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Abstract—Various approaches for incorporating prior system know- In this paper, we consider the adaptation in arbitrary partl
ledge into adaptive filtering algorithms exist, e.g., usingconstrained  smooth manifolds which promises to be one of the most general
adaptation. Moreover, also the basic setup of the adaptatio problem, approaches to incorporate prior knowledge on the searchespa
e.g., whether it is supervised or blind, can be considered agrior o iderati b d TRINICON (TRIple-N ICA
system knowledge. In this paper, we consider a systematic ppach to ur considerations are based on : (TRIp e or
incorporate such deterministic prior knowledge in broadband adaptive =~ CONvolutive mixtures’), a previously introduced generioncept
MIMO systems by optimizing the coefficients in arbitrary partly smooth  for broadband adaptive MIMO filtering, e.g., [10], [3], [31)sing
manifolds. The resulting generic set of update equations @kcitly shows technique of independent component analysis (ICA), €4

all the available degrees of freedom for a top-down algoritm design. . .
Using practically relevant examples, we show how both weknown Based on TRINICON, which has so far been presented mainly for

and novel algorithms for various applications can be derivé using the the Euclidean search space (with, e.g., the natural gradies the
framework. adaptation in the DFT domain etc. as additional, but moreess |
heuristically motivated extensions), we derive in thisgra@ generic
o s ) set of broadband MIMO update equations in arbitrary panttypath
In adaptl\_/e fllter_lng, a set of c_oefﬁments in the fOfm Of_ atoemr  manifolds. In general, a manifold is a topological space imcally
a matrix is continuously optimized based on received infgnas, g clidean [12], [13]. Smooth manifolds (also called diéfetiable
certain requirements on the desired output signals, andtairceost manifolds) are manifolds for which overlappirgharts i.e., local
function. The particular form of the requirements on theirges ,arameterizations, relate smoothly to each other. (A smownifold
output signals and the choice of the cost function genedglyend on it a metric in order to measure lengths and angles is called
the type of adaptive filter problem, e.g., supervised adegititering  rjemannian manifold.) In order to devise the generic equaton a
directly utilizes given desired output signals, e.g., [ihile in blind  certain manifold\M, we equip the TRINICON optimization criterion
problems we have to resort to stochastic requirements, asdhe it certain local parameterizations leading to the cqoesing
mutual statistical independence between the output sigoalblind 54| optimization criteria in the Euclidean tangent spadech local
source separation (BSS), e.g., [2], [3]. Without any furtenstraints, ,arameterizations always exist since a manifold consissubsets
the associated search process for the optimal coefficisrtypically ¢ the multidimensional real space glued together. We trerivel a
performed in the Euclidean space, i.e., the gradient dyrairre-  |oc4 Newton step based on the TRINICON criterion in the Elecin
sponds to the partial derivatives w.r.t. the filter coeffitée e.g., [1]. tangent space. The new coefficient matrix on the manifoldafter
Based on the gradient of the cost function, gradient desmagtation o adaptation step is then obtained by again applying tbal lo
is one of the simplest techniques for adaptive filtering. @& ather mapping function.
hand_, more ao_lvan_ced adaptation schemes are given by_NW”' As we will see, the various degrees of freedom in order tocsele
algorithms which in general also require the second devastof qih \ell known and novel improved algorithms, such as the so
the cost function. Most of the well known adaptation alguris  c4jjeq Sylvester constraint [11], generalize well to theecaf arbi-
(including the gradient-descent-based adaptation) cametleced as yary partly smooth manifolds. As simple, but practicaliggortant
approximations of the Newton algorithm. _ examples, we will show that the above-mentioned examples, i
In .adap_tlve filtering, a variety of dlffe_rent ways 10 INCOrpte  qaptation with linear constraints and adaptive beamfugmthe
certain prior knowledge on the system into the adaptati@®e®s payral gradient, and the supervised adaptive filteringrittyms
have been proposed in order to indeed follow rigorously as special cases of the novel dgener
« constrain the search space according to the requiremenke of algorithm. A significant advantage of this deductive apphoas

I. INTRODUCTION

desired application, that by relatively simple specializations, we immediatbigve all
« increase the convergence speed, _ of the different techniques for incorporating prior systenowledge
« reduce the computational complexity, available for the various adaptive filtering applications,, for both

or a combination thereof. Some popular examples are thepgoc® supervised and blind adaptive filtering problems. The syate
tion of linear constraints, e.g., as used in adaptive beamify [4], approach also greatly simplifies the integration of différiechniques
[5], [6], the use of the so-called natural gradient in theteghof into a common adaptation algorithm.

adaptive multiple-input and multiple output (MIMO) filtexg [7], or

adaptive filtering in transform domains, e.g., the DFT domaihich Il. GENERAL MIMO SETUP AND NOTATION

results from the assumption of an FIR structure [8]. Morepitean In broadband signal aquisition by sensor arrays, such aanddh
be shown that the class of supervised adaptive filteringrithgos free speech communication scenarios, the original souigmals
indeed follows as a special case of the more general broddban(n), ¢ = 1,...,Q are filtered by a linear MIMO system (e.g., a
adaptive MIMO algorithms originally introduced for blindiaptation reverberant room) before they are captured as sensor sigp@at),
problems, if we incorporate additional knowledge on a sdedd p = 1,..., P. In this paper, we describe this MIMO mixing system
system structure [9]. by length/ FIR filters, wherehgp, ., K = 0,..., M — 1 denote the



coefficients of the FIR filter model from thgth source signa$,(n) Throughout this section, we formulate the framework = P

to the p-th sensor signak,(n) according to Fig. 1. Moreover, we sources without loss of generality. In practice, the curmmber

assume throughout this paper th@t< P. According to a certain of simultaneously active sources is allowed to vary thraughthe

optimization criterion, we are interested in finding a cepending application and only the condition@ < P (for separation only) and

length-Z. FIR demixing system with coefficients,,,.. by adaptive @ < P (for deconvolution), respectively, have to be fulfilled.

signal processing. This yields the output signal&:). As a compact  To introduce an algorithm for broadband processing of clutive
e 1 mixtures, we first formulate the convolution of the FIR deimix
: : : system of lengthl in the following matrix form [10]:

y(n) = Wx(n), @)

wheren denotes the time index, and

x(n) = [x?(n)7 e ,x};(n)]T, (5)

mixing system H demixing system W y(n) — [y”ll“(n)7 o y};(n)]T, (6)

Fig. 1. General setup for MIMO signal processing. xp(n) = [zp(n),...,zp(n— 2L +1)]", (7)
formulation of the set of demixing filter coefficients and mix filter yan) = [ye(n),...,yq(n—D+1) . ®)

coefficients we form thePL x @ demixing coefficient matrix
The parameteD in (8),1 < D < L, denotes the number of time lags

taken into account to exploit the nonwhiteness of the sosigeals
W = ; : (1) as shown belowW,q, p = 1,...,P, ¢ = 1,..., P denote2L x
D Sylvester matriceshat contain all coefficients of the respective
filters in each column by successive shifting, i.e., the fagumn

and the corresponding)M x P mixing coefficient matrix H, reads[wgq,o,...,()f, the second columrf(),w;fq,o,...,o]T, etc.

W11 wi1Q

wp1 - WpQ

respectively, where Finally, the2PL x PD matrix W combines all Sylvester matrices
_ T Wy
hop = [hqp’o’m’hqp’Mfl]T’ @) Based on the KLD, the following cost function was introduced
Wog = [Wpg0,- .. Wpg,1—1] (G [10] taking into account all three fundamental signal pEdies
denote the coefficient vectors of the FIR subfilters of the @M ()-(iii): -
systems, and superscriptdenotes transposition of a vector or a ma- J(m, W) = — Zﬁ(i m)l
trix. The downwards pointing hat symbol on top W in (1) serves ' = N
to distinguish thiscondensedmatrix from the corresponding larger iNp+N—1
matrix structureW as introduced below. The rigorous distinction : Z {log(ps,pp(y(4))) — log(py,rp(¥(4)))}, 9
between these different matrix structures is also an datespect j=iNp,

of the general TRINICON framework, as shown later. wherep,. »p(-) andp,.pp(-) are assumed or estimatétD-variate

I1l. ABRIEF RECAPITULATION OF TRINICON AND source model (i.e., desired) pdf and output pdf, respdygtivEhe
COEFFICIENT UPDATES IN THE EUCLIDEAN SPACE indexm denotes the block time index for a block &5foutput samples
£hifted by L samples relatively to the previous block. Furthermore,
[ is a window function allowing for online, offline, or blockabine
algorithms [3].

An alternative formulation of the second term in the optimiaat
criterion (9) is obtained by using the mapping between the output
pdf and the input pdf of the demixing filter which plays an impat
role for the following considerations in this paper. Thisppeg can
be expressed as follows, e.g., [15]:

In this section we first give a brief overview of the essenti
elements of TRINICON for the coefficient adaptation. Thgrelke
restrict the presentation here to time-domain coefficigrdates in
the Euclidean space.

A. Optimization Criterion

Various approaches exist to estimate the demixing makixoy
utilizing the following fundamental source signal projest[2] which
were all combined in TRINICON: .
(i) Nongaussianity is exploited by using higher-order statistics for Py.po(y) = Pepp,P0(XPD) (10)
ICA. The minimization of the mutual information (MMI) among . |det{ VTW}|
the output channels can be regarded as the most generala@ppro it the window matrix V.= Bdiag{\?, o ’\7}, where V. —
to separation problems [2]. To obtain an estimator that &0 al
suitable for inverse problem, TRINICON uses the Kullbackhler
divergence (KLD) [14] between a certadesiredjoint pdf (essentially

T
[IpxD, Opx(2L—D)]
B. Euclidean Gradient-Based Coefficient Updates

representing a hypothesized stochastic source model am siaow) In this subsection we concentrate on iterative Euclideaudlignt-
and the joint pdf of the actually estimated output signals. based block-online coefficient updates which can be writtethe
(i) Nonwhiteness is exploited by simultaneous minimization ofgqneral form 3

output cross-relations over multiple time-lags. We therefconsider Wo(m) = W(m-1), (11a)
mpltivariate _pdfs,_ i.e._, ‘densit_ies cover_id@ time-lags’._ o Wim) = W' (m)—pAW'(m), £=1,... lmax, (11b)
(iif) Nonstationarity is exploited by simultaneous minimization of W(m) = VA bmax (m), (11c)

output cross-relations at different time-instants. Weiassergodicity
within blocks of lengthNV so that the ensemble average is replacedherey is a stepsize parameter, and the superscript iddinotes an
by time averages over these blocks. iteration parameter to allow for multiple iterations=€ 1, ..., fmax)



within each blockm. The matrixW consists of the first column of generally nonlinear set of equations. In our case, thisfsetj@ations
each submatrivW,, without the L zeros. is a matrix equation of the form
Obviously, when calculating the gradient gf(m, W) w.rt. W <

explicitly, we are confronted with the problem of the diffet matrix Q (W> =0, (15)
formulationsW and W. The larger dimensions oW are a direct which arises from the condition
consequence of taking into account the nonwhiteness sgyopkrty 0T (W)
by choosingD > 1. The rigorous distinction between these different VwJ (W) = oW
matrix structures s also an e§sential aspe(?t qf the genBiAlICON for minimization of the TRINICON optimization criterion wt. the
framework and leads to an important building block whosesict filter coefficients. Analogously to the so-called normal &tipn for

|mple_mentat|on is fundamental to the _propertles of the lm@ solving least-squares problems, we denote (16) asTRENICON
algorithm, the so-calle®ylvester constrain{SC) on the coefficient )
. . . . normal equation
update, formally introduced in [3]. Using the Sylvester sipaint . . .
. ; The Newton-Raphson method is based on a local linearization
operator the gradient descent update can be written as . < . .
AW“(m) = SC{VwT(m, W)}| 12) the functlonQ (W) after (15) using a Taylor expansion around a
w ' W=W¢(m) " certain pointW’:
Depending on the particular realization ¢f(), we are able to select 3 5 P 1T 5 5
both, well known and also novel improved adaptation alpanit [15]. Q (W) = Q (W) |, + {8—WQT (W)}  (W-W')+...=0.
In [11] an explicit formulation of agenericSylvester constraint was w/ 17)
derived based on the chain rule to further formalize andfglanis SettingW = W¥(m) and W' = W 1(m), consideringQ =
concept: i

-0 (16)

2 A : VVK Iera i e |l)da e r |e
Pq( L) i § pq( L) kj 6]{;7(7"-'»]'_ 1) (13) I v

" . . -1
" W(m) = W (m) — [VWVTWJ (m,w‘*‘l(m))]
Here, d., denotes the Kronecker symbol.

It can be shown [15] that by taking the gradient @{m) with VwJ (m,We_l(m)) . (18)
respect to the demixing filter matri® (m) according to (12),
we obtain the following generic gradient descent-based\NTERON
update rule in the Euclldean space:

Comparing (18) with (11) and (12) we see that the Newton-Raph
update can be considered as an extension of the standarérgrad

N +N-1 based update. The additional quaniityy, V<5, 7 (W (m — 1)) in the
AW*(m Zﬂ i,m)SC Z [X(j)i’sT,pD(y(j)) Newton-Raphson update is called tHessian. Note that in general,
j=iNg, the Hessian in (18) is described by a multidimensional awéih

™ +

- ((szl(m)) ) allowing an equivalent formulation involving only regularatrices.
Moreover, after introducing a relaxation factor (or mairixgeneral)

with -T denoting the pseudoinverse of a matrix, and with thg and a regularization matridp, we obtain the following general

} four indices. To simplify the handling, we introduce the wgxerator
, (14a)

generalized score function expression for the update:
. Olog ps j < < o
®..ro(y(j) = _%p)(y(])) vecW* (m) = vecW* ™! (m)
£—1 N
Z Z 8gsrz)1 i2,.- ZNLJFZNil 810%]55 PD (l4b) _’Jl(m Z) [ (m7W ( )) + 6P(M7£)i|
N Lol - vec (VWJ (m, W[_l(m))) er)
resulting from the hypothesized source modgk pp = It can be shown that the Hessian can then be expressed as
s, PD(y7 0", 0¥ ...) with certain stochastic model parameters iNp N1
o\ r=1,2,. (the calligraphic symbols denote multldlmensmnai; (m W ) Zﬁ i, m) Z
arrays) given by thelr eIementQ”1 in.... In the generic form N Sy
(r) N iNp+N-1 (r) ; . .
Qs 181,82, ( ) - N Z] iNp, {gs,i1,i2,..4(y(.7))} with certain K (I@x( )) 0 (@S PD( (])) — ‘b;{lpD(y(]))) (I(X)XT( ))KT
nonlinear functionsG'”) . (y), r = 1,2,.... A well known ¢ J dy Zif SC
special case of such a parameterization is the estimate ef th W=wEim) 20)
correlation matrix Ryy (i) = %Z;Zfﬂvﬂ {}’(j)yT(j)}_. The
filter coefficients and the stochastic model parameters stimated where the matriXKsc is a fixed matrix consisting of ones and zeros
in an alternating way. so that
vecW = vec SC{W} = Ksc vecW. (21)

C. Euclidean Newton-Based Coefficient Updates

This subsection presents the main ideas of the extensioheof t V- EXAMPLE: TRINICON FORBLIND SOURCE SEPARATION
previously described class of gradient-descent-basefficiert up- Broadband blind source separation algorithms constitass of
date rules to the so-called Newton-type update rules foNTRDON- algorithms that requires a minimum amount of prior knowkedm
based adaptation algorithms. The main advantage of thedsetype the involved source signal characteristics and on the MIMi®irmg
adaptation algorithms is itguadratic convergence rateompared system. Hence, in this sense, the BSS algorithms can bedexhas
to the linear convergence rate of the gradient-based #hgasi In prototype algorithms for the general class of separatiah idanti-
contrast to the gradient descent-based optimization approthe fication algorithms. In the later sections we will gradudltyroduce
Newton method directly aims at finding the numerical soluttd a more prior knowlege on the system structure. In BSS, the aito i



achieve statistical independence between the output elartience, TRINICON New coefficient
the desired pdf is factorized w.r.t. the output channess, i. optimization criterion onM: matrix on M:
P J (W) w*
" .\ (BSS) R .
Dorn(¥(3) = [ ] Buarn(vald), (22) .
g=1

Iterative optimization’'W = W*
with local parameterization ('chart’, 'map’)

so that the desired score function simplifies to
Wt = ﬂawl’.—l(AT)

W = oy (ATY)

(BSS) T where 01 (0) = W41
o) [@1p(v1), . @Eplve)] - @3 “”Wf 1
In other words, for each output channel the score functiam lma % - — ’ - -
obtained individually from a certain choice of pdf. For gtwation, the locawpt'm\'iffoT .Cminon lic:]CZ:eNE\lljvgze(g; f’;ﬂgf,?t‘)szfj
. . o . atw = ~1in the P
spt))ec_lal O(I:?se ofﬁlgorlthms Ib.ase_ol on secor_ld-order sttﬁ?ﬁ) is Euclidean tangent space: AW = W' (ie. AT = 0)
obtained from choosing multivariate Gaussian source ing T (pwe_1(AT)) & AT =0 — AT — AT

to [3]

®,p(yq(j)) = R;quq (D)yq(4)- (24) Fig. 3. Basic approach for TRINICON-based optimization enasbitrary
partly smooth manifoldM.
V. GENERAL COEFFICIENTUPDATE ONARBITRARY PARTLY
SMOOTH MANIFOLDS

In adaptive filtering the Euclidean geometry is by far the mos
widely assumed topology for the coefficient optimizationpstty

due to its conceptual simplicity. However, other topolsgmay be A. Normal Equation and Newton Update on Manifolds

more suitable to obtain a good match with the respectiveropdition  _ In general,_the optimization problem w.r.t. the coefficiematrix

problem at hand. The adaptation on arbitrary partly smoathifalds W ©n @ manifoldM can be expressed as

considered in this section can be considered as one of thé mos W = arg min J (W). (25)
WeM

general concepts. A manifolé is an arbitrary topological space that

is locally Euclidean [12], [13]. Hence, local parameteti@as in a Using alocal parameterization around a certain poWt, i.e., using
Euclideantangent spacalways exist. These local parameterizationfhe matrix-valued mappy (AT) where @/ (0) = W/, this
are calledcharts or maps Multiple maps glued together to form translates into the local optimization problem

an arbitrary partly smooth manifold consisting of subsetsthe . ) 3 .
multidimensional real space are also caliths AT = arg e E}I}P,XQ/ T (pw (AT)). (26)

In an analogous way as shown in (17) for the Euclidean caseadly
applied Taylor approximation in the tangent space yields

\ local tangent planevec (Vs T (¢w (AT))) = vec (Vazrd (ow: (AT))| 5_0)
B (aj (@W,(AT))>T ' )
)

< < AT) =0.
dvec (AT) dvec (AT . vee (AT)
AT=0

27)

Note that hereV still denotes theEuclideangradient (which ex-
clusively consists of partial derivatives with uniform ghts) since

the tangent space is an affine space. From the second pare of th
éepresentation (27) we readily obtain the following loc&viNon step

in the tangent space of the manifaldl at pointW’ = W*~1:

Fig. 2. Example for a two-dimensional manifalti.

Potential advantages of choosing a suitable map (or, mane g
erally, a suitable atlas) in the context of adaptive filtgriare

a further improvement of convergence speed and/or a detteas  yecAT!(m) = —P L (mywéfl(m))
computational complexity. However, the most importanteasps AT 5
that most - if not all - practically relevant types of detenistic vec (VATJ (@Wé—l(m)(AT))‘ATio) (28a)

prior system information, e.g., given by various types afigtoaints, ) <0 ) )

transform domains, or specialized system structure, cateberibed With the HessianP , ¢ (m, W _(m))- As in the Euclidean case,
by the adaptation on a suitably designed manifold. In paiiz the Hessian can be formulated in several ways, e.g.,

any constrained optimizatio_n proble_m_in _the Euclidean spean P+ (m7 W[_l(m)) _

be thought of as unconstrained optimization problem on aiape

manifold. 5 o (27 (Pwe-1(m (AT))
Figure 3 outlines the basic idea for the TRINICON-based adap dvec (AT) vec AT (28b)
tation on an arbitrary manifold which will form the basis ftre AT=0

following mathematical developments in this section. Nttat in  Finally, the new filter coefficients are then calculated g<ine map:

the context of TRINICON and adaptive MIMO systems we have to 50 o ~)
deal with matrix-valued manifolds. WiHm) = @wi-1m) (AT (m)) : (28¢)



B. Sylvester Constraint on Manifolds and Further Genesdion

To further develop the TRINICON coefficient update on Maldfo
based on the general set of equations (28a)-(28c) we nepttdadice
the Sylvester ConstraintSC). Introducing the Sylvester Constraint
correctly in a rigorous way into the general update in aaljtr
manifolds seems to be a non-trivial task. Fortunately, aswile
see next in this section, the operator-based framewor&datred in
[3], [11] (see (12), (13)) already provides all the neceggaols to
carry over the Sylvester Constraint to the optimization doiteary
manifolds. To begin with, we first consider the gradient agalsly

to [11].
1) Sylvester Constraint for the Gradient on Manifoldd:et
Wi’ = [W].’ denote thekj-th component of theSylvester

matrix for the K J-th channel corresponding to ti#é.J-th submatrix.
As shown in Sect. 1lI-B, the Euclidean gradient ¢f w.r.t. these
components is transformed bﬁ(cl)vto the Euclidean gradient w.r.t.
the componentsV,~ —= [W}Aml of the downsized matrixThe
main ingredient towards the definition of the Sylvester apmrwas
the observation that this can be expressed concisely byiagphe
chain rule for matrix derivatives. For the general case bitary
manifolds we exploit another important observation nanikbt the
tangent space onto a arbitrary manifold forms an affine spdteh
allows us to use the Euclidean gradient in the tangent sgédiie fact
allows again for a straightforward application of the chaite for
matrix derivatives. In contrast to the Euclidean case we apply it
twice so that the gradient (as it appears in (28a)) reads

oJ
ATHN) | ar—o
- RS
Yy 0T W) 8([sow'],, )
k,j,K,J r,R,S 8(W/£(JJ) a ([@W’]fs) AT—0 a(ATyj){IN) AT—0

Since @ (0) = W', we can rewrite and simplify this equation.
After a straightforward calculation, we obtain

0T N
INATMNY| gy
15 9 ([pw]
= 2 {sc{;‘{,,” LMN) (29)
rR,S r a(ATm ) AT
=0

It is easy to verify that in this case the additional matéxon the
right hand side of (30) is equal to

&Euclid _
= =

L (33)

Moreover, noting that the gradient descent coefficient tepftzlows
from the Newton update by setting the Hessian equa) te familiar
gradient-based update in the Euclidean case follows easiyspecial
case from the general equations (28a) (note the minus sigaidition
to the expression (30)) and (28¢).

2) Generalized Manifold Formulation Integrating the Swyier
Constraint: Although (30) may already be seen as a final expression
of the gradient in the tangent space, a further generalizatitegrat-
ing the Sylvester constraint into the manifold is possitdeshown
next in this paragraph. Later we will see that such a gerzatadin is
in fact desirable in order to obtain an even more flexible esgion,
particularly for the Newton update and also for maps othantthe
Euclidean map (32).

Having introduced the general notion of an optimization camim
folds on the one hand, and the Sylvester constraint on ther odnd,
we can render the optimization criterighw.r.t. the filter coefficients
concisely as

J =T (m,S{ew (0)}), (34)

where S{-} denotes an operator generating a Sylvester matrix.
Obviously, this can be written equivalently as

T =T (mesqwry (0)) (35)
where we have introduced the new matrix function
ew: (AT) = S {@scwry (SC{ATY) } (36)

Equations (34)-(36) show that the Sylvester constrairgaaly forms
a special manifold even in the Euclidean case. Thus, in fachave
already worked with a special kind of manifold above in SH&B.
The new operatoSC{-} in (36) linking T and T denotes the
counterpart of the Sylvester operat®iC{-} in the tangent space

i.e., in analogy to (12) we write
AT = SC{AT} = SC{AT}. (37)

In general, the distinction betweeﬁ?{} and SC{-} is necessary
since the projection of a Sylvester matrix into the corresiiog

Here we have used exactly the same definition of the Sylvesighgent space of the chosen manifditl doesnot necessarillyexhibit

operator as in the Euclidean case. Applying the vec opematdhis
expression as required for (28a) yields

vec (VATJ (‘Pv‘v“l(w (AT)) ‘ATzo)

vee (se{ 7 }).

Equation (30) allows for an interestinfirst illustration. The

0T
oW’

Avec (@)
ovec (A’i‘)

(30)

AT=0

a Sylvester structure. The particular detailed definitidn@{}
depends on the chosen manifold and it is therefore another degree
of freedom for the coefficient optimization (examples, sastthe so-
called natural gradient-based coefficient update will eshbelow).
Despite of this flexibility, many of the known properties §C{-}
carry over to the operatafC{-} in the tangent space. In particular,
when usingSC{-} in conjunction with the vec operator, we can also
introduce a correspondingylvester constraint matri¥ g, in the

gradient vector of7 on the right hand side is exactly the same as ifangent spacedefined by the derivative

the Euclidean case. The corresponding expression (30) kitraay
manifolds exhibits an additional matrix

Vo) i 2vee” (Bw)

E(m,W'(m)) = Dvec (AT) (31)

AT=0

Obviously, this additional matrix depends on the currerinpd®V’
and on the structure of the underlying manifald. In the Euclidean
space as a special cagbe mapg.z,, has the simple form

W = g (AW) = W' + AT. (32)

~_ dvec" {AT} ~_ Ovec" {AT}
SCT Bvec {AT} ’ SCT Hvec {AT} '

Moreover, in the same way as shown for the coefficient spaee, t
Sylvester generator in the tangent space

AT =S{AT}, AT=S{AT}

K (38)

(39)

1In the special case of an Euclidean manifold after (:’;i){-} is obviously
equal toSC{-}.



is introduced as a complementary operation, and the camelspy The gradient thus reads
Sylvester generator matriceads

B § VarJd —i(m (AT =
Ko — dvecT {AT} K. — AvecT {AT} (40) vee ( AT (prl 1) ( )) ‘ATZO)
ST Ovec{AT}’ ST Ovec{AT} ' dvec™ (LPWl—l(m)) 0J
Having introduced the formulation (35) with the generalizsatrix = dvec (AT) Vel ow WeWe—1(m) ’
function ¢,,, we next write the set of equations (28a)-(28c) in AT=0

an even more general way by means finstead ofp. It can (46)

be shown that we can formulate the Hessian in terms of S@vestrhis equation again traces back the gradient in the tangeates
matrices rather than the downsized coefficient matricebawitIoss 5 the partial derivative w.r.t. the filter coefficient matrand a
of generality. Analogously, we formulate here the Hessieteims of remultiplied matrix

the matrix AT. The set of update equations can then be formulated

as Ovec” (prl—l(m))

= m,W[ Ym)) = 47a

vecAT (m) = —Pxr (m,Wlil(m)) ( ( )) dvec (AT) Ao (47e)
VeC(VATj (qowe 1 (AT))‘AT )(41a) depending on the manifold\1. The partial derivative w.r.t. the
coefficient matrix corresponds to theuclideangradient as already

presented in Sect. llI-B (equation (14a) without tS€ operator).

with the Hessian

PaT (m, W"’l(m)) = Thus, based on (46), (41a), (41c), and (41d), we can now Sui@ena
thegeneral TRINICON gradient-based coefficient update rule on
[ 9 - (3j (<ow71(m>(AT)) )] an arbitrary partly smooth manifold M as follows:
= vec (41b)
Ovec (AT) OAT oo
AT=0 vecAT (m) = e B(i,m) B (m,Wlil(m))
and the actual coefficient update N i=0
P , iNL+N—1 n
W (m) = ey (AT (m)) (41c) S vec{x(j)@sT,PD(y(j)) - (w") }
In addition, in order to finally obtain the downsized coeéfiti matrix J=iNgL W=wi=t(m)
W*(m), we simply apply the Sylvester operator to the result of Y41c , , (47D)
W) — SC {W‘* (m)}. @10 Wi m) = S¢ {prz,l(m (AT (m))}. (47¢)

D. TRINICON Hessian Calculation on Manifolds and Newton f€oe
ficient Update on Manifolds

_ In (41b) we have introduced the Hessinr (m, W' ' (m))
SC{pw (AT)} =SC {3 {‘PSC{W/} (SC {AT}) }}7 (42) in the tangent space. In the same way as we have traced back the
gradient in the tangent space to the partial derivativet.vitre filter
~ 3 coefficient matrixW and the premultiplied matri€ after (47a), we
SC{pw: (AT)} = @sciwy (SC {AT}) =W, (43) now reformulate the Hessian. A detailed derivation (nowshbere
for brevity) yields the expression

W = 5C {pw (AT)}. (49 Pax (m, W (m)) =
This equation corresponds to (41c) and (41d).
C. TRINICON Gradient Calculation on Manifolds and Gradient

The last two steps can be justified by applyifig{-} on both sides
of (36),

so that

i.e.,

= = (m,Wlil(m)) Pw (m, Wefl(m)) =T (m, Wefl(m))

Coefficient Update on Manifolds +E (m7wlfl(m)) 3 < {VGCT (8_j)]
Based on the general set of equations (41a)-(41d) we now de- i oW /1 W=W¢=1(m)
rive the TRINICON gradient on Manifolds and the correspodi 52 [Vec (Lp vy )]
gradient-based coefficient update on arbitrary partly smaoani- i . (48)
folds. The result of this subsection will also act as an mestiary OvecT (AT) Ovec (pré—1<m))
result towards the more general TRINICON-based Newtonficoerft AT=0
update treated in the next subsection. where Pw (m, W*~'(m)) corresponds to th&uclidean Hessian
To begin with, we formulate the gradient in (41a) similarlyia as already introduced explicitly for the TRINICON critemi@bove.
(30) by applying the chain rule again: The derivatived7 /OW in the second term of (48) corresponds to
8 the Euclidean gradienthat also has already been shown above for
A(ATMN) Ao = TRINICON. All other quant|_t|es in the expression (48) emely
- K7 depend on the chosen manifald(: Both the matrix2 according to
N ([LPW’]IW' ) (47a), and the last derivative on the right-hand side of é8)derived
MN .
k. K,J O ( ‘PWI] ) AT AT=0 2Another degree of freedom would be to decouple the map in) (#3m
the one in (47a) in order to allow more approximations of theric set
N ( <PW/]1W ) of equations. This could be done by formally replacipgy (-) in (47c) by
= Z e D(ATMN . (45)  another functionjy (). In the following, we omit this further generalization
k.3, K,J 8(W ) ) for brevity.

AT=0



directly from the mappy¢—1,,,)- Note that this last derivative in (48) Note that unlike the adaptation in the Riemannian spacenaheral

is in fact a quantity with three indices rather than an ondimaatrix. gradient-based adaptation still contains the translafidib). It can

It should be noted that in the special case of so-called Riaiaa easily be verified using (47a)-(47c) that the natural gradised
manifolds in the field of differential geometry and tensor analysisadaptation is given by the map

there is a close relation to the so-call@dristoffel symbol§12], [13]. Natural , ,

Note thatin the Euclidean casgthese quantities, and thus the second W =ew " (AT) = W' + WAT. (52)
term in (48) are zefb Moreover, since in this cas® = 2"/ =T,  Note that using the same map, it is straightforward to dexivatural

we haveZ = KzKsc = KsKsc, the Hessian (48) simplifies in Newton algorithnrelative Newton algorithmMoreover, in the same
the Euclidean case to way as for the natural gradient it can be shown that the natura

_ _ Newton algorithm also exhibits the equivariance property.
Par (m,W[ 1(m)) — KsKscPw (m,W[ 1(m)) KI.KI g q property

C. Linearly Constrained TRINICON-Based Adaptation
As mentioned above, amyonstrained optimization problein the
V1. SOME IMPORTANT SPECIAL CASES OFMANIFOLDS Euclidean space can be thought of @sconstrained optimization

Having derived the generic expressions for TRINICON-b ~ problemon a special manifold. Specifically, the constrained prwble

= KsPy (m,W“(m))Kg. (49)

tation on arbitrary partly smooth manifolds, we now discessne W = arg min 7 (W) subject to G(W) =0 (53)
illustrative examples for special choices of mapg;¢—1(,,) (AT). welR""™

The discussions in this section are mainly based on (47&)@ut can be thought of as the unconstrained problem

the extension to Newton-based updates with the Hessian i§48) . ) .

straigthforward. W = arg Wemt T (W), (54)
A. Euclidean Space and Riemannian Space where M = {W | G(W) = 0}.

As an example, we now consider theearly constrainedoroblem
(which should otherwise be Euclidean). In practice, liheaon-
strained adaptive filtering has a particularly prominete o the field
W = pw"(AT) = W + AT, (50) of adaptive beamforming as the linear constraint allowsitoiporate

. . ” L prior information on the direction of the incoming sourcgreils
which is easily verified by plugging it into (47a)-(47c). lhauld o ohive to the sensor array, e.g., [4], [5], [6].

be emphasized that the additive structure of (50) represarftin- As an approach to determine the corresponding map, we are
damental feature of the Euclidean space. In the Euclideacesp . :

) - o : searching for thdinear map
the shortest connection between two points is given by agktra ' ~
line. In other words, in the Euclidean case the adaptatiorthef W = gol\}(,‘,(AT) =AW + BAT+F (55)
filter coefficients corresponds to a puranslation as represented in
(11b). On arbitrary manifolds this is in general not the casence,
(47a)-(47c) are not restricted to pure translations. Fetaimce, in C™W =F (56)

the Riemannian space, the shortest connection betweendints is

given by ageodesic lin& The corresponding map is known as thd" the otherwise Euclidean space. The assumed Euclidearreeq
exponential magl2], [13], i.e.. W = @2 (AT). ment leads t = A. Moreover, plugging (55) into (56) and equating
e w coefficients on both sides of the resulting expression fjrlatds to

B. TRINICON Natural Newton and Natural Gradient Updates the map

As already mentioned, the adaptation in the Euclidean spmce
given by the map

that satisfies the linear constraint

, -
Thenatural gradient[7], also calledrelative gradient16], [17], is W= ‘P%‘%(AT) =PW +PAT +F, (57a)

based on the assumption that the set of matrices repregemtssible \where

demixing systems form a so-called Lie group. In other wotdis, 1

natural gradient is based on the prior knowledge that we fave A = P=1-C [CTC] c’, (57b)

invertible MIMO system, and exploiting this prior knowletpy the - oo3-1
natural gradient leads to the so-called equivariance ptyppéeeping F = C [C C] F. (57¢)
the requirement of equivariance for convolutive mixturéswas Again, it should be emphasized that (57) is valid for all poss

shown that the natural gradient can also be formulated cottypa ¢ gradient-based algorithms, Newton-based algoritronsQuasi-
using Sylvester matrices, e.g., [18]. The generic fornatfor Newton algorithms.

convolutive mixtures is given by For example, the resulting gradient-based coefficient tepdg
< T 0F obtained by plugging (57) into the generic set of equatich&a)-
AW = s8¢ {WW oW } : (51) (47c). Noting thatPP = P, this leads to
< , X4 -
3In the Riemannian case the manifold is equipped with a meitich W=8C{ P|W - Maw, +F¢. (58)

allows us to formally define lengths and angles in the madifol

4This fact is also well known in the Riemannian case: The Heen Considering the structure of this coefficient update equatiwe
geometry precisely is the special case of the Riemanniametp where readily see that (58) together with (57b) and (57c) is pedgishe
the corresponding term is equal to zero. TRINICON-based generalization of the so-called Frost tieamer,

5In general, geodesic lines can be calculated by the calaflusriations . L . . .
using a given metric tensor. However, it should be noted thatarbitrary which in its original form represents an adaptive gradieseent

and/or high-dimensional geometries this is a non-triviaktand the existence Solution of the linearly constrained minimum variance (LCM
of closed-form solutions is not always guaranteed. problem [4], [5], [6]. Note that in contrast to the origingb@oach



in [4], the approach based on manifolds can straightforlyab® windowing matrix = (m, W' (m)) = Gio ® Gg;. This directly
generalized to Newton-based optimization procedures.eMar, it leads to the supervised adaptive filtering algorithms atingr to
should be noted that there is a tight relation between thestFrg9], including the Newton-type algorithms (such as the wkelbwn
beamformer and the so-called generalized sidelobe cand@ISC) recursive least-squares algorithm).

structure [19] which can also be exploited in the more gdnease
of TRINICON-based adaptation. Using more advanced opétion
criteria instead of the original minimum-variance criteripromises  In this paper we introduced generic expressions for TRINNCO
a more robust performance w.r.t. the well known signal chhatben ~based adaptation on arbitrary partly smooth manifoldsas emon-

problem in adaptive beamforming, e.g., [20]. strated that this concept adds another important degreecefiém

) ) ] ) ) in the general framework so that nearly arbitrary deterstiniprior
D. Linearly Constrained Natural Gradient and Linearly Ctraéned systeminformation can be incorporated.

Natural Newton Adaptation

VIlI. CONCLUSIONS
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