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Abstract—Blind system identification and subspace tracking represent
two important classes of signal processing problems with a variety

of applications. Although originally seemingly independent from each
other, the related algorithms exhibit various commonalities. In this
paper, we present a novel unified derivation of the corresponding classes
of adaptation algorithms. This top-down approach both clarifies the

algorithmic relations and also leads to various powerful generalizations
of the algorithms. Due to the rigorous approach, we obtain important
practical design rules for an efficient system design. By exploiting multiple
stochastic signal properties, the treatment also includes practically

useful relations to blind signal extraction and blind source separation
algorithms.

I. INTRODUCTION

Subspace estimation and tracking plays an important role in various

modern signal processing applications, e.g., in data compression,

estimation of frequencies of sinusoids, denoising, direction-of-arrival

estimation for multiple signals, etc. As a result, a variety of algorithms

for subspace estimation have been proposed, e.g, [1], [2], [3], [4], [5].

These methods are typically based on eigenvalue decomposition of

the correlation matrix of multichannel sensor signals or on singular

value decomposition of the data matrix.

On the other hand, estimation methods exhibiting a very similar

structure were proposed for the problem of blind system identification

(BSI) for the case of single-input and multiple-output (SIMO) FIR

systems in the context of blind deconvolution, e.g., [6], and of

acoustic source localization in reverberant environments, e.g., [7].

Figure 1(a) shows a block diagram of this SIMO-based BSI approach.

For this approach it can be shown that with sufficient excitation

by the source signal s(n) and with e(n) → 0, i.e., the condition

h1(n)∗w1(n) = −h2(n)∗w2(n), the impulse responses h1(n) and

h2(n) can be estimated uniquely up to a (frequency-independent)

scaling factor α, so that, ideally,

w1(n) = −α · h2(n), w2(n) = α · h1(n), (1)

as long as h1(n) and h2(n) do not share any common zeros

in the z-domain and the filter length L is chosen correctly. In

practice, the computation of the estimates of the filter coeffi-

cients w =
ˆ

wT
1 ,wT

2

˜T
, wp = [wp,0, . . . , wp,L−1]

T
, is typ-

ically based on the minimization of the error variance Ê
˘

e2
¯

,

where e(n) = x̌T(n)w and x̌(n) =
ˆ

x̌T
1 (n), x̌T

2 (n)
˜T

, x̌p(n) =

[xp(n), . . . , xp(n − L + 1)]T. It is straightforward to show that this

corresponds to the solution of the following homogeneous system of

equations:
∂

∂w
E

˘

e
2¯

= Rx̌x̌w
!
= 0, (2)

where Rx̌x̌(n) = Ê
˘

x̌(n)x̌T(n)
¯

denotes the correlation matrix of

the sensor signals.

Both the aforementioned subspace estimation methods and these

SIMO-based BSI methods can thus be related to the calculation

of eigenvectors w corresponding to extreme eigenvalues λmax and

λmin, respectively, of the correlation matrix Rx̌x̌(n) of multichannel

sensor signals (Note that λ ≥ 0 is guaranteed due to the positive-

semidefiniteness of Rx̌x̌(n)). In other words, the filter coefficients

w can generally be expressed as solutions of the eigenvalue equation

Rx̌x̌w = λw. (3)

Calculating the dominant eigenvectors of Rx̌x̌ in this way is also

well known as principal component analysis (PCA), while the normal

equation (2) (in the noiseless case) follows from (3) for λmin = 0.

Calculating the eigenvectors corresponding to the minimum eigen-

values is also known as minor component analysis (MCA).
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Fig. 1. Blind system identification based on (a) SIMO and (b) MIMO

models.

In order to allow a tracking in time-varying scenarios and to reduce

the complexity, various efficient adaptive methods were proposed

independently in both areas (e.g., [1], [2] for basis estimation of a

signal subspace (i.e., PCA) and, e.g., [7] for the estimation of SIMO

system coefficients (i.e., MCA), respectively). Interestingly, in both

cases, the estimation algorithms can be formulated similarly to the

familiar form of recursive update equations as known from supervised

adaptive filtering, e.g., the least-mean-square (LMS) algorithm1

w(n) = w(n − 1) − µx̌(n)e(n) (4)

or recursive least-squares (RLS) algorithms [8].

Recently, the known approach of SIMO-BSI has been extended

to the case of multiple-input and multiple-output (MIMO) systems

by exploiting the close relationship between blind source separation

(BSS) for broadband signals and blind system identification, e.g., [9],

1Here, the sign in (4) only formally differs from the LMS formulation for
the supervised case in [8] due to a slightly different notation in the blind case.



see Fig. 1(b). Hence, using suitable broadband BSS algorithms, it is

possible to perform MIMO-BSI. Similar to (1) in the SIMO case, we

can express the ideal separation solution in the MIMO case [9] if we

require the cancellation of all cross-channels of the overall system

between the sources sq and the outputs of the demixing system. For

instance, in the 2 × 2 case, the ideal separation solution reads
»

w11 w12

w21 w22

–

=

»

α1h22 −α2h12

−α1h21 α2h11

–

. (5)

Analogously to (1) the separation solution is unique up to (frequency-

independent) scaling (α1, α2), as long as h11 and h12 do not share

any common zeros in the z-domain, and h21 and h22 do not share

any common zeros in the z-domain, respectively, and the filter length

L is not overestimated.

In order to blindly estimate the matrix W̌ of demixing filter

coefficients for BSS, the fundamental goal is to make the output

signals y1,...,yP mutually statistically independent. Hence, in contrast

to the principal component analysis, we need to apply the more

general method of independent component analysis (ICA), e.g., [10].

To obtain suitable broadband algorithms, TRINICON (’TRIple-N

ICA for CONvolutive mixtures’), e.g., [11], [12], [9], provides a

generic concept for broadband adaptive MIMO filtering based on

ICA. TRINICON simultaneously exploits all fundamental stochastic

signal properties, i.e., nonwhiteness, nonstationarity, and nongaus-

sianity of the source signals. Due to its generality, it is also a

useful tool to deduce novel and improved algorithms, and to study

the relations between various algorithms. Based on TRINICON, a

simple relation between blind and supervised adaptive filtering was

developed in [13].

In this paper, we develop explicit algorithmic relations between

the coefficient update rules of broadband BSS/MIMO-BSI and (a.)

SIMO-BSI and (b.) subspace tracking algorithms by suitably special-

izing the assumed MIMO mixing system. Similarly to [13], we will

see that this top-down approach directly leads to both the known

algorithms of the categories (a) and (b), but also novel and powerful

generalizations of them which inherently exploit all fundamental

stochastic signal properties, as mentioned above. These links also

provide a practical avenue to the field of blind signal extraction (BSE)

of dominant source signals from mixtures due to the exploitation

of multiple stochastic properties, and clarify the relation between

SIMO-BSI and subspace tracking. Due to the rigorous approach

shown in this paper, we obtain various important design rules for

practical system implementation (e.g., coefficient initialization) and

for performance optimization.

II. A BRIEF RECAPITULATION OF TRINICON

In this section we first give a brief overview of the essential

elements of TRINICON for the coefficient adaptation. Thereby, we

restrict the presentation here to simple gradient-based coefficient

updates in the time domain.

A. Optimization Criterion

Various approaches exist to estimate the demixing matrix W̌ by

utilizing the following fundamental source signal properties [10]

which were all combined in TRINICON:

(i) Nongaussianity is exploited by using higher-order statistics for

ICA. The minimization of the mutual information (MMI) among

the output channels can be regarded as the most general approach

to separation problems [10]. To obtain an estimator that is also

suitable for inverse problem, TRINICON uses the Kullback-Leibler

divergence (KLD) between a certain desired joint pdf (essentially

representing a hypothesized stochastic source model as shown below)

and the joint pdf of the actually estimated output signals.

(ii) Nonwhiteness is exploited by simultaneous minimization of

output cross-relations over multiple time-lags. We therefore consider

multivariate pdfs, i.e., ‘densities covering D time-lags’.

(iii) Nonstationarity is exploited by simultaneous minimization of

output cross-relations at different time-instants. We assume ergodicity

within blocks of length N so that the ensemble average is replaced

by time averages over these blocks.

Throughout this section, we formulate the framework for Q = P

sources without loss of generality. In practice, the current number

of simultaneously active sources is allowed to vary throughout the

application and only the conditions Q ≤ P (for separation only) and

Q < P (for deconvolution), respectively, have to be fulfilled.

To introduce an algorithm for broadband processing of convolutive

mixtures, we first formulate the convolution of the FIR demixing

system of length L in the following matrix form [11]:

y(n) = W
T
x(n), (6)

where n denotes the time index, and

x(n) = [xT
1 (n), . . . ,xT

P (n)]T, (7)

y(n) = [yT
1 (n), . . . ,yT

P (n)]T, (8)

xp(n) = [xp(n), . . . , xp(n − 2L + 1)]T, (9)

yq(n) = [yq(n), . . . , yq(n − D + 1)]T. (10)

The parameter D in (10), 1 ≤ D < L, denotes the number of time

lags taken into account to exploit the nonwhiteness of the source

signals as shown below. Wpq , p = 1, . . . , P , q = 1, . . . , P denote

2L×D Sylvester matrices that contain all coefficients of the respec-

tive filters in each column by successive shifting, i.e., the first column

reads
ˆ

wT
pq, 0, . . . , 0

˜T
, the second column

ˆ

0,wT
pq, 0, . . . , 0

˜T
, etc.

Finally, the 2PL × PD matrix W combines all Sylvester matrices

Wpq .

Based on the KLD, the following cost function was introduced

in [11] taking into account all three fundamental signal properties

(i)-(iii):

J (m,W) = −

∞
X

i=0

β(i, m)
1

N

·

iNL+N−1
X

j=iNL

{log(p̂s,PD(y(j))) − log(p̂y,PD(y(j)))} , (11)

where p̂s,PD(·) and p̂y,PD(·) are assumed or estimated PD-variate

source model (i.e., desired) pdf and output pdf, respectively. The

index m denotes the block time index for a block of N output samples

shifted by L samples relatively to the previous block. Furthermore,

β is a window function allowing for online, offline, or block-online

algorithms [12].

An alternative formulation of the second term in the optimization

criterion (11) is obtained by using the mapping between the output

pdf and the input pdf of the demixing filter which plays an important

role for the following considerations in this paper. This mapping can

be expressed as follows, e.g., [14]:

p̂y,PD(y) =
p̂xP D,PD(xPD)

|det{VTW}|
(12)

with the window matrix V = Bdiag{Ṽ, . . . , Ṽ}, where Ṽ =
ˆ

ID×D, 0D×(2L−D)

˜T
.



B. Gradient-Based Coefficient Update

For brevity and simplicity we concentrate in this subsection on

iterative Euclidean gradient-based block-online coefficient updates

which can be written in the general form

W̌
0(m) := W̌(m − 1), (13a)

W̌
ℓ(m) = W̌

ℓ−1(m) − µ∆W̌
ℓ(m), ℓ = 1, . . . , ℓmax, (13b)

W̌(m) := W̌
ℓmax(m), (13c)

where µ is a stepsize parameter, and the superscript index ℓ denotes an

iteration parameter to allow for multiple iterations (ℓ = 1, . . . , ℓmax)

within each block m. The downwards pointing hat symbol on top of

W in (13) serves to distinguish the condensed PL × Q demixing

coefficient matrix W̌ to be optimized, from the corresponding larger

Sylvester matrix W in the cost function. The matrix W̌ consists of

the first column of each submatrix Wpq without the L zeros.

Obviously, when calculating the gradient of J (m,W) w.r.t. W̌

explicitly, we are confronted with the problem of the different matrix

formulations W and W̌. The larger dimensions of W are a direct

consequence of taking into account the nonwhiteness signal property

by choosing D > 1. The rigorous distinction between these different

matrix structures is also an essential aspect of the general TRINICON

framework and leads to an important building block whose actual

implementation is fundamental to the properties of the resulting

algorithm, the so-called Sylvester constraint (SC) on the coefficient

update, formally introduced in [12]. Using the Sylvester constraint

operator the gradient descent update can be written as

∆W̌
ℓ(m) = SC {∇WJ (m,W)}|

W=Wℓ(m) . (14)

Depending on the particular realization of (SC), we are able to select

both, well known and also novel improved adaptation algorithms [14].

In [9] an explicit formulation of a generic Sylvester constraint was

derived to further formalize and clarify this concept:
h

∆w̌
ℓ
pq(m)

i

i
=

X

k,j

h

∆W
ℓ
pq(m)

i

kj
δk,(i+j−1). (15)

Here, δab denotes the Kronecker symbol.

It can be shown [14] that by taking the gradient of J (m) with

respect to the demixing filter matrix W̌(m) according to (14),

we obtain the following generic gradient descent-based TRINICON

update rule:

∆W̌
ℓ(m) =

1

N

∞
X

i=0

β(i, m)SC

8

<

:

iNL+N−1
X

j=iNL

h

x(j)ΦT
s,PD(y(j))

−

„

“

W
ℓ−1(m)

”T
«+

#)

, (16a)

with ·+ denoting the pseudoinverse of a matrix, and with the

generalized score function

Φs,PD(y(j)) = −
∂log p̂s,PD(y(j))

∂y(j)

−
1

N

X

r

X

i1,i2,...

∂G
(r)
s,i1,i2,...

∂y

iNL+N−1
X

j=iNL

∂ log p̂s,PD

∂Q
(r)
s,i1,i2,...

(16b)

resulting from the hypothesized source model p̂s,PD =

p̂s,PD(y, Q
(1)
s , Q

(2)
s , . . .) with certain stochastic model parameters

Q
(r)
s , r = 1, 2, . . . (the calligraphic symbols denote multidimensional

arrays) given by their elements Q
(r)
s,i1,i2,... in the generic form

Q
(r)
s,i1,i2,...(i) = 1

N

PiNL+N−1
j=iNL

n

G
(r)
s,i1,i2,...(y(j))

o

with certain

nonlinear functions G
(r)
s,i1,i2,...(y), r = 1, 2, . . .. A well known

special case of such a parameterization is the estimate of the

correlation matrix Ryy(i) = 1
N

PiNL+N−1
j=iNL

˘

y(j)yT(j)
¯

. The

filter coefficients and the stochastic model parameters are estimated

in an alternating way.

III. TRINICON FOR BSS AND MIMO-BSI

As already suggested in Sec. I, the case of broadband BSS/MIMO-

BSI represents the most general setup considered in this paper so

that it constitutes the common basis for the subsequent cases. In

BSS, the aim is to achieve statistical independence between the

output channels. Hence, the desired pdf is factorized w.r.t. the output

channels, i.e.,

p̂s,PD(y(j))
(BSS)
=

P
Y

q=1

p̂yq,D(yq(j)), (17)

so that the desired score function simplifies to

Φs,PD(y)
(BSS)
=

h

Φ
T
1,D(y1), . . . ,Φ

T
P,D(yP )

iT

. (18)

In other words, for each output channel the score function can be

obtained individually from a certain choice of pdf. For illustration, the

special case of algorithms based on second-order statistics (SOS) is

obtained from choosing multivariate Gaussian source models leading

to [12]

Φq,D(yq(j)) = R
−1
yqyq

(i)yq(j). (19)

IV. RELATION TO MCA AND ADAPTIVE SIMO-BSI

In this section we show how to deduce the class of SIMO-based

BSI (or minor component analysis) algorithms from TRINICON

using the generic gradient-based update (16a). with the specialized

score function (18) for separation and identification problems.

A. SIMO-BSI as a Specialization of the MIMO Case

The ideal separation filter matrix W̌ideal,sep in the 2 × 2 case is

given by (5). we now consider the SIMO mixing model in Fig. 1(a)

as a specialization of the MIMO mixing model in Fig. 1(b), i.e.,

h11 → h1, h12 → h2, h21 → 0, h22 → 0.

According to the right-hand side of (5) the corresponding ideal

demixing system taking into account this prior knowledge reads
»

w11 w12

w21 w22

–

= α

»

0 −h2

0 h1

–

. (20)

By comparing both sides of this equation, we immediately obtain the

corresponding demixing system structure shown on the right side in

Fig. 1(a). This is indeed the well-known SIMO BSI/AED approach,

which in this way follows rigorously from the general equation (5)

together with the prior knowledge on the specialized mixing system.

Moreover, we see that only the second column of the demixing matrix

is relevant for the adaptation process. The elements of the first column

can be regarded as don’t cares.

We now consider the second term of the coefficient update (16a).

Theorem 1: In the case of SIMO mixing systems the expression
`

WT
´+

in the second term of (16a) becomes equal to zero.

Proof: From (12) immediately follows that if log p̂y,PD(y(n)) =
const. ∀ W ⇒ log

˛

˛det
˘

VTW
¯˛

˛ = const. ∀ W. Analogously,

since y = WTHTs: if log p̂y,PD(y(n)) = const. ∀ W ⇒
log

˛

˛det
˘

WTHT
¯˛

˛ = const. ∀ W. Combining these two state-

ments, we can say that if det
˘

WTHT
¯

= const. ∀ W ⇒
det

˘

VTW
¯

= const. ∀ W, i.e., if det
˘

WTHT
¯

=
const. ∀ W ⇒ second term of the gradient is equal to zero.

Now, let W =
ˆ

WT
1 , . . . ,WT

P

˜T
and H = [H1, . . . ,HP ]

be MISO and SIMO, respectively. Then, det
˘

WTHT
¯

=

det
n

PP

p=1 WT
p HT

p

o

. Since
PP

p=1 WT
p HT

p is upper triangular, we



write det
˘

WTHT
¯

=
“

PP

p=1 wp,0hp,0

”N

. For only one active

source, only subfilter wpfar
connected to the microphone with great-

est distance to the source, may exhibit a nonzero value at its first

tap weight, i.e., wp,0 = α · δp,pfar
This results in det

˘

WTHT
¯

=

(hpfar,0)
N = const. Hence, det

˘

VTW
¯

= const. ∀ W and the

second term in the update (16a) becomes equal to zero. 3

Next, we consider the first term x(j)ΦT
s,PD(y(j)) in the coeffi-

cient update (16a) for the SIMO case and note that its second (block-

)column reads x(j)ΦT
y2,D(y2(j)). We now perform the following

formal substitutions in order to be in accordance with the literature

on blind SIMO identification and supervised adaptive filtering, e.g.,

[8] (see Fig. 1(a) and Fig. 1(b)):

y2 → e,

»

w12

w22

–

=

»

−ĥ2

ĥ1

–

→ w =

»

w1

w2

–

. (21)

Hence, the second column of the first term of the coefficient update

is finally expressed as x(j)ΦT
e,D(e(j)). Note that the substitution of

the coefficient notation in (21) is justified by (20).

Thus, we obtain the following sub-matrix of the specialized

gradient-based TRINICON update:

w
ℓ(m) =

=w
ℓ−1(m) −

µ

N

∞
X

i=0

β(i, m)SC

8

<

:

iNL+N−1
X

j=iNL

x(j)ΦT
e,D(e(j))

9

=

;

.

(22)

This formally represents the triple-N-generalization of the Least-

Mean-Squares (LMS) algorithm analogously to the supervised adap-

tive filtering theory, as discussed in [13]. Although we now performed

different specializations of the generic TRINICON update, we for-

mally obtained the same algorithmic structure. However, in the blind

SIMO identification application, we additionally have to extract the

final estimates ĥ1 and ĥ2 from the coefficient vector w(m) according

to (21). This relation between LMS and blind SIMO identification

corresponds to [7], where the adaptive eigenvalue decomposition

(AED) problem was related to the traditional LMS algorithm of the

simple form (4).

B. Normalization and Coefficient Initialization

The general relation between MIMO BSI and SIMO BSI leads to

an important guideline for the initialization of the filter coefficients.

In particular, we consider the question whether the algorithm can

converge to the (undesired) trivial solution w = 0 (Note that MCA

was originally derived from the minimization of the error variance

according to (2)).

In the literature, various constraints have been proposed to avoid

the trivial solution, such as the unit norm constraint by renormaliza-

tion after each step (e.g., [1], [7], [10]),

w
ℓ(m) =

wℓ−1(m) − µ∆wℓ(m)

‖wℓ−1(m) − µ∆wℓ(m)‖
. (23)

In the following, we show how the convergence to the trivial solution

can be avoided even without renormalization by suitable coefficient

initialization.

Theorem 2: The algorithm (22) cannot converge to the trivial

solution, as long as the initialization w(0) is not orthogonal to the

ideal solution wideal =
ˆ

−hT
2 hT

1

˜T
.

Proof: We pre-multiply the update (22) with wT
ideal on both sides of

the update equation:

w
T
idealw

ℓ(m) = w
T
idealw

ℓ−1
(m) −

µ

N

∞
X

i=0

β(i, m)

iNL+N−1
X

j=iNL

“

h
T
1 SC

n

x2(j)Φ
T
e,D(e(j))

o

− h
T
2 SC

n

x1(j)Φ
T
e,D(e(j))

o”

.

Using (15) it can be shown that this expression can be expanded to

w
T
idealw

ℓ(m) = w
T
idealw

ℓ−1
(m) −

µ

N

∞
X

i=0

β(i, m)

iNL+N−1
X

j=iNL

D
X

l=1

“

h
T
1 x̌2(j − l + 1) − h

T
2 x̌1(j − l + 1)

”

Φe,l(e(j)).

Since hT
1 x̌2(·)−hT

2 x̌1(·) ≡ 0 is fixed due to the SIMO propagation

model, we have wT
idealw

ℓ(m) = wT
idealw

ℓ−1
(m) = const., i.e.,

provided that wT
idealw(0) 6= 0, the coefficient vector w will not

converge to zero. ⋄

V. RELATION TO PCA, SUBSPACE TRACKING, AND

BLIND SIGNAL EXTRACTION

A. Extraction of the First Principal Component or the First Indepen-

dent Component

Assuming only one dominant source and starting the treatise again

with a 2 × 2 BSS setup, we now cover the complementary case of

Fig. 1(a). In other words, we are now interested in the first column

of the demixing filter matrix

W̌ =: [w ∗] , (24)

where ∗ denotes don’t cares. According to the considerations in

Sect. I, the selected matrix elements in the first column are related

to the signal subspace, while the other column(s) span the noise

subspace. To deduce an adaptation algorithm for this case, we

apply again Theorem 1 to the second term of the generic gradient-

based coefficient update. By picking now the first column of the

demixing filter matrix according to (24), we again obtain the triple-

N-generalization of the LMS algorithm:

w
ℓ(m) =

=w
ℓ−1(m) −

µ

N

∞
X

i=0

β(i, m)SC

8

<

:

iNL+N−1
X

j=iNL

x(j)ΦT
1,D(y1(j))

9

=

;

.

(25)

Note that due to the simultaneous exploitation of the stochastic signal

properties (i)-(iii), this algorithm not only performs PCA but can be

used for blind signal extraction (BSE). Accordingly, in the latter case,

the adaptive MISO system obtained by (25) can also be regarded as

a self-steering beamformer.

Similar as in MCA, as discussed above, various constraints are

discussed in the PCA literature, such as the unit norm constraint and

unitarity constraints. For PCA, in some of the well known algorithms

the unit norm constraint is also required to prevent divergence (e.g.,

variance maximization by gradient ascent adaptation), in contrast

to MCA, as discussed above. Note that changing the sign of the

TRINICON-based update in (25) will be absorbed into the arbitrary

scaling factor α. Hence, to be in accordance with the PCA literature,

we now consider the case with positive sign and norm constraint.

Approximation of the norm constraint, i.e., the denominator in

(23) using a Taylor series expansion w.r.t. µ leads to the following



expression according to [1], [10]:

w − µ∆w

‖w − µ∆w‖
≈ w − µ∆w + µ

“

∆w
T
w

”

w. (26)

Applying this approximation to (25) and changing the sign as

mentioned above leads to

w
ℓ(m) = w

ℓ−1(m)

+
µ

N

∞
X

i=0

β(i, m)

iNL+N−1
X

j=iNL

n

SC
n

x(j)ΦT
1,D(y1(j))

o

−w
ℓ−1(m)

»

“

w
ℓ−1(m)

”T

SC
n

x(j)ΦT
1,D(y1(j))

o

–ff

.(27)

This update rule represents the triple-N generalization of the so-called

Oja Rule [1] which is well known in the field of PCA. This can be

seen more clearly for D = 1 and by taking into account y1 = wTx̌:

w
ℓ(m) = w

ℓ−1(m) +
µ

N

∞
X

i=0

β(i, m)

iNL+N−1
X

j=iNL

h

x̌(j) − w
ℓ−1(m)y1(j)

i

Φ1,1(y1(j)). (28)

For N = NL = 1, ℓmax = 1, Φ1,1(y1(j)) = y1(j), β(i, m) = δim

this corresponds exactly to the celebrated Oja rule for PCA.

B. Extraction of Multiple Principal Components or Multiple Inde-

pendent Components

We now consider the case of multiple dominant sources. In general,

for this case we have to apply (16a) with the BSS-specific score

function (18).

As a practically important special case, we now consider an

orthonormality (or, more generally, a unitarity) constraint on W. This

case is particularly popular, e.g., in communications engineering, and

is motivated as follows. Consider a lossless mixing system. Then the

ideal demixing system will also be lossless. For a lossless demxing

system W, we obtain the following condition for the signal powers

from (6):

y
T
y = x

T
WW

T
x

!
= x

T
x ⇒ WW

T !
= I, (29)

i.e., a lossless demixing system can be enforced by an orthonormality

constraint, or, more generally, by a unitarity constraint.

Theorem 3: For W constrained to be orthonormal (unitary), the

expression
`

WT
´+

in the second term of (16a) is again zero.

Proof: Since both H and W are assumed to be lossless, the overall

system HW is also lossless, i.e., HW is also orthonormal (unitary).

Hence, its determinant is det{HW} = det{WTHT} = 1 = const.

Together with the first part of the previous proof of Theorem 1, we

conclude that in the lossless case the second term of the gradient

becomes again equal to zero. ⋄
Hence, we conclude that under the orthonormality (unitarity) assump-

tion, the cases of blind signal extraction and principal component

analysis for multiple dominant sources can be treated analogously to

the previously considered case of only one dominant source.

In particular, by replacing the length-PL vector w...(m) in (27)

by a PL × R matrix W̌...(m) for the R dominant components

(1 ≤ R ≤ P ), and Φ1,D(y1(j)) by Φy,D(y(j)) accordingly, where

the length-RD vector y contains the R dominant output signals

with D time lags each, we directly obtain the corresponding triple-

N generalization of the Oja rule for multiple dominant components.

This can again be seen more clearly for D = 1, so that we obtain

the generalization of (28) for multiple dominant sources. In [2] it

was shown for the PCA case (i.e., stationary SOS case) that the

resulting coefficient update also corresponds up to a normalization

factor to the celebrated PAST (projection approximation subspace

tracking) algorithm [2] with gradient-based adaptation. It should be

noted that RLS-type algorithms, as in [2], correspond to the more

advanced Newton-based adaptation instead of the simple gradient-

based adaptation which we have considered in this paper for brevity.

VI. SUMMARY AND CONCLUSIONS

Based on TRINICON, a generic framework for adaptive signal

processing, we have explicitly shown several algorithmic relations

between BSS, MIMO-BSI, SIMO-BSI, MCA, PCA, subspace track-

ing, and blind signal extraction, as summarized in Fig. 2. Due to

the top-down approach we also obtained various extensions of the

algorithms and useful guidelines.

BSS/
MIMO-BSI

Blind Signal
Extraction

SIMO-BSI
(AED)

extr.

SIMO,

(ICA->MCA)

ICA->PCA

PAST

one
source

Oja

offline,
L=1

MUSIC

unitarity

Fig. 2. Summary of algorithmic relations considered in this paper.
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