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Abstract—Various approaches for incorporating prior system know-
ledge into adaptive filtering algorithms exist, e.g., usingconstrained
adaptation. Moreover, also the basic setup of the adaptation problem,
e.g., whether it is supervised or blind, can be considered asprior
system knowledge. In this paper, we consider a systematic approach to
incorporate such deterministic prior knowledge in broadband adaptive
MIMO systems by optimizing the coefficients in arbitrary partly smooth
manifolds. The resulting generic set of update equations explicitly shows
all the available degrees of freedom for a top-down algorithm design.
Using practically relevant examples, we show how both well-known
and novel algorithms for various applications can be derived using the
framework.

I. I NTRODUCTION

In adaptive filtering, a set of coefficients in the form of a vector or
a matrix is continuously optimized based on received input signals,
certain requirements on the desired output signals, and a certain cost
function. The particular form of the requirements on the desired
output signals and the choice of the cost function generallydepend on
the type of adaptive filter problem, e.g., supervised adaptive filtering
directly utilizes given desired output signals, e.g., [1],while in blind
problems we have to resort to stochastic requirements, suchas the
mutual statistical independence between the output signals for blind
source separation (BSS), e.g., [2], [3]. Without any further constraints,
the associated search process for the optimal coefficients is typically
performed in the Euclidean space, i.e., the gradient directly corre-
sponds to the partial derivatives w.r.t. the filter coefficients, e.g., [1].
Based on the gradient of the cost function, gradient descentadaptation
is one of the simplest techniques for adaptive filtering. On the other
hand, more advanced adaptation schemes are given by Newton-type
algorithms which in general also require the second derivatives of
the cost function. Most of the well known adaptation algorithms
(including the gradient-descent-based adaptation) can bededuced as
approximations of the Newton algorithm.

In adaptive filtering, a variety of different ways to incorporate
certain prior knowledge on the system into the adaptation process
have been proposed in order to

• constrain the search space according to the requirements ofthe
desired application,

• increase the convergence speed,
• reduce the computational complexity,

or a combination thereof. Some popular examples are the incorpora-
tion of linear constraints, e.g., as used in adaptive beamforming [4],
[5], [6], the use of the so-called natural gradient in the context of
adaptive multiple-input and multiple output (MIMO) filtering [7], or
adaptive filtering in transform domains, e.g., the DFT domain, which
results from the assumption of an FIR structure [8]. Moreover, it can
be shown that the class of supervised adaptive filtering algorithms
indeed follows as a special case of the more general broadband
adaptive MIMO algorithms originally introduced for blind adaptation
problems, if we incorporate additional knowledge on a specialized
system structure [9].

In this paper, we consider the adaptation in arbitrary partly
smooth manifolds which promises to be one of the most general
approaches to incorporate prior knowledge on the search space.
Our considerations are based on TRINICON (’TRIple-N ICA for
CONvolutive mixtures’), a previously introduced generic concept
for broadband adaptive MIMO filtering, e.g., [10], [3], [11], using
the technique of independent component analysis (ICA), e.g., [2].
Based on TRINICON, which has so far been presented mainly for
the Euclidean search space (with, e.g., the natural gradient and the
adaptation in the DFT domain etc. as additional, but more or less
heuristically motivated extensions), we derive in this paper a generic
set of broadband MIMO update equations in arbitrary partly smooth
manifolds. In general, a manifold is a topological space that is locally
Euclidean [12], [13]. Smooth manifolds (also called differentiable
manifolds) are manifolds for which overlappingcharts, i.e., local
parameterizations, relate smoothly to each other. (A smooth manifold
with a metric in order to measure lengths and angles is called
Riemannian manifold.) In order to devise the generic equations on a
certain manifoldM, we equip the TRINICON optimization criterion
with certain local parameterizations leading to the corresponding
local optimization criteria in the Euclidean tangent space. Such local
parameterizations always exist since a manifold consists of subsets
of the multidimensional real space glued together. We then derive a
local Newton step based on the TRINICON criterion in the Euclidean
tangent space. The new coefficient matrix on the manifoldM after
the adaptation step is then obtained by again applying the local
mapping function.

As we will see, the various degrees of freedom in order to select
both well known and novel improved algorithms, such as the so-
called Sylvester constraint [11], generalize well to the case of arbi-
trary partly smooth manifolds. As simple, but practically important
examples, we will show that the above-mentioned examples, i.e.,
adaptation with linear constraints and adaptive beamforming, the
natural gradient, and the supervised adaptive filtering algorithms
indeed follow rigorously as special cases of the novel generic
algorithm. A significant advantage of this deductive approach is
that by relatively simple specializations, we immediatelyhave all
of the different techniques for incorporating prior systemknowledge
available for the various adaptive filtering applications,i.e., for both
supervised and blind adaptive filtering problems. The systematic
approach also greatly simplifies the integration of different techniques
into a common adaptation algorithm.

II. GENERAL MIMO SETUP AND NOTATION

In broadband signal aquisition by sensor arrays, such as in hands-
free speech communication scenarios, the original source signals
sq(n), q = 1, . . . , Q are filtered by a linear MIMO system (e.g., a
reverberant room) before they are captured as sensor signals xp(n),
p = 1, . . . , P . In this paper, we describe this MIMO mixing system
by length-M FIR filters, wherehqp,κ, κ = 0, . . . , M − 1 denote the



coefficients of the FIR filter model from theq-th source signalsq(n)
to the p-th sensor signalxp(n) according to Fig. 1. Moreover, we
assume throughout this paper thatQ ≤ P . According to a certain
optimization criterion, we are interested in finding a corresponding
length-L FIR demixing system with coefficientswpq,κ by adaptive
signal processing. This yields the output signalsyq(n). As a compact
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Fig. 1. General setup for MIMO signal processing.
formulation of the set of demixing filter coefficients and mixing filter
coefficients we form thePL × Q demixing coefficient matrix

W̌ =

2
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w11 · · · w1Q

...
. . .

...
wP1 · · · wPQ

3
75 (1)

and the correspondingQM × P mixing coefficient matrix Ȟ,
respectively, where

hqp = [hqp,0, . . . , hqp,M−1]
T , (2)

wpq = [wpq,0, . . . , wpq,L−1]
T (3)

denote the coefficient vectors of the FIR subfilters of the MIMO
systems, and superscriptT denotes transposition of a vector or a ma-
trix. The downwards pointing hat symbol on top ofW in (1) serves
to distinguish thiscondensedmatrix from the corresponding larger
matrix structureW as introduced below. The rigorous distinction
between these different matrix structures is also an essential aspect
of the general TRINICON framework, as shown later.

III. A BRIEF RECAPITULATION OF TRINICON AND
COEFFICIENT UPDATES IN THE EUCLIDEAN SPACE

In this section we first give a brief overview of the essential
elements of TRINICON for the coefficient adaptation. Thereby, we
restrict the presentation here to time-domain coefficient updates in
the Euclidean space.
A. Optimization Criterion

Various approaches exist to estimate the demixing matrixW̌ by
utilizing the following fundamental source signal properties [2] which
were all combined in TRINICON:
(i) Nongaussianity is exploited by using higher-order statistics for
ICA. The minimization of the mutual information (MMI) among
the output channels can be regarded as the most general approach
to separation problems [2]. To obtain an estimator that is also
suitable for inverse problem, TRINICON uses the Kullback-Leibler
divergence (KLD) [14] between a certaindesiredjoint pdf (essentially
representing a hypothesized stochastic source model as shown below)
and the joint pdf of the actually estimated output signals.
(ii) Nonwhiteness is exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore consider
multivariate pdfs, i.e., ‘densities coveringD time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization of
output cross-relations at different time-instants. We assume ergodicity
within blocks of lengthN so that the ensemble average is replaced
by time averages over these blocks.

Throughout this section, we formulate the framework forQ = P
sources without loss of generality. In practice, the current number
of simultaneously active sources is allowed to vary throughout the
application and only the conditionsQ ≤ P (for separation only) and
Q < P (for deconvolution), respectively, have to be fulfilled.

To introduce an algorithm for broadband processing of convolutive
mixtures, we first formulate the convolution of the FIR demixing
system of lengthL in the following matrix form [10]:

y(n) = W
T
x(n), (4)

wheren denotes the time index, and

x(n) = [xT
1 (n), . . . ,xT

P (n)]T, (5)

y(n) = [yT
1 (n), . . . ,yT

P (n)]T, (6)

xp(n) = [xp(n), . . . , xp(n − 2L + 1)]T, (7)

yq(n) = [yq(n), . . . , yq(n − D + 1)]T. (8)

The parameterD in (8), 1 ≤ D < L, denotes the number of time lags
taken into account to exploit the nonwhiteness of the sourcesignals
as shown below.Wpq, p = 1, . . . , P , q = 1, . . . , P denote2L ×
D Sylvester matricesthat contain all coefficients of the respective
filters in each column by successive shifting, i.e., the firstcolumn
reads

ˆ
wT

pq , 0, . . . , 0
˜T

, the second column
ˆ
0,wT

pq, 0, . . . , 0
˜T

, etc.
Finally, the2PL × PD matrix W combines all Sylvester matrices
Wpq.

Based on the KLD, the following cost function was introduced
in [10] taking into account all three fundamental signal properties
(i)-(iii):

J (m,W) = −
∞X

i=0

β(i, m)
1

N

·

iNL+N−1X

j=iNL

{log(p̂s,PD(y(j))) − log(p̂y,PD(y(j)))} , (9)

wherep̂s,PD(·) and p̂y,PD(·) are assumed or estimatedPD-variate
source model (i.e., desired) pdf and output pdf, respectively. The
indexm denotes the block time index for a block ofN output samples
shifted byL samples relatively to the previous block. Furthermore,
β is a window function allowing for online, offline, or block-online
algorithms [3].

An alternative formulation of the second term in the optimization
criterion (9) is obtained by using the mapping between the output
pdf and the input pdf of the demixing filter which plays an important
role for the following considerations in this paper. This mapping can
be expressed as follows, e.g., [15]:

p̂y,PD(y) =
p̂xPD ,PD(xPD)

|det{VTW}|
(10)

with the window matrixV = Bdiag{Ṽ, . . . , Ṽ}, where Ṽ =ˆ
ID×D, 0D×(2L−D)

˜T
.

B. Euclidean Gradient-Based Coefficient Updates

In this subsection we concentrate on iterative Euclidean gradient-
based block-online coefficient updates which can be writtenin the
general form
W̌

0(m) := W̌(m − 1), (11a)

W̌
ℓ(m) = W̌

ℓ−1(m) − µ∆W̌
ℓ(m), ℓ = 1, . . . , ℓmax, (11b)

W̌(m) := W̌
ℓmax(m), (11c)

whereµ is a stepsize parameter, and the superscript indexℓ denotes an
iteration parameter to allow for multiple iterations (ℓ = 1, . . . , ℓmax)



within each blockm. The matrixW̌ consists of the first column of
each submatrixWpq without theL zeros.

Obviously, when calculating the gradient ofJ (m,W) w.r.t. W̌

explicitly, we are confronted with the problem of the different matrix
formulationsW and W̌. The larger dimensions ofW are a direct
consequence of taking into account the nonwhiteness signalproperty
by choosingD > 1. The rigorous distinction between these different
matrix structures is also an essential aspect of the generalTRINICON
framework and leads to an important building block whose actual
implementation is fundamental to the properties of the resulting
algorithm, the so-calledSylvester constraint(SC) on the coefficient
update, formally introduced in [3]. Using the Sylvester constraint
operator the gradient descent update can be written as

∆W̌
ℓ(m) = SC {∇WJ (m,W)}|

W=Wℓ(m) . (12)

Depending on the particular realization of (SC), we are able to select
both, well known and also novel improved adaptation algorithms [15].
In [11] an explicit formulation of agenericSylvester constraint was
derived based on the chain rule to further formalize and clarify this
concept:

h
∆w̌

ℓ
pq(m)

i
i
=
X

k,j

h
∆W

ℓ
pq(m)

i
kj

δk,(i+j−1). (13)

Here,δab denotes the Kronecker symbol.
It can be shown [15] that by taking the gradient ofJ (m) with

respect to the demixing filter matrixW̌(m) according to (12),
we obtain the following generic gradient descent-based TRINICON
update rule in the Euclidean space:

∆W̌
ℓ(m) =

1

N

∞X

i=0

β(i, m)SC

8
<
:

iNL+N−1X

j=iNL

h
x(j)ΦT

s,PD(y(j))

−

„“
W

ℓ−1(m)
”T
«+
#)

, (14a)

with ·+ denoting the pseudoinverse of a matrix, and with the
generalized score function

Φs,PD(y(j)) = −
∂log p̂s,PD(y(j))

∂y(j)

−
1

N

X

r

X

i1,i2,...

∂G
(r)
s,i1,i2,...

∂y

iNL+N−1X

j=iNL

∂ log p̂s,PD

∂Q
(r)
s,i1,i2,...

(14b)

resulting from the hypothesized source model̂ps,PD =

p̂s,PD(y, Q
(1)
s , Q

(2)
s , . . .) with certain stochastic model parameters

Q
(r)
s , r = 1, 2, . . . (the calligraphic symbols denote multidimensional

arrays) given by their elementsQ(r)
s,i1,i2,... in the generic form

Q
(r)
s,i1,i2,...(i) = 1

N

PiNL+N−1
j=iNL

n
G

(r)
s,i1,i2,...(y(j))

o
with certain

nonlinear functionsG(r)
s,i1,i2,...(y), r = 1, 2, . . .. A well known

special case of such a parameterization is the estimate of the
correlation matrixRyy(i) = 1

N

PiNL+N−1
j=iNL

˘
y(j)yT(j)

¯
. The

filter coefficients and the stochastic model parameters are estimated
in an alternating way.

C. Euclidean Newton-Based Coefficient Updates

This subsection presents the main ideas of the extension of the
previously described class of gradient-descent-based coefficient up-
date rules to the so-called Newton-type update rules for TRINICON-
based adaptation algorithms. The main advantage of the Newton-type
adaptation algorithms is itsquadratic convergence ratecompared
to the linear convergence rate of the gradient-based algorithms. In
contrast to the gradient descent-based optimization approach, the
Newton method directly aims at finding the numerical solution of a

generally nonlinear set of equations. In our case, this set of equations
is a matrix equation of the form

Q
`
W̌
´

= 0, (15)

which arises from the condition

∇W̌J (W) =
∂J (W)

∂W̌
= 0 (16)

for minimization of the TRINICON optimization criterion w.r.t. the
filter coefficients. Analogously to the so-called normal equation for
solving least-squares problems, we denote (16) as theTRINICON
normal equation.

The Newton-Raphson method is based on a local linearizationof
the functionQ

`
W̌
´

after (15) using a Taylor expansion around a
certain pointW̌′:

Q
`
W̌
´

= Q
`
W̌
´˛̨

W̌′
+

»
∂

∂W̌
Q

T `
W̌
´–T

W̌′

`
W̌ − W̌

′´+. . . = 0.

(17)
Setting W̌ = W̌ℓ(m) and W̌′ = W̌ℓ−1(m), consideringQ =
∇W̌J , and neglecting the residual term, we obtain from (17) the
iterative update rule

W̌
ℓ(m) = W̌

ℓ−1(m) −
h
∇W̌∇T

W̌J
“
m,Wℓ−1(m)

”i−1

· ∇W̌J
“
m,Wℓ−1(m)

”
. (18)

Comparing (18) with (11) and (12) we see that the Newton-Raphson
update can be considered as an extension of the standard gradient-
based update. The additional quantity∇W̌∇T

W̌
J (W(m − 1)) in the

Newton-Raphson update is called theHessian. Note that in general,
the Hessian in (18) is described by a multidimensional arraywith
four indices. To simplify the handling, we introduce the vecoperator
allowing an equivalent formulation involving only regularmatrices.
Moreover, after introducing a relaxation factor (or matrixin general)
µ and a regularization matrixδP, we obtain the following general
expression for the update:

vecW̌ℓ(m) = vecW̌ℓ−1(m)

−µ(m, ℓ)
h
PW̌

“
m,W̌ℓ−1(m)

”
+ δP(m, ℓ)

i−1

· vec
“
∇W̌J

“
m,Wℓ−1(m)

””
. (19)

It can be shown that the Hessian can then be expressed as

PW̌

“
m,W̌ℓ−1(m)

”
=

∞X

i=0

β(i, m) ·
1

N

iNL+N−1X

j=iNL

KSC(I⊗ x(j))
∂
`
ΦT

s,PD(y(j)) − ΦT
y,PD(y(j))

´

∂y

˛̨
˛̨
˛
W=Wℓ−1(m)

(I⊗ x
T(j))KT

SC,

(20)

where the matrixKSC is a fixed matrix consisting of ones and zeros
so that

vecW̌ = vecSC{W} = KSC vecW. (21)

IV. EXAMPLE : TRINICON FOR BLIND SOURCESEPARATION

Broadband blind source separation algorithms constitute aclass of
algorithms that requires a minimum amount of prior knowledge on
the involved source signal characteristics and on the MIMO mixing
system. Hence, in this sense, the BSS algorithms can be regarded as
prototype algorithms for the general class of separation and identi-
fication algorithms. In the later sections we will graduallyintroduce
more prior knowlege on the system structure. In BSS, the aim is to



achieve statistical independence between the output channels. Hence,
the desired pdf is factorized w.r.t. the output channels, i.e.,

p̂s,PD(y(j))
(BSS)
=

PY

q=1

p̂yq,D(yq(j)), (22)

so that the desired score function simplifies to

Φs,PD(y)
(BSS)
=

h
Φ

T
1,D(y1), . . . , Φ

T
P,D(yP )

iT
. (23)

In other words, for each output channel the score function can be
obtained individually from a certain choice of pdf. For illustration, the
special case of algorithms based on second-order statistics (SOS) is
obtained from choosing multivariate Gaussian source models leading
to [3]

Φq,D(yq(j)) = R
−1
yqyq

(i)yq(j). (24)

V. GENERAL COEFFICIENTUPDATE ON ARBITRARY PARTLY

SMOOTH MANIFOLDS

In adaptive filtering the Euclidean geometry is by far the most
widely assumed topology for the coefficient optimization, mostly
due to its conceptual simplicity. However, other topologies may be
more suitable to obtain a good match with the respective optimization
problem at hand. The adaptation on arbitrary partly smooth manifolds
considered in this section can be considered as one of the most
general concepts. A manifoldM is an arbitrary topological space that
is locally Euclidean [12], [13]. Hence, local parameterizations in a
Euclideantangent spacealways exist. These local parameterizations
are calledcharts or maps. Multiple maps glued together to form
an arbitrary partly smooth manifold consisting of subsets of the
multidimensional real space are also calledatlas.

M
W′

local tangent plane

∆T
ϕW′(∆T)

Fig. 2. Example for a two-dimensional manifoldM.

Potential advantages of choosing a suitable map (or, more gen-
erally, a suitable atlas) in the context of adaptive filtering are
a further improvement of convergence speed and/or a decreased
computational complexity. However, the most important aspect is
that most - if not all - practically relevant types of deterministic
prior system information, e.g., given by various types of constraints,
transform domains, or specialized system structure, can bedescribed
by the adaptation on a suitably designed manifold. In particular,
any constrained optimization problem in the Euclidean space can
be thought of as unconstrained optimization problem on a special
manifold.

Figure 3 outlines the basic idea for the TRINICON-based adap-
tation on an arbitrary manifold which will form the basis forthe
following mathematical developments in this section. Notethat in

the context of TRINICON and adaptive MIMO systems we have to
deal with matrix-valued manifolds.

TRINICON
optimization criterion onM:

J (W)

Iterative optimization:W = W
ℓ

with local parameterization (’chart’, ’map’)

W
ℓ = ϕ

Wℓ−1(∆T)

whereϕ
Wℓ−1(0) = W

ℓ−1

local optimization criterion

at W = W
ℓ−1 in the

Euclidean tangent space:

J (ϕWℓ−1(∆T))

local Newton (or gradient) step
in the Euclidean tangent space

at W = W
ℓ−1 (i.e., ∆T = 0)

⇒ ∆T = 0 → ∆T = ∆T
ℓ

W
ℓ = ϕWℓ−1

`
∆T

ℓ
´

New coefficient
matrix onM:

W
ℓ

Fig. 3. Basic approach for TRINICON-based optimization on an arbitrary
partly smooth manifoldM.

A. Normal Equation and Newton Update on Manifolds

In general, the optimization problem w.r.t. the coefficientmatrix
W̌ on a manifoldM can be expressed as

W̌ = arg min
W̌∈M

J
`
W̌
´
. (25)

Using alocal parameterization around a certain pointW̌′, i.e., using
the matrix-valued map̌ϕW̌′

`
∆Ť

´
, where ϕ̌W̌′(0) = W̌′, this

translates into the local optimization problem

∆Ť = arg min
∆Ť∈ IRL′P ′×Q′

J
`
ϕ̌W̌′

`
∆Ť

´´
. (26)

In an analogous way as shown in (17) for the Euclidean case, a locally
applied Taylor approximation in the tangent space yields

vec
`
∇∆ŤJ

`
ϕ̌W̌(∆Ť)

´´
= vec

`
∇∆ŤJ

`
ϕ̌W̌′(∆Ť)

´˛̨
∆Ť=0

´

+

2
4 ∂

∂vec
`
∆Ť

´
 

∂J
`
ϕ̌W̌′(∆Ť)

´

∂vec
`
∆Ť

´
!T
3
5

T

∆Ť=0

vec
`
∆Ť

´
= 0.

(27)

Note that here,∇ still denotes theEuclideangradient (which ex-
clusively consists of partial derivatives with uniform weights) since
the tangent space is an affine space. From the second part of the
representation (27) we readily obtain the following local Newton step
in the tangent space of the manifoldM at pointW̌′ = W̌ℓ−1:

vec∆Ť
ℓ(m) = −P

−1

∆Ť

“
m,W̌ℓ−1(m)

”

vec
“
∇∆ŤJ

“
ϕ̌W̌ℓ−1(m)(∆Ť)

”˛̨
˛
∆Ť=0

”
(28a)

with the HessianP∆Ť

`
m,W̌ℓ−1(m)

´
. As in the Euclidean case,

the Hessian can be formulated in several ways, e.g.,

P∆Ť

“
m,W̌ℓ−1(m)

”
=

2
4 ∂

∂vec
`
∆Ť

´vecT

0
@

∂J
“
ϕ̌W̌ℓ−1(m)(∆Ť)

”

∂∆Ť

1
A
3
5

∆Ť=0

.(28b)

Finally, the new filter coefficients are then calculated using the map:

W̌
ℓ(m) = ϕ̌W̌ℓ−1(m)

“
∆Ť

ℓ(m)
”

. (28c)



B. Sylvester Constraint on Manifolds and Further Generalization

To further develop the TRINICON coefficient update on Manifolds
based on the general set of equations (28a)-(28c) we need to introduce
the Sylvester Constraint(SC). Introducing the Sylvester Constraint
correctly in a rigorous way into the general update in arbitrary
manifolds seems to be a non-trivial task. Fortunately, as wewill
see next in this section, the operator-based framework introduced in
[3], [11] (see (12), (13)) already provides all the necessary tools to
carry over the Sylvester Constraint to the optimization on arbitrary
manifolds. To begin with, we first consider the gradient analogously
to [11].

1) Sylvester Constraint for the Gradient on Manifolds:Let
W KJ

kj = [W]KJ

kj
denote thekj-th component of theSylvester

matrix for theKJ-th channel corresponding to theKJ-th submatrix.
As shown in Sect. III-B, the Euclidean gradient ofJ w.r.t. these
components is transformed by (SC) to the Euclidean gradient w.r.t.
the componentsW̌ MN

m =
ˆ
W̌
˜MN

m
of the downsized matrix. The

main ingredient towards the definition of the Sylvester operator was
the observation that this can be expressed concisely by applying the
chain rule for matrix derivatives. For the general case of arbitrary
manifolds we exploit another important observation namelythat the
tangent space onto a arbitrary manifold forms an affine spacewhich
allows us to use the Euclidean gradient in the tangent space.This fact
allows again for a straightforward application of the chainrule for
matrix derivatives. In contrast to the Euclidean case we nowapply it
twice so that the gradient (as it appears in (28a)) reads

∂J

∂(∆Ť MN
m )

˛̨
˛̨
∆Ť=0

=

X

k,j,K,J

X

r,R,S

∂J

∂(W ′KJ
kj )

∂(W ′KJ
kj )

∂
“
[ϕ̌W̌′ ]

RS

r

”

˛̨
˛̨
˛̨
∆Ť=0

∂
“
[ϕ̌W̌′ ]

RS

r

”

∂(∆Ť MN
m )

˛̨
˛̨
˛̨
∆Ť=0

.

Since ϕ̌W̌′(0) = W̌′, we can rewrite and simplify this equation.
After a straightforward calculation, we obtain

∂J

∂(∆Ť MN
m )

˛̨
˛̨
∆Ť=0

=

=
X

r,R,S

»
SC


∂J

∂W′

ff–RS

r

∂
“
[ϕ̌W̌′ ]

RS

r

”

∂(∆Ť MN
m )

˛̨
˛̨
˛̨
∆Ť=0

. (29)

Here we have used exactly the same definition of the Sylvester
operator as in the Euclidean case. Applying the vec operatoron this
expression as required for (28a) yields

vec
“
∇∆ŤJ

“
ϕ̌W̌ℓ−1(m)(∆Ť)

”˛̨
˛
∆Ť=0

”
=

=
∂vecT (ϕ̌W̌′)

∂vec
`
∆Ť

´
˛̨
˛̨
˛
∆Ť=0

vec

„
SC


∂J

∂W′

ff«
. (30)

Equation (30) allows for an interestingfirst illustration. The
gradient vector ofJ on the right hand side is exactly the same as in
the Euclidean case. The corresponding expression (30) on arbitrary
manifolds exhibits an additional matrix

Ξ̌
`
m,W̌′(m)

´
:=

∂vecT (ϕ̌W̌′)

∂vec
`
∆Ť

´
˛̨
˛̨
˛
∆Ť=0

. (31)

Obviously, this additional matrix depends on the current point W̌′

and on the structure of the underlying manifoldM. In theEuclidean
space as a special casethe mapϕ̌W̌′ has the simple form

W̌ = ϕ̌
Euclid
W̌′ (∆W̌) = W̌

′ + ∆Ť. (32)

It is easy to verify that in this case the additional matrixΞ̌ on the
right hand side of (30) is equal to

Ξ̌
Euclid

= I. (33)

Moreover, noting that the gradient descent coefficient update follows
from the Newton update by setting the Hessian equal toI, the familiar
gradient-based update in the Euclidean case follows easilyas a special
case from the general equations (28a) (note the minus sign inaddition
to the expression (30)) and (28c).⋄

2) Generalized Manifold Formulation Integrating the Sylvester
Constraint: Although (30) may already be seen as a final expression
of the gradient in the tangent space, a further generalization integrat-
ing the Sylvester constraint into the manifold is possible as shown
next in this paragraph. Later we will see that such a generalization is
in fact desirable in order to obtain an even more flexible expression,
particularly for the Newton update and also for maps other than the
Euclidean map (32).

Having introduced the general notion of an optimization on mani-
folds on the one hand, and the Sylvester constraint on the other hand,
we can render the optimization criterionJ w.r.t. the filter coefficients
concisely as

J = J
`
m,S

˘
ϕ̌W̌′

`
0̌
´¯´

, (34)

where S{·} denotes an operator generating a Sylvester matrix.
Obviously, this can be written equivalently as

J = J
“
m, ϕS{W̌′} (0)

”
, (35)

where we have introduced the new matrix function

ϕW′ (∆T) = S
n

ϕ̌SC{W′}

“
fSC {∆T}

”o
. (36)

Equations (34)-(36) show that the Sylvester constraint already forms
a special manifold even in the Euclidean case. Thus, in fact we have
already worked with a special kind of manifold above in Sect.III-B.

The new operatorfSC{·} in (36) linking T and Ť denotes the
counterpart of the Sylvester operatorSC{·} in the tangent space,
i.e., in analogy to (12) we write

∆Ť = fSC {∆T} = fSC {∆T} . (37)

In general, the distinction betweenfSC{·} and SC{·} is necessary
since the projection of a Sylvester matrix into the corresponding
tangent space of the chosen manifoldM doesnot necessarily1 exhibit
a Sylvester structure. The particular detailed definition of fSC{·}
depends on the chosen manifoldM and it is therefore another degree
of freedom for the coefficient optimization (examples, suchas the so-
called natural gradient-based coefficient update will be shown below).
Despite of this flexibility, many of the known properties ofSC{·}
carry over to the operatorfSC{·} in the tangent space. In particular,
when usingfSC{·} in conjunction with the vec operator, we can also
introduce a correspondingSylvester constraint matrixKfSC

in the
tangent space, defined by the derivative

KfSC
=

∂vecT {∆T}

∂vec
˘
∆Ť

¯ , KfSC
=

∂vecT {∆T}

∂vec
˘
∆Ť

¯ . (38)

Moreover, in the same way as shown for the coefficient space, the
Sylvester generator in the tangent space

∆T = eS
˘
∆Ť

¯
, ∆T = eS

˘
∆Ť

¯
(39)

1In the special case of an Euclidean manifold after (32),fSC{·} is obviously
equal toSC{·}.



is introduced as a complementary operation, and the corresponding
Sylvester generator matrixreads

K eS =
∂vecT

˘
∆Ť

¯

∂vec {∆T}
, K eS =

∂vecT
˘
∆Ť

¯

∂vec {∆T}
. (40)

Having introduced the formulation (35) with the generalized matrix
function ϕW′ , we next write the set of equations (28a)-(28c) in
an even more general way by means ofϕ instead of ϕ̌. It can
be shown that we can formulate the Hessian in terms of Sylvester
matrices rather than the downsized coefficient matrices without loss
of generality. Analogously, we formulate here the Hessian in terms of
the matrix∆T. The set of update equations can then be formulated
as

vec∆T
ℓ(m) = −P

−1
∆T

“
m,Wℓ−1(m)

”

vec
“
∇∆TJ

“
ϕWℓ−1(m)(∆T)

”˛̨
˛
∆T=0

”
(41a)

with the Hessian

P∆T

“
m,Wℓ−1(m)

”
=

=

2
4 ∂

∂vec (∆T)
vecT

0
@

∂J
“
ϕWℓ−1(m)(∆T)

”

∂∆T

1
A
3
5

∆T=0

,(41b)

and the actual coefficient update

W
ℓ(m) = ϕWℓ−1(m)

“
∆T

ℓ(m)
”

. (41c)

In addition, in order to finally obtain the downsized coefficient matrix
W̌ℓ(m), we simply apply the Sylvester operator to the result of (41c):

W̌
ℓ(m) = SC

n
W

ℓ(m)
o

. (41d)

The last two steps can be justified by applyingSC{·} on both sides
of (36),

SC {ϕW′ (∆T)} = SC
n
S
n

ϕ̌SC{W′}

“
fSC {∆T}

”oo
, (42)

so that

SC {ϕW′ (∆T)} = ϕ̌SC{W′}

“
fSC {∆T}

”
= W̌, (43)

i.e.,
W̌ = SC {ϕW′ (∆T)} . (44)

This equation corresponds to (41c) and (41d).

C. TRINICON Gradient Calculation on Manifolds and Gradient
Coefficient Update on Manifolds

Based on the general set of equations (41a)-(41d) we now de-
rive the TRINICON gradient on Manifolds and the corresponding
gradient-based coefficient update on arbitrary partly smooth mani-
folds. The result of this subsection will also act as an intermediary
result towards the more general TRINICON-based Newton coefficient
update treated in the next subsection.

To begin with, we formulate the gradient in (41a) similarly as in
(30) by applying the chain rule again:

∂J

∂(∆T MN
mn )

˛̨
˛̨
∆T=0

=

=
X

k,j,K,J

∂J

∂
“
[ϕW′ ]

KJ

kj

”

˛̨
˛̨
˛̨
∆T=0

∂
“
[ϕW′ ]

KJ

kj

”

∂(∆T MN
mn )

˛̨
˛̨
˛̨
∆T=0

.

=
X

k,j,K,J

∂J

∂(W ′KJ
kj )

∂
“
[ϕW′ ]

KJ

kj

”

∂(∆T MN
mn )

˛̨
˛̨
˛̨
∆T=0

. (45)

The gradient thus reads

vec
“
∇∆TJ

“
ϕWℓ−1(m) (∆T)

”˛̨
˛
∆T=0

”
=

=
∂vecT

“
ϕWℓ−1(m)

”

∂vec (∆T)

˛̨
˛̨
˛̨
∆T=0

vec

 
∂J

∂W

˛̨
˛̨
W=Wℓ−1(m)

!
.

(46)

This equation again traces back the gradient in the tangent space
to the partial derivative w.r.t. the filter coefficient matrix and a
premultiplied matrix

Ξ
“
m,Wℓ−1(m)

”
:=

∂vecT
“
ϕWℓ−1(m)

”

∂vec (∆T)

˛̨
˛̨
˛̨
∆T=0

(47a)

depending on the manifoldM. The partial derivative w.r.t. the
coefficient matrix corresponds to theEuclideangradient as already
presented in Sect. III-B (equation (14a) without theSC operator).
Thus, based on (46), (41a), (41c), and (41d), we can now summarize
thegeneral TRINICON gradient-based coefficient update rule on
an arbitrary partly smooth manifold M as follows2:

vec∆T
ℓ(m) = −

µ

N

∞X

i=0

β(i, m) Ξ
“
m,Wℓ−1(m)

”

·

iNL+N−1X

j=iNL

vec

(
x(j)ΦT

s,PD(y(j)) −
“
W

T
”+
˛̨
˛̨
W=Wℓ−1(m)

)
,

(47b)

W̌
ℓ(m) = SC

n
ϕWℓ−1(m)

“
∆T

ℓ(m)
”o

. (47c)

D. TRINICON Hessian Calculation on Manifolds and Newton Coef-
ficient Update on Manifolds

In (41b) we have introduced the HessianP∆T

`
m,Wℓ−1(m)

´

in the tangent space. In the same way as we have traced back the
gradient in the tangent space to the partial derivative w.r.t. the filter
coefficient matrixW and the premultiplied matrixΞ after (47a), we
now reformulate the Hessian. A detailed derivation (not shown here
for brevity) yields the expression

P∆T

“
m,Wℓ−1(m)

”
=

= Ξ
“
m,Wℓ−1(m)

”
PW

“
m,Wℓ−1(m)

”
Ξ

T
“
m,Wℓ−1(m)

”

+Ξ
“
m,Wℓ−1(m)

” X

i

 »
vecT

„
∂J

∂W

«–

i

˛̨
˛̨
W=Wℓ−1(m)

∂2
h
vec
“
ϕWℓ−1(m)

”i
i

∂vecT (∆T)∂vec
“
ϕWℓ−1(m)

”

˛̨
˛̨
˛̨
˛
∆T=0

1
CA , (48)

where PW

`
m,Wℓ−1(m)

´
corresponds to theEuclidean Hessian

as already introduced explicitly for the TRINICON criterion above.
The derivative∂J /∂W in the second term of (48) corresponds to
the Euclidean gradientthat also has already been shown above for
TRINICON. All other quantities in the expression (48) exclusively
depend on the chosen manifoldM: Both the matrixΞ according to
(47a), and the last derivative on the right-hand side of (48)are derived

2Another degree of freedom would be to decouple the map in (47c) from
the one in (47a) in order to allow more approximations of thisgeneric set
of equations. This could be done by formally replacingϕW′ (·) in (47c) by
another functionψW′ (·). In the following, we omit this further generalization
for brevity.



directly from the mapϕWℓ−1(m). Note that this last derivative in (48)
is in fact a quantity with three indices rather than an ordinary matrix.
It should be noted that in the special case of so-called Riemannian
manifolds3 in the field of differential geometry and tensor analysis,
there is a close relation to the so-calledChristoffel symbols[12], [13].
Note thatin the Euclidean case, these quantities, and thus the second
term in (48) are zero4. Moreover, since in this casěΞ = Ξ̌

Euclid
= I,

we haveΞ = K eSKSC = KSKSC , the Hessian (48) simplifies in
the Euclidean case to

P∆T

“
m,Wℓ−1(m)

”
= KSKSCPW

“
m,Wℓ−1(m)

”
K

T
SCK

T
S

= KSPW̌

“
m,W̌ℓ−1(m)

”
K

T
S . (49)

VI. SOME IMPORTANT SPECIAL CASES OFMANIFOLDS

Having derived the generic expressions for TRINICON-basedadap-
tation on arbitrary partly smooth manifolds, we now discusssome
illustrative examples for special choices of mapsϕWℓ−1(m) (∆T).
The discussions in this section are mainly based on (47a)-(47c) but
the extension to Newton-based updates with the Hessian (48)is
straigthforward.

A. Euclidean Space and Riemannian Space

As already mentioned, the adaptation in the Euclidean spaceis
given by the map

W = ϕ
Euclid
W′ (∆T) = W

′ + ∆T, (50)

which is easily verified by plugging it into (47a)-(47c). It should
be emphasized that the additive structure of (50) represents a fun-
damental feature of the Euclidean space. In the Euclidean space,
the shortest connection between two points is given by a straight
line. In other words, in the Euclidean case the adaptation ofthe
filter coefficients corresponds to a puretranslation, as represented in
(11b). On arbitrary manifolds this is in general not the case. Hence,
(47a)-(47c) are not restricted to pure translations. For instance, in
the Riemannian space, the shortest connection between two points is
given by ageodesic line5. The corresponding map is known as the
exponential map[12], [13], i.e.,W = ϕ

exp
W′(∆T).

B. TRINICON Natural Newton and Natural Gradient Updates

Thenatural gradient[7], also calledrelative gradient[16], [17], is
based on the assumption that the set of matrices representing possible
demixing systems form a so-called Lie group. In other words,the
natural gradient is based on the prior knowledge that we havean
invertible MIMO system, and exploiting this prior knowlegeby the
natural gradient leads to the so-called equivariance property. Keeping
the requirement of equivariance for convolutive mixtures,it was
shown that the natural gradient can also be formulated compactly
using Sylvester matrices, e.g., [18]. The generic formulation for
convolutive mixtures is given by

∆W̌ = SC


WW

T ∂J

∂W

ff
. (51)

3In the Riemannian case the manifold is equipped with a metricwhich
allows us to formally define lengths and angles in the manifold.

4This fact is also well known in the Riemannian case: The Euclidean
geometry precisely is the special case of the Riemannian geometry where
the corresponding term is equal to zero.

5In general, geodesic lines can be calculated by the calculusof variations
using a given metric tensor. However, it should be noted thatfor arbitrary
and/or high-dimensional geometries this is a non-trivial task and the existence
of closed-form solutions is not always guaranteed.

Note that unlike the adaptation in the Riemannian space, thenatural
gradient-based adaptation still contains the translation(11b). It can
easily be verified using (47a)-(47c) that the natural gradient-based
adaptation is given by the map

W = ϕ
Natural
W′ (∆T) = W

′ + W
′∆T. (52)

Note that using the same map, it is straightforward to derivea natural
Newton algorithm/relative Newton algorithm. Moreover, in the same
way as for the natural gradient it can be shown that the natural
Newton algorithm also exhibits the equivariance property.

C. Linearly Constrained TRINICON-Based Adaptation

As mentioned above, anyconstrained optimization problemin the
Euclidean space can be thought of asunconstrained optimization
problemon a special manifold. Specifically, the constrained problem

W̌ = arg min
W̌∈IRLP×P

J
`
W̌
´

subject to G(W̌) = 0 (53)

can be thought of as the unconstrained problem

W̌ = arg min
W̌∈M

J
`
W̌
´
, (54)

whereM =
˘
W̌ | G(W̌) = 0

¯
.

As an example, we now consider thelinearly constrainedproblem
(which should otherwise be Euclidean). In practice, linearly con-
strained adaptive filtering has a particularly prominent role in the field
of adaptive beamforming as the linear constraint allows to incorporate
prior information on the direction of the incoming source signals
relative to the sensor array, e.g., [4], [5], [6].

As an approach to determine the corresponding map, we are
searching for thelinear map

W = ϕ
lin
W′(∆T) = AW

′ + B∆T + F̃ (55)

that satisfies the linear constraint

C
T
W = F (56)

in the otherwise Euclidean space. The assumed Euclidean require-
ment leads toB = A. Moreover, plugging (55) into (56) and equating
coefficients on both sides of the resulting expression finally leads to
the map

W = ϕ
LC
W′(∆T) = PW

′ + P∆T + F̃, (57a)

where

A = P = I −C
h
C

T
C
i−1

C
T, (57b)

F̃ = C
h
C

T
C
i−1

F. (57c)

Again, it should be emphasized that (57) is valid for all possi-
ble gradient-based algorithms, Newton-based algorithms,or Quasi-
Newton algorithms.

For example, the resulting gradient-based coefficient update is
obtained by plugging (57) into the generic set of equations (47a)-
(47c). Noting thatPP = P, this leads to

W̌ = SC


P

»
W

′ − µ
∂J

∂W′

–
+ F̃

ff
. (58)

Considering the structure of this coefficient update equation, we
readily see that (58) together with (57b) and (57c) is precisely the
TRINICON-based generalization of the so-called Frost beamformer,
which in its original form represents an adaptive gradient-descent
solution of the linearly constrained minimum variance (LCMV)
problem [4], [5], [6]. Note that in contrast to the original approach



in [4], the approach based on manifolds can straightforwardly be
generalized to Newton-based optimization procedures. Moreover, it
should be noted that there is a tight relation between the Frost
beamformer and the so-called generalized sidelobe canceller (GSC)
structure [19] which can also be exploited in the more general case
of TRINICON-based adaptation. Using more advanced optimization
criteria instead of the original minimum-variance criterion promises
a more robust performance w.r.t. the well known signal cancellation
problem in adaptive beamforming, e.g., [20].

D. Linearly Constrained Natural Gradient and Linearly Constrained
Natural Newton Adaptation

As a simple example for a manifold combining various con-
straints, we consider the linearly constrained adaptationproblem from
Sect. VI-C using natural gradient/natural Newton-based adaptation
after Sect. VI-B. In this case, the corresponding manifold is given by
the map

W = ϕ
LC
W′(∆T) = PW

′ + PW
′∆T + F̃. (59)

It can be verified that the resulting coefficient matrix fulfills both
the linear condition (56) and the equivariance property of the natural
gradient/natural Newton-based adaptation.

E. Supervised Adaptive Filtering

In Sect. VI-C we have seen that the known structures for adaptive
beamforming and related generalizations follow rigorously from
TRINICON-based adaptation in combination with certain choices
of manifolds for exploiting prior knowledge on the direction of the
incoming source signals relative to the sensor array.

Similarly, in [9] the supervised adaptive filter theory [1] was related
rigorously to the blind adaptive filter theory. Based on the problem of
system identification it was shown that the supervised algorithms for
single-input and single-output systems (SISO) can be derived from
TRINICON in combination with a certain prior knowledge on the
structure of the mixing system after Fig. 1. Hence, we can expect
that the supervised algorithms are obtained even more systematically
by choosing a certain manifold which we confirm in the following.

According to [9], due to the prior knowledge the solution of the
demixing systemW̌ is constrained as follows:

»
w11 w12

w21 w22

–
=

»
11 0

−ĥ 11

–
, (60)

whereĥ denotes the estimate of the unknown SISO system. Hence,
the supervised adaptive filter algorithms can be derived by suitably
picking the lower left submatrix of the TRINICON-based coefficient
updates [9]. Obviously, a suitable map taking into account this
knowledge is given by

W = ϕ
superv.,Euclid
W′ (∆T)

=

»
Ṽ 0

W′
21 Ṽ

–
+

»
0 0

0 Ṽ

–
∆T

»
Ṽ 0

0 0

–
. (61)

An even more compact representation which directly picks the lower
left submatrixWsuperv is given by the following map:

Wsuperv := −Ĥ = ϕ
superv.,Euclid

Ĥ′
(∆T)

= −Ĥ
′ +
ˆ

0 Ṽ
˜

| {z }
=:G01

∆T

»
Ṽ

0

–

| {z }
=:G10

. (62)

Using the matrix relationvec(ABC) = (CT ⊗ A) vec(B), where
⊗ denotes the Kronecker product, we obtain from (47a) the constant

windowing matrixΞ
`
m,Wℓ−1(m)

´
= G10 ⊗ GT

01. This directly
leads to the supervised adaptive filtering algorithms according to
[9], including the Newton-type algorithms (such as the wellknown
recursive least-squares algorithm).

VII. C ONCLUSIONS

In this paper we introduced generic expressions for TRINICON-
based adaptation on arbitrary partly smooth manifolds. It was demon-
strated that this concept adds another important degree of freedom
in the general framework so that nearly arbitrary deterministic prior
system information can be incorporated.
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