

Advantages of the approximate MIMO decoupling due to
the spatio-temporal transformation are both an improved conver-
gence and a significant complexity reduction, as shown, e.g., in
[28, 29]. Note also that the WDAF concept can be well applied to
the general TRINICON approach. Since all microphone signals
are jointly taken into account by the spatio-temporal transforma-
tion, WDAF also facilitates an efficient exploitation of thespatial
nonwhiteness mentioned in the previous subsection.

6 Conclusions
Although acoustic echo cancellation has been a well established
topic in acoustic signal processing for many years, the multichan-
nel case is still an active and interesting area of research.Re-
cently significant progress for more than two reproduction chan-
nels has been made. As illustrated in this paper, the research area
of MCAEC is a very good example for the necessity to bring to-
gether fundamentals from various different disciplines.
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[2] T. Gänsler and J. Benesty, “Stereophonic acoustic echocancellation and two-
channel adaptive filtering: an overview,”Int. Journal of Adaptive Control and
Signal Processing,vol. 14, pp. 565-586, 2000.

[3] A. Sugiyama, Y. Joncour, and A. Hirano, “A stereo echo canceller with
correct echo path identification based on an input-sliding technique,”IEEE
Trans. Signal Processing,49(1), pp. 2577-2587, 2001.

[4] H. Buchner and W. Kellermann, “Acoustic echo cancellation for two and
more reproduction channels,”Proc. Int. Workshop on Acoustic Echo and
Noise Control,pp. 99-102, Sept. 2001.

[5] H. Buchner, J. Benesty, and W. Kellermann, “Generalizedmultichannel
frequency-domain adaptive filtering: efficient realization and application to
hands-free speech communication,”Signal Processing,vol. 85, no. 3, pp.
549-570, March 2005.

[6] M. M. Sondhi, D. R. Morgan, and J. L. Hall, “Stereophonic acoustic echo
cancellation- An overview of the fundamental problem,”IEEE Signal Pro-
cessing Lett.,vol. 2, pp. 148-151, Aug. 1995.

[7] S. Haykin,Adaptive Filter Theory, 4th ed., Prentice-Hall, 2002.

[8] J. Benesty, D. R. Morgan, and M. M. Sondhi, “A better understanding and
an improved solution to the specific problems of stereophonic acoustic echo
cancellation,”IEEE Trans. Speech Audio Processing,vol. 6, pp. 156-165,
Mar. 1998.

[9] H. Buchner, R. Aichner, and W. Kellermann, “Blind sourceseparation for
convolutive mixtures exploiting nongaussianity, nonwhiteness, and nonsta-
tionarity,” in Proc. Int. Workshop Acoustic Echo and Noise Control, Kyoto,
pp. 223-226, Sept. 2003.

[10] H. Buchner, R. Aichner, and W. Kellermann, “TRINICON: Aversatile
framework for multichannel blind signal processing,” inProc. IEEE ICASSP,
Montreal, vol. 3, pp. 889-892, May 2004.

[11] H. Buchner, R. Aichner, and W. Kellermann, “Blind source separation for
convolutive mixtures: A unified treatment,” in Y. Huang and J. Benesty
(eds.),Audio Signal Processing for Next-Generation Multimedia Commu-
nication Systems, Kluwer Academic Publishers, Boston, pp. 255-293, Feb.
2004.

[12] H. Buchner, R. Aichner, and W. Kellermann, “The TRINICON framework
for adaptive MIMO signal processing with focus on the generic Sylvester
constraint,” inITG Fachtagung Sprachkommunikation, Aachen, Oct. 2008.

[13] H. Buchner and W. Kellermann, “A fundamental relation between blind and
supervised adaptive filtering illustrated for blind sourceseparation and acous-
tic echo cancellation,” inConf. Rec. Joint Workshop on Hands-Free Speech
Communication and Microphone Arrays (HSCMA), Trento, Italy, May 2008.

[14] H. Buchner, R. Aichner, and W. Kellermann, “Relation between blind system
identification and convolutive blind source separation,” in Proc. Joint Work-
shop Hands-Free Speech Communication and Microphone Arrays (HSCMA),
Piscataway, NJ, USA, Mar. 2005.

[15] H. Buchner, R. Aichner, and W. Kellermann, “TRINICON-based blind sys-
tem identification with application to multiple-source localization and sepa-
ration,” in S. Makino, T.-W. Lee, and S. Sawada (eds.), BlindSpeech Sepa-
ration, Springer-Verlag, Berlin/Heidelberg, pp. 101-147, Sept. 2007.
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