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Abstract Blind source separation (BSS) algorithms for time series can exploit
three properties of the source signals: nonwhiteness, nonstationarity,
and nongaussianity. While methods utilizing the first two properties
are usually based on second-order statistics (SOS), higher-order statis-
tics (HOS) must be considered to exploit nongaussianity. In this chap-
ter, we consider all three properties simultaneously to design BSS algo-
rithms for convolutive mixtures within a new generic framework. This
concept derives its generality from an appropriate matrix notation com-
bined with the use of multivariate probability densities for considering
the time-dependencies of the source signals. Based on a generalized
cost function we rigorously derive the corresponding time-domain and
frequency-domain broadband algorithms. Due to the broadband ap-
proach, time-domain constraints are obtained which provide a more
detailed understanding of the internal permutation problem in tradi-
tional narrowband frequency-domain BSS. For both, the time-domain
and the frequency-domain versions, we discuss links to well-known and
also to novel algorithms that follow as special cases of the framework.
Moreover, we use models for correlated spherically invariant random
processes (SIRPs) which are well suited for a variety of source signals
including speech to obtain efficient solutions in the HOS case. The con-
cept provides a basis for off-line, on-line, and block-on-line algorithms by
introducing a general weighting function, thereby allowing for tracking
of time-varying real acoustic environments.

Keywords: Blind Source Separation, Convolutive Mixtures, Second-Order Statis-
tics, Higher-Order Statistics, Time Domain, Frequency Domain, Broad-
band Approach, Spherically Invariant Random Processes.
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1. INTRODUCTION

The problem of separating convolutive mixtures of unknown time se-
ries arises in several application domains, a prominent example being the
so-called cocktail party problem, where we want to recover the speech
signals of multiple speakers who are simultaneously talking in a room.
The room will generally be reverberant due to reflections on the walls,
i.e., the original source signals sq(n), q = 1, . . . , Q of our separation prob-
lem are filtered by a linear multiple input and multiple output (MIMO)
system before they are picked up by the sensors. Most commonly used
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Figure 10.1 Linear MIMO model for BSS.

BSS algorithms are developed under the assumption that the number Q

of source signals sq(n) equals the number P of sensor signals xp(n). How-
ever, the more general scenario with an arbitrary number of sources and
sensors can always be reduced to the standard BSS model (Fig. 10.1).
The case that the sensors outnumber the sources is termed overdeter-

mined BSS (P > Q). The main approach to simplify the separation
problem in this case is to apply principle component analysis (PCA) [1],
extract the first P components and then use standard BSS algorithms.
The more difficult case P < Q is called underdetermined BSS or BSS
with overcomplete bases. Mostly the sparseness of the sources in the
time-frequency domain is used to determine clusters which correspond
to the separated sources (e.g., [2]). Recent developments showed that
the sparseness can be exploited to eliminate Q − P sources, and then
again standard BSS algorithms can be applied [3].

Throughout this chapter, we therefore regard the standard BSS model
where the number Q of source signals sq(n) equals the number of sensor
signals xp(n), p = 1, . . . , P (Fig. 10.1). An M -tap mixing system is thus
described by

xp(n) =
P∑

q=1

M−1∑

κ=0

hqp(κ)sq(n − κ), (10.1)
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where hqp(κ), κ = 0, . . . ,M − 1 denote the coefficients of the finite
impulse response (FIR) filter model from the q-th source to the p-th
sensor.

In BSS, we are interested in finding a corresponding demixing system
according to Fig. 10.1, where the output signals yq(n), q = 1, . . . , P are
described by

yq(n) =
P∑

p=1

L−1∑

κ=0

wpq(κ)xp(n − κ). (10.2)

The separation of the mixtures obtained by the sensor signals xp(n)
utilizes the fundamental assumption of statistical independence between
the original source signals sq(n). It can be shown (see, e.g., [1]) that the
MIMO demixing system coefficients wpq(κ) can in fact reconstruct the
sources up to an unknown permutation of their order and an unknown
filtering of the individual signals, where the demixing filter length L

should be chosen at least equal to M . It should be stressed that the
filtering ambiguity prevents a deconvolution of the sensor signals and
therefore BSS achieves a mere separation of statistically independent
signals.

From the description of the BSS model (see Fig. 10.1) it can be seen
that this technique is closely related to adaptive beamforming. This re-
lationship was first shown in [4] where BSS was also termed blind beam-
forming. Thus, as an inherent advantage of BSS, prior knowledge of the
spatial position of the sensors and sources is not necessary and, therefore,
BSS is robust against unknown array deformations or distortions of the
wavefront. Another important difference is the optimization criterion
in BSS which utilizes the statistical independence of the source signals.
Thus, adaptation of the demixing system is possible even if all source
signals are simultaneously active in contrast to adaptive beamforming
where the distinction between target signal activity and interfering sig-
nal activity has to be made [5]. However, one drawback of most BSS
algorithms is that currently the number of sources has to be known for
estimating the demixing system.

In [6] it was shown that merely decorrelating the output signals yq(n)
does not lead to a separation of the sources. This implies that we have
to force the output signals to become statistically decoupled up to joint
moments of a certain order by using additional conditions. This can
be realized by using approaches to blindly estimate the P 2L MIMO
coefficients wpq(κ) in (10.2) by exploiting one of the following source
signal properties [1]:

(i) Nonwhiteness. Exploited by simultaneous diagonalization of out-
put correlation matrices over multiple time-lags, e.g., [7, 8].
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(ii) Nonstationarity. Exploited by simultaneous diagonalization of
short-time output correlation matrices at different time instants,
e.g., [6], [9]-[17].

(iii) Nongaussianity. Exploited by using higher order statistics for in-
dependent component analysis (ICA), e.g., [18]-[23].

While there are several algorithms for convolutive mixtures - both in
the time domain and in the frequency domain - utilizing one of these
properties, few algorithms explicitly exploit two properties [24, 25] and
so far, none is known which simultaneously exploits all three properties.
However, it has recently been shown that in practical scenarios, the
combination of these criteria can lead to improved performance [24, 25].

Extending the work in [26, 27], we present in the following a rigor-
ous derivation of a unified framework for convolutive mixtures exploit-
ing all three signal properties by using HOS. This is made possible by
introducing an appropriate matrix notation combined with the use of
multivariate probability densities for considering the time-dependencies
of the source signals. The approach is suitable for on-line and off-line
algorithms as it uses a general weighting function, thereby allowing for
tracking of time-varying environments [28]. The processing delay can be
kept low by working with overlapping and/or partitioned signal blocks
[29]. Having derived a generic time-domain algorithm, we introduce
a model for spherically invariant random processes (SIRPs) [30] which
are well suited, e.g., for speech to allow efficient realizations. More-
over, we discuss links to well-known SOS algorithms and we show that
a previously presented algorithm [26] is the optimum second-order BSS
approach in the sense of minimum mutual information known from in-
formation theory. Furthermore we introduce an equivalent broadband
formulation in the frequency domain by extending the tools of [31] to
unsupervised adaptive filtering. This will also give a detailed insight in
the internal permutation problem of narrowband frequency-domain BSS.
Again, links to well-known and extended HOS and SOS algorithms as
special cases are discussed. Moreover, using the so-called generalized
coherence [32], links between the time-domain and frequency-domain
SOS algorithms can be established [26] showing that our cost function
leads to an update equation with an inherent normalization. As shown
by experimental results, this allows an efficient separation of real-world
speech signals.
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2. GENERIC BLOCK TIME-DOMAIN BSS
ALGORITHM

In this section, we first introduce a general matrix formulation as
a basis for a rigorous derivation of time-domain algorithms from a cost
function which inherently takes into account all three fundamental signal
properties (i)-(iii). We then consider the so-called equivariance property
in the convolutive case for deriving the corresponding natural gradient
update. From this formulation, several well-known and novel algorithms
follow as special cases.

2.1 MATRIX NOTATION FOR
CONVOLUTIVE MIXTURES

From Fig. 10.1, it can be seen that the output signals yq(n) are ob-
tained by convolving the input signals xp(n) with the demixing filter
coefficients wpq. In addition to the filter length L and the number of
channels P we need to introduce two more parameters for the following
general formulation:

the number of time-lags D taken into account for exploiting the
nonwhiteness property of the input signals as shown below (1 ≤
D ≤ L), and

the block length N as basis for averaging the estimates of the
multivariate probability density functions (pdfs) as used below
(N > PD in general; N > D for the natural gradient update
discussed below).

To derive an algorithm for block processing of convolutive mixtures tak-
ing into account D time-lags, we first need to reformulate the convolution
(10.2):

yq(m, j) =
P∑

p=1

xp(m, j)Wpq, (10.3)

where m denotes the block index, and j = 0, · · · , N − 1 is a time-shift
index within a block of length N , and

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)], (10.4)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)]. (10.5)

The 2L×D matrix Wpq exhibits a Sylvester structure that contains all
L coefficients of the respective demixing filter in each column needed for
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the matrix formulation of the linear convolution:

Wpq =


























wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1
...

. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
... · · · ...

...
0 · · · 0 0


























. (10.6)

It can be seen that for the general case, 1 ≤ D ≤ L, the last L−D+1 rows
are padded with zeros to ensure compatibility with the length of xp(m, j)
with regard to a concise frequency-domain formulation in Sect. 3. Finally,
to allow a convenient notation of the algorithm we combine all channels,
and thus we can write (10.3) compactly as

y(m, j) = x(m, j)W, (10.7)

with

x(m, j) = [x1(m, j), . . . ,xP (m, j)], (10.8)

y(m, j) = [y1(m, j), . . . ,yP (m, j)], (10.9)

W =






W11 · · · W1P
...

. . .
...

WP1 · · · WPP




 . (10.10)

Also, with respect to the frequency-domain derivation in Sect. 3. we
extend (10.7) by collecting all N vectors xp, yq, so that all output signal
samples of the m-th block are captured:

Y(m) = X(m)W, (10.11)

with the matrices

Y(m) = [Y1(m), · · · ,YP (m)], (10.12)

X(m) = [X1(m), · · · ,XP (m)], (10.13)

Yq(m) = [yT
q (m, 0), . . . ,yT

q (m,N − 1)]T , (10.14)

Xp(m) = [xT
p (m, 0), . . . ,xT

p (m,N − 1)]T . (10.15)
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Superscript T denotes the transposition of a vector or a matrix. Ob-
viously, Xp(m), p = 1, . . . , P in (10.15) are Toeplitz matrices of size
(N × 2L) due to the shift of subsequent rows by one sample each:

Xp(m) =









xp(mL) · · · xp(mL − 2L + 1)

xp(mL + 1)
. . . xp(mL − 2L + 2)

...
. . .

...
xp(mL + N − 1) · · · xp(mL − 2L + N)









. (10.16)

Analogously to supervised block-based adaptive filtering [29, 31], the
approach followed here can also be carried out with overlapping and/or
partitioned data blocks to increase the convergence rate and to reduce
the signal delay. Overlapping is done by simply replacing the time index
mL in the equations by mL

α with the overlap factor 1 ≤ α ≤ L. For
clarity, we will omit the overlap factor and will point to it when necessary.

2.2 COST FUNCTION AND ALGORITHM
DERIVATION

A generic SOS algorithm for convolutive mixtures has been derived
in [26] from a cost function that explicitly contains correlation matrices
that include several time-lags (c.f. property (i)) under the assumption of
short-time stationarity (c.f. property (ii)). Additionally, for exploiting
property (iii), higher order statistics have to be considered. Higher-
order approaches for BSS can be divided into three classes [1]: maximum
likelihood (ML) estimation [21], minimization of the mutual information
(MMI) among the output signals [33], and maximization of the entropy
(ME/’infomax’) [23]. Although all of these HOS approaches lead to
similar update rules, MMI can be regarded as the most general one [33].

Based on a generalization of Shannon’s mutual information [34], we
now define the following cost function which simultaneously accounts for
the three fundamental properties (i)-(iii):

J (m) = −
∞∑

i=0

β(i,m)
1

N

N−1∑

j=0

{log (p̂1,D(y1(i, j)) · . . . · p̂P,D(yP (i, j)))

− log (p̂PD(y1(i, j), . . . ,yP (i, j))} , (10.17)

where p̂p,D(·) is the estimated or assumed multivariate probability den-
sity function (pdf) for channel p of dimension D and p̂PD(·) is the joint
pdf of dimension PD over all channels. Furthermore, D is the memo-
ry length, i.e., the number of time-lags to model the nonwhiteness of
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the P signals as above. Note also that the time series of these pdf es-
timates completely describes any multichannel stochastic process with
the assumption of short-time stationarity over length-N blocks (this as-
sumption is reasonable for many real-world signals such as speech). The
expectation operator of the mutual information [34] is replaced in (10.17)
by short-time averages within these blocks. β is a window function with
finite support that is normalized according to

∑
∞

i=0 β(i,m) = 1, and
allows off-line, on-line, and block-online implementations of the algo-
rithms. As an example, β(i,m) = (1 − λ)λm−i for 0 ≤ i ≤ m, and
β(i,m) = 0 else, leads to an efficient on-line version allowing for track-
ing in time-varying environments [28].

In this chapter, we consider algorithms based on first-order gradients.
An extension to higher-order gradients would be straightforward but
computationally more expensive. Moreover, to obtain general expres-
sions allowing a smooth transition to the frequency domain, we consider
complex signals for the derivative. In order to calculate the gradient
[35, 36]

∇WJ (m) = 2
∂J (m)

∂W∗
, (10.18)

we need to express the cost function (10.17) in terms of the demixing
matrix W which contains the coefficients of all channels. A common way
to achieve this is to transform the output signal pdf p̂PD(y) into the PD-
dimensional input signal pdf using W which is considered as a mapping
matrix for this linear transformation. This procedure is directly applied
to the second term in the braces of (10.17), followed by differentiation
w.r.t. W. The derivative of the input signal pdf, which appears as an
additive constant due to the logarithm, vanishes as it is independent
of W. The argument of the logarithm in the first term in the braces,
however, is factorized among the channels. Therefore, we apply the chain
rule in this case, rather than transforming the pdfs.

Finally, the generic HOS gradient for the coefficient update utilizing
all three signal properties (i)-(iii) can be expressed as

∇WJ (m) =
2

N

∞∑

i=0

β(i,m)
N−1∑

j=0

{

xH(i, j)Φ(y(i, j))

−V1D0
2LP×DP

(

WHV1D0
2LP×DP

)
−1

}

, (10.19)

with the multivariate score function

Φ(y(i, j)) =



−
∂p̂1,D(y1(i,j))

∂y1(i,j)

p̂1,D(y1(i, j))
, . . . ,−

∂p̂P,D(yP (i,j))
∂yP (i,j)

p̂P,D(yP (i, j))



 , (10.20)



BSS for Convolutive Mixtures: A Unified Treatment 263

and the 2LP × DP window matrix V1D0
2LP×DP defined as

V1D0
2LP×DP = bdiag

{

W1D0
2L×D, . . . ,W1D0

2L×D

}

, (10.21)

W1D0
2L×D =

[

ID×D,0(2L−D)×D

]

. (10.22)

The operator bdiag{A1, . . . ,AP } denotes a block-diagonal matrix with
submatrices A1, . . . ,AP on its diagonal. For the description of window
matrices (also appearing in the frequency-domain algorithms in Sect. 3.)
we use the following conventions:

The lower index of a matrix denotes its dimensions.

P -channel matrices (as indicated by the size in the lower index)
are partitioned into P single-channel window matrices.

The upper index describes the positions of ones and zeros. Unity
submatrices are always located at the upper left (‘10’) or lower
right (‘01’) corners of the respective single-channel window matrix.
The size of these clusters is indicated in subscript (e.g., ‘01L’).

The window matrix V1D0
2LP×DP appears due to the transformation of pdfs

by the non-square Sylvester matrix W [37].
With an iterative optimization procedure, the current demixing ma-

trix is obtained by the recursive update equation

W(m) = W(m − 1) − µ∆W(m), (10.23)

where µ is a stepsize parameter, and ∆W(m) is the update which is set
equal to ∇WJ (m) for gradient descent adaptation. Due to the adap-
tation process, the coefficient matrix becomes time-variant. For clarity
we will generally omit the block index of W and will point to it when
necessary. Note that the Sylvester structure (see Eqs. 10.6, 10.10) of
the update in (10.23) has to be ensured. (The structure of the update
might be disturbed by imprecision effects and also depends on the tech-
nique used for estimating the pdfs.) A simple remedy for this generic
update is to pick the first column and replicate it. For special cases, and
frequency-domain versions discussed later, we will give more specific so-
lutions for enforcing this constraint.

2.3 EQUIVARIANCE PROPERTY AND
NATURAL GRADIENT

It is known that stochastic gradient descent, i.e., ∆W(m) =
∇WJ (m) suffers from slow convergence in many practical problems due
to statistical dependencies in the data being processed.
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In the BSS application, we can show that the separation perfor-
mance of the gradient update rule (10.19), (10.23) depends on the
MIMO mixing system. The mixing process can be described analogously
to (10.7) by x(m, j) = s(m, j)H, where s(m, j) is the corresponding
1×P (M+L−1) source signal row vector and H is the P (M+L−1)×2PL

mixing matrix in Sylvester structure. The dimensions result from the
linearity condition of the convolution. Due to the inevitable filtering am-
biguity in convolutive BSS (e.g., [1]), it is at best possible to obtain an
arbitrary block diagonal matrix C = HW, i.e., C− bdiagC = 0, where
C combines mixing and unmixing coefficient matrices. This means the
output signals can become mutually independent but the output signals
are still arbitrarily filtered versions of the source signals. To see how
(10.19) behaves, we pre-multiply both sides of (10.19) by H. This way
it can easily be shown that C(m) depends on the mixing system H, and,
therefore, on its conditioning.

Fortunately, a modification of the ordinary gradient, termed the na-

tural gradient by Amari [20] and the relative gradient by Cardoso [21]
(which is equivalent to the natural gradient in the BSS application)
has been developed that largely removes all effects of an ill-conditioned
mixing matrix H assuming an appropriate initialization of W. The idea
of the relative gradient is based on the equivariance property. Generally
speaking, an estimator behaves equivariantly if it produces estimates
that, under data transformation, are similarly transformed. A key pro-
perty of equivariant estimators is that they exhibit uniform performance.
In [26] the natural/relative gradient has been extended to the case of
Sylvester matrices yielding

∇NG
W J = WWH∇WJ . (10.24)

Together with (10.19) this immediately leads to the following expression:

∇NG
W J (m) =

2

N

∞∑

i=0

β(i,m)
N−1∑

j=0

W
{

yH(i, j)Φ(y(i, j)) − I
}

, (10.25)

which is then used as update ∆W in (10.23).
In the derivation of the natural gradient for instantaneous mixtures,

the fact that the demixing matrices form a so-called Lie group has played
an important role [20]. However, the block-Sylvester matrices W after
(10.6), (10.10) do not form a Lie group (as they are generally not in-
vertible). To see that the above formulation of the natural gradient is
indeed justified, we again pre-multiply the update (10.25) with H, which
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leads to

∆C(m) =
2

N

∞∑

i=0

β(i,m)
N−1∑

j=0

C(i)
{

yH(i, j)Φ(y(i, j)) − I
}

. (10.26)

Thus, the temporal evolution of C = C(m) depends only on the esti-
mated source signal vector sequence and the stepsize µ, and the depen-
dency on the mixing matrix H has been absorbed as an initial condi-
tion into C(0) = HW(0) leading to the desired uniform performance of
(10.25) proving the equivariance property of the natural gradient.

Another well-known advantage of using the natural gradient is a re-
duction of the computational complexity of the update as the inversion
of the PD × PD matrix WHV1D0

2LP×PD in (10.19) need not be carried
out in (10.25). Furthermore, it can be shown for specific pdfs (Sect. 2.4)
that instead of N > PD the condition N > D is sufficient for the natural
gradient update due to the smaller matrices to be inverted [26].

Moreover, noting that the products of Sylvester matrices Wpq and
the remaining matrices in the update equation (10.25) can be described
by linear convolutions, they can be efficiently implemented by a fast
convolution.

The update in (10.25) represents a so-called holonomic algorithm as
it imposes the constraint yH(i, j)Φ(y(i, j)) = I on the magnitudes of
the recovered signals. However, when the source signals are nonstation-
ary, these constraints may force a rapid change in the magnitude of the
demixing matrix leading to numerical instabilities in some cases (see,
e.g., [19]). Replacing I in (10.25) by the term bdiag{yH (i, j)Φ(y(i, j))}
yields the nonholonomic natural gradient algorithm with improved con-
vergence characteristics for nonstationary sources:

∇NG
W J (m) =

2

N

∞∑

i=0

β(i,m)
N−1∑

j=0

W
{

yH(i, j)Φ(y(i, j))

−bdiag{yH (i, j)Φ(y(i, j))}
}

. (10.27)

Here, the bdiag operator sets all channel-wise cross-terms to zero. Note
that the nonholonomic property can also be directly taken into account
in the cost function as shown in [27].

2.4 SPECIAL CASES AND LINKS TO
KNOWN TIME-DOMAIN ALGORITHMS

The update rules (10.19) and (10.25) provide a very general basis
for BSS of convolutive mixtures. However, to apply them in a real-
world scenario, an appropriate multivariate score function (10.20) has to
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be determined, i.e., we have to handle P high-dimensional multivariate
pdfs p̂p,D(yp(i, j)), p = 1, . . . , P . In general, this is a very challenging
task, as it includes all corresponding higher-order cumulants (including
time-lags which may be on the order of several hundred in real acoustic
environments).

In the following we will present an efficient solution for these problems
by assuming so-called spherically invariant random processes (SIRPs).
Moreover we will show some links to SOS algorithms. Without loss of
generality we consider now the case P = Q = 2 for simplicity.

2.4.1 Incorporating Spherically Invariant Random Pro-
cesses (SIRPs) as Signal Model. The SIRP models are represen-
tative for a wide class of stochastic processes. It has been shown that
speech signals in particular can very accurately be represented by SIRPs
[30]. One of the great advantages arising from the SIRP model is that
multivariate pdfs can be derived analytically from the corresponding uni-
variate probability density function together with the correlation matri-
ces including time-lags. The correlation matrices can be estimated from
the data while for the univariate pdf, we can assume one of the well-
known functions for speech signals, e.g., the Laplacian density, or we
can estimate the univariate pdf as well, based on parameterized repre-
sentations, such as the Gram-Charlier or Edgeworth expansions [18].

The general model of a correlated SIRP of D-th order for channel p

is given with a properly chosen function fp,D(·) by [30]

p̂p,D(yp(i, j)) =
1

√

πDdet(Rypyp(i))
fp,D

(

yp(i, j)R
−1
ypyp

(i)yH
p (i, j)

)

(10.28)
with the D × D correlation matrix Rypyq defined as

Rypyq(i) =
1

N

N−1∑

j=0

yH
p (i, j)yq(i, j) =

1

N
YH

p (i)Yq(i). (10.29)

As the best known example, the multivariate Gaussian can be viewed
as a special case of the class of SIRPs. To calculate the score function
for SIRPs in general, we employ the chain rule [36] to Eq. 10.28

∂p̂p,D(yp(i,j))
∂yp(i,j)

p̂p,D(yp(i, j))
=

[

− 1

fp,D(up)

∂fp,D(up)

∂up

]

︸ ︷︷ ︸

:=φp,D(up)

yp(i, j)R
−1
ypyp

(i), (10.30)
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where up = ypR
−1
ypyp

yH
p . For convenience, we call the scalar function

φp,D(up) the SIRP score of channel p.
Having derived the multivariate score function for the SIRP model

(10.30), we can now introduce it into the generic HOS natural gradient
update equation (10.25) with its nonholonomic extension. In the 2-by-2
case, this leads to the following expression for the nonholonomic HOS-
SIRP update:

∆W(m) = 2
∞∑

i=0

β(i,m)W

[

0 R̃y1y2(i)R
−1
y2y2

(i)

R̃y2y1(i)R
−1
y1y1

(i) 0

]

,

(10.31)
where the modified matrices R̃ypyq , p 6= q are given by

R̃ypyq(i) =
1

N

N−1∑

j=0

φq,D

(

yq(i, j)R
−1
yqyq

(i)yH
q (i, j)

)

yH
p (i, j)yq(i, j),

(10.32)

φq,D(uq) = −
f ′

q,D(uq)

fq,D(uq)
. (10.33)

The SIRP score φq,D(uq) of channel q in (10.32) is a scalar value function
which causes a weighting of the correlation matrix.

From the update equation (10.31), we see that the SIRP model leads
to an inherent normalization by the auto-correlation submatrices.

To derive a HOS-SIRP realization using (10.33) we need an analytical
expression of the multivariate pdfs (10.28) for all channels. As noted
above, for SIRPs, these expressions can actually be derived from the
univariate pdfs [30]. Following the procedure in [30], we obtain, e.g., as
the optimum SIRP score for univariate Laplacian pdfs [27]:

φq,D(uq) = − 1

D −
√

2s
KD/2+1(

√
2uq)

KD/2(
√

2uq)

, (10.34)

where Kν(·) denotes the ν-th order modified Bessel function of the se-
cond kind.

2.4.2 Generic BSS based on Second-Order Statistics. To
see the link to second-order BSS algorithms we use the model of multi-
variate Gaussian pdfs in the general cost function (10.17). As for Gaus-
sian pdfs the cost function reduces to SOS we only utilize the nonsta-
tionarity and the nonwhiteness of the source signals. We now insert the
multivariate Gaussian pdf

p̂p,D(yp(i, j)) =
1

√

(2π)Ddet(Rypyp(i))
e−

1
2
yp(i,j)R−1

ypyp (i)yH
p (i,j) (10.35)
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in the natural gradient update equation of the generic HOS BSS algo-
rithm (10.25). Note that there are several different representations of
real and complex Gaussian multivariate pdfs in the literature [37, 38].
The most important ones in practice being the real case for speech and
audio applications, and the rotation-invariant complex case mostly used
in communication theory. In both cases the elements of the score func-
tion Φ(y(i, j)) for a Gaussian pdf reduce to

∂p̂p,D(yp(i,j))
∂yp(i,j)

p̂p,D(yp(i, j))
= yp(i, j)R

−1
ypyp

(i). (10.36)

With (10.25) and (10.36) we finally obtain the natural gradient update
of the generic SOS BSS algorithm originally introduced in [26]

∇NG
W J (m) = 2

∞∑

i=0

β(i,m)W {Ryy(i) − bdiagRyy(i)} bdiag−1 Ryy(i)

(10.37)
with the PD × PD short-time correlation matrix Ryy(i) defined as

Ryy(i) =
1

N

N−1∑

j=0

yH(i, j)y(i, j) =
1

N
YH(i)Y(i). (10.38)

For the 2 × 2 case we can express (10.37) as

∇NG
W J (m) = 2

∞∑

i=0

β(i,m)W

[

0 Ry1y2(i)R
−1
y2y2

(i)
Ry2y1(i)R

−1
y1y1

(i) 0

]

.

(10.39)
This generic SOS algorithm leads to very robust practical solutions even
for a large number of filter taps (see below) due to an inherent nor-
malization by the auto-correlation matrices Rypyp as known from the
recursive least-squares (RLS) algorithm in supervised adaptive filtering
[35]. Again, it is important to note that the products of Sylvester ma-
trices Wpq and the remaining matrices in the update equation (10.39)
can be described by linear convolutions. Thus they can be efficiently
implemented by a fast convolution as in [25].

Moreover, by comparing (10.39) to the HOS-SIRP update (10.31), it
can be seen that due to the fact that only SOS are utilized we obtain
the same update with the nonlinearity omitted, i.e., φq,D(uq) = 1, q =
1, . . . , P .

The original derivation [26] of the generic SOS natural gradient update
(10.37) was based on a generalization of the cost function of [10]:

J (m) =
∞∑

i=0

β(i,m) {log det bdiagRyy(i) − log detRyy(i)} . (10.40)
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In Fig. 10.2 the mechanism of the SOS cost function (10.40) is illus-
trated. By minimizing J (m), all cross-correlations for D time-lags
are reduced and will ideally vanish, while the auto-correlations are un-
touched. As both cost functions (10.17) and (10.40) lead to the same

PSfrag replacements

D

D

Each diagonal
represents
one time-lag

auto-correlation Ry1y1 cross-correlation Ry1y2

Figure 10.2 Illustration of the SOS cost function (10.40).

result in the SOS case, we may now conclude that the algorithm in [26] is
in fact the optimum SOS algorithm for convolutive mixtures in the sense
of minimum mutual information or ML, which also implies asymptotic
Fisher-efficiency [1, 39].

Another interesting finding is that for both, the holonomic and non-
holonomic versions of the HOS update (10.25), (10.27), the SOS BSS
algorithm obtained by inserting the Gaussian pdf (10.35) turns out to
be nonholonomic confirming its good performance for speech sources.

Note that in principle, there are two basic methods to estimate the
output correlation matrices (10.38) for nonstationary output signals:
the so-called correlation method, and the covariance method as they
are known from linear prediction problems [40]. While the correlation
method leads to a slightly lower computational complexity due to the
Toeplitz structure of the matrices Ryy (and to smaller matrices, when
implemented in the frequency domain covered in Sect. 3.), we consider
the more accurate covariance method in this chapter. Note also that
(10.38) is full rank since in general we assume N > PD.

2.4.3 Approximations of the Generic BSS based on Second-
Order Statistics. The generic update (10.37) is now analyzed and
links to known algorithms (see Fig. 10.3) are presented. We highlight
here two realizations.

For D = 1, the correlation matrices Rypyq (i) become scalar values as
only a single lag is considered for the correlations. Thus the resulting
algorithm is only taking the nonstationarity property into account. This
was first proposed by Kawamoto et al. in [11].
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Figure 10.3 Overview of time-domain algorithms based on second-order statistics.

In [24, 25], a time-domain algorithm was presented that copes very
well with reverberant acoustic environments. Although it was originally
introduced as a heuristic extension of [11] incorporating several time-
lags, this algorithm can be directly obtained from (10.39) for D = L

by approximating the auto-correlation matrices Ryqyq(i) by the output
signal powers, i.e.,

R̄yqyq (i) =
1

N
yH

q (i)yq(i)ID×D (10.41)

for q = 1, . . . , P , where yq(·) denotes the first column of Yq(·). Thus, this
approximation is comparable to the well-known normalized least mean
squares (NLMS) algorithm in supervised adaptive filtering approxima-
ting the RLS algorithm [35]. In addition to the reduced computational
complexity, we can ensure the Sylvester structure of the update by using
the correlation method [40] for calculation of the short-time correlation
matrices Rypyq(i) resulting in Toeplitz matrices Rypyq(i). The remain-
ing products of Sylvester matrices and Toeplitz matrices in the update
equation (10.39) can again be efficiently implemented by a (fast) convo-
lution as was done in [25].

Another very popular subclass of second-order BSS algorithms, par-
ticularly for instantaneous mixtures, is based on a cost function using
the Frobenius norm ‖A‖2

F =
∑

i,j a2
ij of a matrix A = (aij), e.g., [1, 7],

[12]-[15]. Analogously to (10.40), this approach may be generalized for
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convolutive mixtures to

JF(m) =
∞∑

i=0

β(i,m)
∥
∥
∥YH(i)Y(i) − bdiagYH(i)Y(i)

∥
∥
∥

2

F
, (10.42)

which leads (after taking the natural gradient w.r.t. W in a similar way
as in [26]) to the following update equation:

∇NG
W J (m) = 2

∞∑

i=0

β(i,m)WRyy(i)

[
0 Ry1y2(i)

Ry2y1(i) 0

]

. (10.43)

We see that this update equation differs from the more general equation
(10.39) mainly in the inherent normalization expressed by the inverse
matrices R−1

ypyp
. Thus, (10.43) can be regarded as an analogon to the

least mean square (LMS) algorithm [35] in supervised adaptive filtering.
However, many simulation results have shown that for large filter lengths
L, (10.43) is prone to instability, while (10.39) shows a very robust con-
vergence behaviour (see Sect. 5.) even for hundreds or thousands of filter
coefficients in BSS for real acoustic environments.

3. GENERIC FREQUENCY-DOMAIN BSS
ALGORITHM

Frequency-domain BSS is very popular for convolutive BSS since all
techniques originally developed for instantaneous BSS can be applied
independently in each frequency bin in the discrete Fourier transform
(DFT) domain. Furthermore, the fast Fourier transform (FFT) can be
used for an efficient implementation. Such narrowband approaches can
be found, e.g., in [1], [3], [6], [9], [12]-[17], [22]. Unfortunately, the per-
mutation problem, which is inherent in BSS (e.g., [1]), may then also
appear independently in each frequency bin so that extra measures have
to be taken to avoid this internal permutation. Additionally, as dis-
cussed in Sections 2.3 and 2.4 the products involving Sylvester matrices
in the time-domain update equations correspond to linear convolutions.
Thus, in the narrowband frequency-domain approach these convolutions
become circular ones. The resulting wrap-around effects may limit the
separation performance. Based on the above matrix formulation in the
time domain, the following derivation of broadband frequency-domain
algorithms shows explicitly the relation between time-domain and tra-
ditional frequency-domain algorithms, as well as some extensions. In
contrast to the narrowband approach this inherently resolves the per-
mutation ambiguity and prevents circular convolution effects in the up-
date equation. Moreover, as in the time-domain, (10.17) also leads to
the very desirable property of an inherent stepsize normalization in the
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frequency domain which also becomes clear by a link with [17] for the
SOS case. As pointed out in the previous section, the conditions for the
paramters L, N , and D for the natural gradient adaptation are given by
the relations N > D and 1 ≤ D ≤ L. Therefore, we may assume N = L

without loss of generality for the following derivation.

3.1 GENERAL FREQUENCY-DOMAIN
FORMULATION

The matrix formulation (10.11) introduced for the time-domain in
Sect. 2. allows a rigorous derivation of the corresponding frequency-
domain BSS algorithms. In the frequency domain, the structure of the
algorithm depends on the method chosen for estimating the correlation
matrices. Here, we consider again the more accurate covariance method
[40] (see Sect. 2.4.2). The matrices Xp(m) and Wpq, introduced in
Sect. 2.1 are now diagonalized in two steps to obtain frequency-domain
representations. In the following, we mark frequency-domain quantities
by an underbar. This does, however, not imply that they are simply
DFTs of the corresponding time-domain quantities. Each quantity has
to be transformed individually. We first consider the L × 2L Toeplitz
matrices Xp(m).

Step 1: Transformation of Toeplitz matrices into circulant matrices.

Any Toeplitz matrix Xp (10.16) can be transformed, by doubling its size,
to a circulant matrix CXp(m) [31]. In our case we define the 4L × 4L
circulant matrix by taking into account (10.16) by

CXp(m) =







X′

p(m − 3) Xp(m − 1)
Xp(m − 2) Xp(m)
Xp(m − 1) X′

p(m − 3)
Xp(m) Xp(m − 2)







, (10.44)

where X′

p(m−3) is a properly chosen extension ensuring a circular shift
of the 4L input values in the first column. It follows

Xp(m) = W01L
L×4LCXp(m)W12L0

4L×2L, (10.45)

where we introduced the windowing matrices

W01L
L×4L = [0L×3L, IL×L],

W12L0
4L×2L = [I2L×2L,02L×2L]T .

This notation follows the conventions listed in Sect. 2.2.
Step 2: Transformation of the circulant matrices into diagonal matri-

ces.
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Using the 4L × 4L DFT matrix F4L×4L, the circulant matrices are dia-
gonalized as follows:

CXp(m) = F−1
4L×4LXp(m)F4L×4L, (10.46)

where the diagonal matrices Xp(m) representing the frequency-domain
versions of Xp(m), can be expressed by the first columns of CXp(m),

Xp(m) = diag{F4L×4L[xp(mL − 3L), . . . , xp(mL − 1),

xp(mL), xp(mL + 1), . . . , xp(mL + L − 1)]T },(10.47)

i.e., to obtain Xp(m), we transform the concatenated vectors of the
current block and three previous blocks of the input signals xp(n). Here,
diag{a} denotes a square matrix with the elements of vector a on its
main diagonal. Now, (10.45) can be rewritten equivalently as

Xp(m) = W01L
L×4LF−1

4L×4LXp(m)F4L×4LW12L0
4L×2L. (10.48)

Equations (10.47) and (10.48) exhibit a form that is structurally similar
to that of the corresponding counterparts of the well-known (supervised)
frequency-domain adaptive filters [31]. However, the major difference
here is that we need a transformation length of at least 4L instead of 2L
for an accurate broadband formulation. This should come as no surprise,
since in BSS using the covariance method, both convolution and corre-
lation is carried out where both operations double the transformation
length.

We now transform the matrices Wpq in the same way as shown above
for Xp. Thereby, we obtain

Wpq = W12L0
2L×4LF−1

4L×4LWpqF4L×4LW1D0
4L×D, (10.49)

where

W1D0
4L×D = [ID×D,0D×(4L−D)]

T ,

W12L0
2L×4L = [I2L×2L,02L×2L] =

(

W12L0
4L×2L

)T
,

and the frequency-domain representation of the demixing matrix

Wpq = diag{F4L×4L[wpq,0, . . . , wpq,L−1, 0, . . . , 0]
T }. (10.50)

Equation (10.49) is illustrated in Fig. 10.4. Note that the column vec-
tor in (10.50) corresponds to the first column of the 4L × 4L matrix
F−1

4L×4LWpqF4L×4L in Fig. 10.4. Moreover, it can be seen that the pre-

multiplied transformation W12L0
2L×4LF−1

4L×4L in (10.49) is related to the
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Figure 10.4 Illustration of equation (10.49).

demixing filter taps in the first column of Wpq, while the post-multiplied
transformation in (10.49), which we denote by

L1D0
4L×D = F4L×4LW1D0

4L×D, (10.51)

is related to the introduction of D time-lags (see also Sect. 3.3.1). Com-
bining all channels, we obtain from (10.48) and (10.49)

X(m) = W01L
L×4LF−1

4L×4LX(m)

·bdiag{F4L×4LW12L0
4L×2L, . . . ,F4L×4LW12L0

4L×2L}, (10.52)

W = bdiag{W12L0
2L×4LF−1

4L×4L, . . . ,W12L0
2L×4LF−1

4L×4L}WL,

(10.53)

where X(m) and W are defined analogously to (10.13) and (10.10),
respectively. L denotes the 4LP × DP matrix

L = bdiag{L1D0
4L×D, . . . ,L1D0

4L×D}. (10.54)

From (10.11),(10.52), and (10.53) we further obtain

Y(m) = W01L
L×4LF−1

4L×4LY(m)L, (10.55)

with
Y(m) = X(m)G12L0

4LP×4LP W, (10.56)

and the time-domain constraints

G12L0
4LP×4LP = bdiag

{

G12L0
4L×4L, . . . ,G12L0

4L×4L

}

,

G12L0
4L×4L = F4L×4LW12L0

4L×4LF−1
4L×4L,

W12L0
4L×4L = W12L0

4L×2LW12L0
2L×4L

=

[
I2L×2L 02L×2L

02L×2L 02L×2L

]

.
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To formulate the cost function (10.17) in the frequency domain, we
first need to express it equivalently using matrices Yp, p = 1, . . . , P . This
inevitably leads to the introduction of pdfs which depend on matrices in
their arguments. In general, such pdfs are determined by a fourth-order
tensor which contains all cross-relations between the matrix elements.
However, due to the Toeplitz structure of the matrices Yp a redundancy
is introduced which neither appears in the cost function (10.17) nor leads
to any improved results compared to (10.17).

Thus, we can replace the tensor by a matrix containing only the de-
sired information on the cross-relations between the D time-lags. This
yields the following equivalent representation of (10.17):

J (m) = −
∞∑

i=0

β(i,m)
1

N
{log (p̃1,N×D(Y1(i)) · . . . · p̃P,N×D(YP (i)))

− log (p̃N×PD(Y1(i), . . . ,YP (i)))} , (10.57)

with the auxiliary pdfs which we define here by

p̃p,N×D(Yp(i)) =
N−1∏

j=0

p̂p,D(yp(i, j)), (10.58)

p̃N×PD(Y1(i), . . . ,YP (i)) =
N−1∏

j=0

p̂PD(y1(i, j), . . . ,yP (i, j)),

(10.59)

showing the relation to the multivariate pdfs. The equivalence to (10.17)
can easily be verified by inserting (10.58) and (10.59) in (10.57). The
advantage of introducing such auxiliary pdfs is that they can formally
be handled like standard pdfs where the rows of the matrix in their
argument are mutually statistically independent. This allows a compact
representation of the following equations.

To proceed with the derivation, we take the gradient of (10.57) w.r.t.
the frequency-domain coefficient matrix W. This is done analogously
to the time-domain derivation of (10.19). However, (10.55) and (10.56)
have to be taken into account by using the chain rule for matrices [41].
This finally leads to the following gradient for the frequency-domain
update:

∇WJ (m) =
2

N

∞∑

i=0

β(i,m)
{

G12L0
4LP×4LP XH(i)Φ(Y(i))

−L
(

LHWHL
)
−1

LH
}

(10.60)



276 Audio Signal Processing

with the frequency-domain score function

Φ(Y(i)) =




−

∂p̃
1,4L×4L

(Y1(i))

∂Y1(i)

p̃
1,4L×4L

(Y1(i))
, . . . ,−

∂p̃
P,4L×4L

(YP (i))

∂YP (i)

p̃
P,4L×4L

(YP (i))




 . (10.61)

Note that the pdf p̃
q,4L×4L

(Yq(i)) of the frequency-domain matrix Yq(i)

is obtained by transforming the pdf p̃q,N×D(Yq(i)) of time-domain
variables using (10.55). We will go into the precise formulation of
p̃

q,4L×4L
(Yq(i)) within the scope of the special cases treated in Sect. 3.3.

Equations (10.60) and (10.61) are the generic frequency-domain coun-
terparts of (10.19) and (10.20), respectively, and may be equivalently
used for coefficient adaptation.

As in the time-domain, we need not calculate the entire coefficient
matrix W explicitly due to the redundancy introduced by the Sylvester
structure in the time domain, and the diagonal structure of the subma-
trices Wpq in the frequency domain, respectively. While the structure
of matrix W is independent of D, matrix L introduces the number of
time-lags taken into account by the cost function, as shown by (10.51)
and (10.55) (see also Fig. 10.4). To calculate the separated output sig-
nals, given a demixing matrix W, we need to pick the first column
of Y in (10.55) (the other columns were introduced in (10.11) for in-
cluding multiple time-lags in the cost function). This is done by using
L = LI = bdiag{14L×1, · · · ,14L×1} in (10.55). Then, WL in that equa-
tion becomes a 4LP × P matrix W′ whose columns correspond to the
diagonals of W. As a general rule,

W′ = WLI, (10.62)

and building diagonal submatrices Wpq of W using the entries of W′,
transforms the two equivalent representations into each other. Thus, to
formally obtain the update of W′ needed for the output signal calcula-
tion, we post-multiply (10.60) by LI, both simplifying the calculation of
(10.60), and enforcing the diagonal structure of Wpq during the adap-
tation. This simplification results from the fact that we only have to
operate with vectors rather than matrices for each channel when con-
structing the update equation from the right to the left in a practical
realization.

In addition to the diagonal structure of W, we have to ensure the
Sylvester structure in the time domain as noted previously. As can be
seen in Fig. 10.4, (10.50) determines the first column, and thus the whole
4L × 4L Sylvester matrix. In other words, we have to ensure that the
time-domain column vector in (10.50) contains only L filter coefficients
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and 3L zeros. Therefore, the gradient (10.60) has to be constrained by

G1L0
4LP×4LP . Together with (10.62) this leads to

∆W′(m) = G1L0
4LP×4LP∇WJ (m)LI, (10.63)

which may again be implemented efficiently from the right to the left.
Then the constraint G1L0

4LP×4LP reduces to channel-wise inverse FFT,
windowing (see also Sect. 3.3.2), and FFT operations.

3.2 NATURAL GRADIENT IN THE
FREQUENCY DOMAIN

In Sect. 2.3, it has been shown that the natural gradient for convo-
lutive mixtures introduced there for the time domain yields equivariant
adaptation algorithms, i.e., the evolutionary behaviour of

C(m) = HW(m) (10.64)

and ∆C(m) = H∆W(m) does not explicitly depend on H in (10.26).
In this section, we investigate how this formulation of the natural

gradient transforms into the frequency domain. To begin with, we start
by the following approach containing arbitrary matrices A1, A2, A3,
and A4 of proper size:

∇NG
W J = A1WA2A3W

HA4∇WJ . (10.65)

Now, our task is to determine the four matrices Ai such that the resulting
coefficient update exhibits desired properties.

As a first condition, matrix A1WA2A3W
HA4 in (10.65) must be

positive definite, i.e., all its eigenvalues must be positive to ensure con-
vergence [39]. This determines matrices A3, and A4 up to a positive
scalar constant, which can be absorbed in the stepsize, so that we ob-
tain

∇NG
W J = A1WA2A

H
2 WHAH

1 ∇WJ . (10.66)

As the second, and most important condition, it is required that the
equivariance property is fulfilled. Combining (10.64) with (10.53), we
obtain a relation between C and the frequency-domain coefficients W,

C = Hbdiag{· · ·}WL, (10.67)

and analogously

∆C = Hbdiag{· · ·}∆WL

= Hbdiag{· · ·}∇NG
W JL. (10.68)
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As in the time domain (see (10.26)), it is required that (10.68) in combi-
nation with the natural gradient (10.66) can be expressed by C defined
in (10.67), and therefore does not explicitly depend on H. This leads to
the claim

∆C = Hbdiag{· · ·}A1WA2
︸ ︷︷ ︸

=C

AH
2 WHAH

1 ∇WJL, (10.69)

and a comparison of (10.69) with (10.67) yields the matrices

A1 = G12L0
4LP×4LP , A2 = L. (10.70)

Note that A1 = I is not the general solution. This can be verified by
inserting (10.70) in (10.69), and considering the argument of bdiag{·}
acording to (10.53).

Finally, we obtain the natural gradient

∇NG
W J = G12L0

4LP×4LP WLLHWH
(

G12L0
4LP×4LP

)H
∇WJ

= G12L0
4LP×4LP WLLHWHG12L0

4LP×4LP∇WJ , (10.71)

and together with (10.60) it follows the coefficient update

∇NG
W J (m) =

2

N

∞∑

i=0

β(i,m)G12L0
4LP×4LP WLLH

{

YH(i)Φ(Y(i)) − I
}

.

(10.72)
Note that in this equation the natural gradient shows again the conve-
nient property of avoiding one matrix inversion. Formally, as in Sect. 3.1,
(10.63) can be used to obtain ∆W′.

3.3 SPECIAL CASES AND LINKS TO
KNOWN FREQUENCY-DOMAIN
ALGORITHMS

The generic gradient (10.60) and generic natural gradient (10.72),
respectively, exhibit three types of quantities that fully specify practical
realizations which follow as special cases. These quantities can be related
to the three fundamental signal properties, as shown in Table 10.1.

3.3.1 The Constraints and the Internal Permutation Prob-
lem in Frequency-Domain BSS. Two types of constraints appear
in the gradient (10.60) and in the natural gradient update (10.72):

The matrices G···

···
in (10.56) and in the update equations are mainly

responsible for preventing decoupling of the individual frequency
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quantity related to examples in
constraints G···

···
, L nonwhiteness Sect. 3.3.1, 3.3.2

score function Φ(·) nongaussianity Sect. 3.3.1, 3.3.3
weighting function β(·) nonstationarity Sect. 4.

Table 10.1 Quantities defining a certain frequency-domain algorithm.

components, and thus avoiding the internal permutation among
the different frequency bins and circular convolution effects.

Matrix L has two different functions: on the one hand, it allows
joint diagonalization over D time-lags, and on the other hand, it
acts as time-domain constraint similar to the matrices G···

···
(see

Fig. 10.4).

Note that the constraints G···

···
and L also appear in the score function

Φ(·) as can be seen later (e.g., Sect. 3.3.3) in more detail.
Concerning matrix L we can distinguish between four different cases:

a) D < L: As in the time domain, this choice allows the exploitation
of the nonwhiteness property with up to D time-lags.

b) D = L: This is the optimum case as in the time domain.

c) D > L: This choice is not meaningful in the time domain. In the
frequency domain, however, we can choose D up to the transforma-
tion length 4L due to the introduced circulant matrix, as shown
in Fig. 10.4. For D > L the time-domain constraint is relaxed,
which may also lead to a suboptimum solution.

d) D = 4L: According to Fig. 10.4 this corresponds to the traditional
narrowband approximation (apart from constraints G···

···
) so that all

matrices L cancel out in the update equations, which can also be
verified using (10.51).

Case d), i.e., neglecting matrix L in (10.60) yields a simplified gradient

∇WJ (m) =
2

N

∞∑

i=0

β(i,m)
{

G12L0
4LP×4LP XH(i)Φ(Y(i)) −W−H

}

,

(10.73)
where −H denotes the inverse of a conjugate transpose of a matrix, and
from (10.72), we obtain a simplified natural gradient

∇NG
W J (m) =

2

N

∞∑

i=0

β(i,m)G12L0
4LP×4LP W

{

YH(i)Φ(Y(i)) − I
}

.

(10.74)
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Note that these expressions still largely avoid the well-known internal
permutation problem of frequency-domain BSS using the constraints G···

···

in the calculation of Y in (10.56) and in the update equations obtained
from inserting (10.73) or (10.74) in (10.63).

By additionally approximating G···

···
as scaled identity matrices [31]

in the gradients, the submatrices Yq of Y in (10.73) and (10.74) also
become diagonal, as illustrated in Fig. 10.5. Moreover, the frequency-
domain multivariate score function Φ(·) can be decomposed to fre-

quency bin selective score functions Φ(ν)(·) containing only univariate
pdfs p̃(ν)

p,1
(·) for channel p, i.e.,

Φ(ν)(Y(ν)(i)) =







−

∂p̃
(ν)
1,1(Y

(ν)
1 (i))

∂Y
(ν)
1 (i)

p̃(ν)
1,1

(Y
(ν)
1 (i))

, . . . ,−

∂p̃
(ν)
P,1

(Y
(ν)
P

(i))

∂Y
(ν)
P (i)

p̃
(ν)
P,1(Y

(ν)
P (i))








, (10.75)

where ν = 0, . . . , 4L − 1 denotes the frequency bin index. This approxi-

PSfrag replacements

diagonal submatrices Y1, Y2

Y(0) Y(1) Y(4L−1)

4L

4L

Figure 10.5 Illustration of bin-wise decomposition for the 2-channel case.

mation combined with D = 4L (case d) from above) corresponds to the
traditional narrowband approach. Only in this case both equations can
be decomposed into its frequency components, i.e., we can equivalently
write

∇WJ (ν)(m) =
2

N

∞∑

i=0

β(i,m)

{(

X(ν)(i)
)H

Φ(ν)(Y(ν)(i)) −
(

W(ν)
)
−H

}

,

(10.76)
and

∇NG
W J (ν)(m) =

2

N

∞∑

i=0

β(i,m)W(ν)
{(

Y(ν)(i)
)H

Φ(ν)(Y(ν)(i)) − I

}

,

(10.77)
respectively. In contrast to W and Y in (10.60), (10.72) which are
4LP × 4LP and 4L × 4LP matrices, respectively, the corresponding
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matrices W(ν) and Y(ν) in (10.76), (10.77) are only of dimensions P ×P

and 1 × P , respectively.
The approximation (10.77) of the natural gradient corresponds to the

ICA narrowband approach originally proposed by Smaragdis [22] as an
extension of the information maximization approach [23].

Note that the nonholonomic version of the natural gradient (10.77)
can be obtained similarly to the time domain by replacing matrix I with

diag

{(

Y(ν)(i)
)H

Φ(ν)
(

Y(ν)(i)
)}

.

To derive the update equations from the approximated gradients, we
apply again (10.63) which contains another constraint G1L0

4LP×4LP trans-
forming the filter coefficients back into the time domain, zeroing the
last 3L values, and transforming the result back to the frequency do-
main. Thus, even if (10.76) and (10.77) can be efficiently computed in a
bin-selective manner, this constraint prevents a complete decoupling of
the frequency-components in the update equations. This procedure ap-
pears similarly in the well-known “constrained frequency-domain adap-
tive filtering” in the supervised case [35],[31]. In BSS, this theoretically
founded mechanism largely eliminates the internal permutation problem
in a simple way. It was first heuristically introduced in [22], and also
in [14]. A more detailed experimental examination on this constraint
was reported in [42] confirming that the ratio between filter length L

and transformation length 4L - as obtained here analytically - yields
optimum separation performance. However, due to the omission of the
other constraints in the approximated gradients we will not perfectly
remove the permutation ambiguity as observed experimentally in [42].
Traditional narrowband approaches also neglecting the time-domain con-
straint in (10.63) need additional measures for solving the permutation
problem (e.g., [13], [43]).

3.3.2 Alternative Approximations of the Constraints. The
generic algorithm (10.72) with its constraint matrices G···

···
suggests al-

ternative efficient approximations to allow improved tradeoffs between
the exact broadband approach (large computational complexity) and
the narrowband approach (internal permutation ambiguity) by choosing
certain efficient approximations of the constraints.

Generally, we can distinguish between approximations depending on
the block index and approximations within each block. One example for
the former class is to simply apply the constraints periodically for a re-
duced number of blocks which has also been proposed for the supervised
case [44].
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The other class is based on efficient approximations of the rectangu-
lar window appearing in the constraints. This is done by smoothing the
rectangular window (Fig 10.6a) so that its frequency-domain representa-
tion can be well-described by a small number of coefficients (Fig 10.6b).
Having such a representation, it is often more efficient to directly apply

a) Time-domain window function:
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b) Frequency-domain representation:
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Figure 10.6 Illustration of a smoothed window function for L = 512, i.e., transfor-
mation length 2048. Note that the window functions are circular.

the convolution operation in the frequency-domain instead of going back
and forth between the time domain and frequency domain. This general
idea has been discussed earlier for supervised adaptive filtering [45], espe-
cially after the introduction of the supervised generic frequency-domain
framework [46, 31], see, e.g., [47, 48]. There are several variations pos-
sible to design the smoothed window (see also filter design techniques)
[49]. However, the smoothed window has to be flat within the length L

(e.g., Tukey window [49]). Otherwise compensation terms are necessary
[48]. In BSS, a similar windowing has been proposed heuristically in
[50].

3.3.3 Generic Frequency-Domain BSS based on SOS. As
shown for the time domain, we derive a generic SOS algorithm by con-
sidering Gaussian pdfs. The corresponding Gaussian auxiliary pdf for
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matrices in the sense described above is obtained using (10.58). It follows

p̃p,N×D(Yp(i)) =
1

√

((2π)Ddet Rypyp(i))
N

e−
1
2
tr{Yp(i)R−1

ypyp (i)YH
p (i)}.

(10.78)
Transforming this Gaussian pdf into the pdf for the corresponding fre-
quency domain variables Yp gives again a Gaussian. Using (10.55) and
(10.56) we obtain

p̃
p,4L×4L

(Yp(i)) ∝ exp

{

−1

2
tr

{

W01L
L×4LF−1

4L×4LYp(i)L
1D0
L×DR−1

ypyp
(i)

· (L1D0
L×D)HYH

p (i)F4L×4LW01L
4L×L

}}

, (10.79)

where

Ryy(i) =
1

N
YH(i)Y(i) =

1

N
LHSyy(i)L,

Syy(i) = YH(i)G01L
4L×4LY(i)

= WHG12L0
4LP×4LP Sxx(i)G12L0

4LP×4LP W, (10.80)

Sxx(i) = XH(i)G01L
4L×4LX(i), (10.81)

G01L
4L×4L = F4L×4LW01L

4L×4LF−1
4L×4L,

W01L
4L×4L = W01L

4L×LW01L
L×4L

=

[
03L×3L 03L×L

0L×3L IL×L

]

.

The resulting score function (10.61) reads

Φ(Y(i)) = −G01L
4L×4LY(i)L · bdiag−1

(

LHSyy(i)L
)

LH . (10.82)

This leads to

∇WJ (m) =
2

N

∞∑

i=0

β(i,m)G12L0
4LP×4LP SxyL

·(LHSyyL)−1LH {Syy − bdiagSyy}L

·bdiag−1 (LHSyyL) · LH , (10.83)

where
Sxy(i) = Sxx(i)G12L0

4LP×4LP W. (10.84)

Finally with (10.71), we obtain the natural gradient

∇NG
W J (m) =

2

N

∞∑

i=0

β(i,m)G12L0
4LP×4LP WLLH {Syy − bdiagSyy}L

·bdiag−1 (LHSyyL)LH . (10.85)
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Equations (10.83) and (10.85) are the SOS analoga to (10.60) and
(10.72). In the same way as shown here for the Gaussian case, we could
also analogously define auxiliary pdfs for SIRPs (see Sect. 2.4). Note that
in (10.85) the natural gradient shows again the convenient property of
avoiding one matrix inversion. Formally, as in Sect. 3.1, (10.63) can be
used to obtain ∆W′.

3.3.4 Approximation of the Generic Frequency-Domain
BSS Based on SOS. In the SOS case we can apply the same approxi-
mation steps as discussed for the HOS case in Sect. 3.3.1. By analogously
neglecting matrix L in (10.83) and (10.85) we obtain a simplified gra-
dient and a simplified natural gradient, respectively, which still largely
avoid the internal permutation problem of frequency-domain BSS.

The narrowband approach is obtained by additionally approximat-
ing G···

···
as scaled identity matrices [31] yielding gradients which can be

decomposed in its frequency components, i.e.,

∇WJ (ν)(m) =
2

N

∞∑

i=0

β(i,m)S(ν)
xy

(

S(ν)
yy

)
−1 {

S(ν)
yy − diag S(ν)

yy

}

diag−1 S(ν)
yy

(10.86)
and

∇NG
W J (ν)(m) =

2

N

∞∑

i=0

β(i,m)W(ν)
{

S(ν)
yy − diag S(ν)

yy

}

diag−1 S(ν)
yy ,

(10.87)
respectively, where ν = 0, . . . , 4L−1 denotes the frequency bins. In con-
trast to Sxy, Syy, and W in (10.83), (10.85) which are 4LP × 4LP ma-

trices each, the corresponding matrices S
(ν)
xy , S

(ν)
yy , and W(ν) in (10.86),

(10.87) are only of dimension P × P .
To obtain the update equations from the approximated gradients, we

apply again (10.63) preventing the complete decoupling by the constraint

G1L0
4LP×4LP .
The approximated coefficient update (10.86) is directly related to

some well-known frequency-domain BSS algorithms. In [16], an algo-
rithm that is similar to (10.86) was derived by directly optimizing a cost
function similar to the one in [10] in a bin-wise manner. More recently,
Fancourt and Parra proposed in [17] to apply the magnitude-squared
coherence

|γ(ν)
ypyq

(m)|2 =
|S(ν)

ypyq (m)|2

S
(ν)
ypyp(m)S

(ν)
yqyq (m)

, (10.88)

p, q ∈ {1, 2} as a cost function for frequency-domain BSS, where

S
(ν)
ypyq(m) denotes the (p, q)-th element of S

(ν)
yy (m), i.e., the power spec-
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tral density in the ν-th bin and block m. The coherence (10.88) has the
very desirable property that

0 ≤ |γ(ν)
ypyq

(m)|2 ≤ 1, (10.89)

which directly translates into an inherent stepsize normalization of the

corresponding update equation [17]. In particular, |γ (ν)
y1y2(m)|2 = 0 if

y1 and y2 are orthogonal, and |γ(ν)
y1y2(m)|2 = 1 when y1 = ay2 for any

non-zero complex number a.
Comparing the update equation (10.86) with that derived in [17], we

see that an additional approximation of
(

S
(ν)
yy

)
−1

as a diagonal matrix

was used in [17], which results in

∇WJ (ν)(m) =
2

N

∞∑

i=0

β(i,m)S(ν)
xydiag−1 S(ν)

yy

·
{

S(ν)
yy − diag S(ν)

yy

}

diag−1 S(ν)
yy . (10.90)

The coherence function (10.88) applied in [17] can be extended to the
case P > 2 by using the so-called generalized coherence [32]. In [26] a
link between the SOS cost function (10.40) and the generalized coherence
was established. This relationship allows a geometric interpretation of
(10.40) and shows that this cost function leads to an inherent stepsize
normalization for the coefficient updates.

4. WEIGHTING FUNCTION

In the generalized cost functions (10.17) and (10.40) a weighting func-
tion β(i,m) was introduced with the block time indices i,m to allow
different realizations of the algorithms. Based on the cost function we
previously derived stochastic and natural gradient update equations in
the time domain and frequency domain. Due to the similar structure of
these equations, we will now consider only the time domain for simplic-
ity. There, we can express the coefficient update as

∆W(m) =
∞∑

i=0

β(i,m)Q(i), (10.91)

where Q(i) denotes the term originating from the i-th block. In the
following we distinguish three different types of weighting functions
β(i,m) for off-line, on-line, and block-on-line realizations [28]. The
weighting functions have a finite support, and are normalized such that
∑

∞

i=0 β(i,m) = 1.
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4.1 OFF-LINE IMPLEMENTATION

When realizing the algorithm as an off-line or so-called batch algo-
rithm, then β(i,m) corresponds to a rectangular window (Fig. 10.7),
which is described by β(i,m) = 1

Ksig
ε0,(Ksig−1)(i), where εa,b(i) = 1 for

a ≤ i ≤ b, and εa,b(i) = 0 else. The entire signal is segmented into Ksig

� � � � � � � � �
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Figure 10.7 Weighting function β(i, m) for off-line implementation.

blocks, and then the entire signal is processed to estimate the demixing
matrix W` where the superscript ` denotes the current iteration of the
coefficient update

W` = W`−1 − µ

Ksig

Ksig−1
∑

i=0

Q(i). (10.92)

Hence, the algorithm is generally visiting the signal data repeatedly for
each iteration ` and therefore it usually achieves a better performance
compared to its on-line counterpart.

4.2 ON-LINE IMPLEMENTATION

In time-varying environments an on-line implementation of (10.91) is
required. An efficient realization can be achieved by using a weighting
function with an exponential forgetting factor λ (Fig. 10.8). It is defined
by

β(i,m) = (1 − λ)λm−iε0,m(i), (10.93)

where 0 ≤ λ < 1. Thus (10.91) reads
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Figure 10.8 Weighting function β(i, m) for on-line implementation.
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∆W(m) = (1 − λ)
m∑

i=0

λm−iQ(i), (10.94)

where m denotes the current block. Additionally, (10.94) can be for-
mulated recursively to reduce computational complexity and memory
requirements since only the preceding demixing matrix has to be saved
for the update. This leads to the following coefficient update to be used
in (10.23):

∆W(m) = λ∆W(m − 1) + (1 − λ)Q(m). (10.95)

For the special case λ = 0 we have

W(m) = W(m − 1) − µQ(m), (10.96)

which corresponds to β(i,m) = δ(i − m).

4.3 BLOCK-ON-LINE IMPLEMENTATION

The on-line and off-line approaches can be combined in a so-called
block-on-line method (Fig. 10.9) which has been applied for BSS, e.g.,
in [51]. After obtaining K blocks of length N we process an off-line
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Figure 10.9 Weighting function β(i, m) for block-on-line implementation. Note that
m′ = m

K
denotes the new block index.

algorithm with `max iterations. The demixing filter matrix W(m′) of the
current block m′ is then used as initial value for the off-line algorithm of
the next block. This block-on-line approach allows a tradeoff between
computational complexity on the one hand and separation performance
and speed of convergence on the other hand by adjusting the maximum
number of iterations `max as we will see in Sect. 5..

5. EXPERIMENTS AND RESULTS

Experiments have been conducted using speech data convolved with
impulse responses of a real room (580cm × 590cm × 310cm) with a re-
verberation time T60 = 150ms and a sampling frequency of 16 kHz. A
two-element microphone array with an inter-element spacing of 16 cm
was used. The speech signals arrived from two different directions, −45o
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and 45o. The distance between the speakers and the microphones was
2.0m. The length of the source signals (two male speakers from the
TIMIT speech corpus [52]) was 10 seconds. The performance was eva-
luated by means of the signal-to-interference ratio (SIR), defined as the
ratio of the signal power of the target signal to the signal power from the
jammer signal. For off-line implementations the SIR was calculated over
the entire signal length, whereas for on-line implementations it was con-
tinuously calculated for each block. In the following the SIR is averaged
over both channels.

In our experiments we compared off-line and on-line realizations and
we examined the effect of taking into account different numbers of time-
lags D for the computation of the correlation function in (10.29) and
(10.38). In all experiments the unmixing filter length was set to L =
512, the number of lags to D = 512, and the block length to N =
1024, respectively. Note that the stepsizes of all algorithms have been
maximized up to the stability margins.

The framework developed here also allows a better understanding of
the initialization of W. It can be shown using (10.6) and (10.25) that
the first coefficient of each filter Wpp must be nonzero. This is ensured
by using unit impulses for the first filter tap in each Wpp. The filters
Wpq, p 6= q are set to zero.
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Figure 10.10 Comparison of different off-line realizations (left: SOS algorithms,
right: SOS vs. HOS).

In the left plot of Fig. 10.10 different off-line SOS algorithms
are shown. It can be seen that the approximated gradient (10.86)
(dashed) and natural gradient (10.87) (solid) versions of the generic
SOS frequency-domain algorithm exhibit the best convergence. This is
mainly due to the decomposition of the update equation in its frequency
components and hence we have an independent update in each frequency
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bin. The complete decoupling and therefore also the internal permu-
tation problem is prevented by considering the constraint G1L0

4LP×4LP
(10.63) (see Sect. 3.1).

It should be pointed out that the generic SOS time-domain algorithm
(10.37) (dotted) achieves almost the same convergence as the frequency-
domain algorithms. This shows that also time-domain algorithms can
exhibit a stable and robust convergence behaviour for long unmixing
filters. However, in the generic SOS time-domain algorithm this comes
with an increased computational cost, as an inversion of a large matrix
is required due to the RLS-like normalization (see Sect. 2.4.2). The
approximated version of the generic SOS time-domain algorithm (dash-
dotted) according to (10.41) shows a slower convergence as the RLS-like
normalization is replaced by a diagonal matrix which corresponds to
an NLMS-like normalization. Moreover it can be seen that all curves
converge to the same maximum SIR value which does not depend on
the choice of adaptation algorithm.

In the right plot of Fig. 10.10 we compared the generic SOS algorithm
in the time-domain and the generic HOS algorithm with the SIRP model
from the Laplacian pdf (10.34). Note that the argument of the modified
Bessel functions KD/2+1(·) in (10.34) has to be properly regularized.
The additional gain in convergence speed of HOS over SOS is due to the
additional exploitation of nongaussianity.
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Figure 10.11 Effect of exploiting nonwhiteness by taking into account different num-
bers of lags D. (L = 512)

In Fig. 10.11 the dependency of the SIR on the number of lags D

used for the computation of the correlation function Ryy in the SOS
algorithms is illustrated. An off-line version of the approximated time-
domain algorithm (10.41) was evaluated after 50 iterations. We observe a
steep increase of the achievable separation performance for up to 8 lags.
This can be explained by the fact that speech is strongly correlated
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within the first lags. By considering these temporal correlations, i.e.,
nonwhiteness, additional information about the mixtures is taken into
account for the simultaneous diagonalization of Ryy. A further increase
of D still improves the SIR slightly as the temporal correlation of the
room impulse response is considered in the adaptation.
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Figure 10.12 Comparison of different on-line realizations.

Various on-line realizations of SOS algorithms are shown in Fig. 10.12.
Obviously, the frequency-domain algorithm (dashed) exhibits superior
convergence compared to the time-domain algorithm (dash-dotted) due
to the NLMS-like approximation of the normalization in the time do-
main. However, it can also be seen that this effect can be mitigated by
using a block-on-line adaptation (see 4.3) (solid) with K = 8, N = 512,
and `max = 10 iterations. This leads to improved convergence and sepa-
ration performance at the expense of increased computational cost.

6. CONCLUSIONS

We presented a unified treatment of BSS algorithms for convolutive
mixtures. This framework contains two main principles: Firstly, three
fundamental signal properties, nonwhiteness, nonstationarity, and non-
gaussianity are explicitly taken into account in the generic cost function.
Secondly, the framework is based on a general broadband formulation
and optimization of this cost function. Due to this approach, rigorous
derivations of both known and novel algorithms in the time and fre-
quency domain became possible. Moreover, the introduced matrix for-
mulation with the resulting constraints provides a deeper understanding
of the internal permutation ambiguity appearing in traditional narrow-
band frequency-domain BSS. Experimental results confirm the theore-
tical findings and demonstrate that this approach allows BSS in both,
time and frequency domains for reverberant acoustic environments.
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