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Abstract. This contribution treats blind system identification approaches and how
they can be used to localize multiple sources in environments where multipath prop-
agation cannot be neglected, e.g., acoustic sources in reverberant environments.
Based on TRINICON, a general framework for broadband adaptive MIMO signal
processing, we first derive a versatile blind MIMO system identification method. For
this purpose, the basics of TRINICON will be reviewed to the extent needed for this
application, and some new algorithmic aspects will be emphasized. The generic ap-
proach then allows us to study various illustrative relations to other algorithms and
applications. In particular, it is shown that the optimization criteria used for blind
system identification allow a generalization of the well-known Adaptive Eigenvalue
Decomposition (AED) algorithm for source localization: Instead of one source as
with AED, several sources can be localized simultaneously. Performance evaluation
in realistic scenarios will show that this method compares favourably with other
state-of-the-art methods for source localization.

4.1 Introduction

4.1.1 Overview

The area of broadband signal aquisition by sensor arrays in multipath or con-
volutive environments can be divided into two general tasks: the acquisition
of clean source signals, and the analysis of the scene, e.g., in order to extract
the source positions or the reverberation time of the environment. A chal-
lenging and important example for such environments are ’natural’ acoustic

⋆ This work was mainly performed while the first author was with Multimedia
Communications and Signal Processing, University of Erlangen-Nuremberg.
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human/machine interfaces which use multiple microphones to support sound
signal acquisition so that the users should be untethered and mobile. Due
to the distance between the sources and the sensors, the sensor signal pro-
cessing generally has to cope with two basic problems, namely the presence
of additive noise and interferers, and the disturbing effect of reflections and
scattering of the desired source signals in the recordings. Intuitively, if all
propagation paths from the desired and interfering sources to all sensors were
known exactly we would in principle be able to ideally solve all the above
mentioned tasks and associated problems. However, since both the original
source signals and the propagation signals are generally unknown in practice,
a blind estimation of the propagation paths, i.e., a blind system identification
(BSI) of the multiple-input multiple-output (MIMO) system is desirable in
order to analyze the scene with the given sensor signals.

This chapter consists of two parts. In the first part, consisting of Sect. 4.2
and Sect. 4.3, a general treatment of BSI for MIMO systems is presented,
based on TRINICON, a previously introduced versatile framework for broad-
band adaptive MIMO signal processing [1–4], which is especially well suited
for speech and audio signals. We also show a practically important relation
between BSI and blind source separation (BSS) for convolutive mixtures.
In addition to the inherent broadband structure necessary for a proper sys-
tem identification, the top-down, i.e., deductive approach of the TRINICON
framework also allows us to present both relations to already known and new
efficient algorithms. Section 4.2 follows the ideas outlined in [5,6]. Some of
these ideas were also developed independently in [7] in a slightly different
way.

An important and particularly illustrative application of broadband
MIMO BSI considered in the second part of this chapter, Sections 4.4 to
4.6, is the acoustic localization of multiple simultaneously active sources in
reverberant environments. A popular method to the estimation of the po-
sition of an acoustic source in a room is to apply a two-stage approach,
consisting of the estimation of time differences of arrival (TDOAs) between
microphone pairs, followed by the (possibly multidimensional) determination
of the position by a purely geometrical calculation. In contrast to another
method, based on a farfield assumption and the estimation of directions of
arrival (DOAs), the TDOA-based method also allows an accurate localization
of sources in the nearfield. For the signal processing part of these methods,
there are already some popular and conceptually simple approaches in the
literature both for a single source, such as the generalized cross-correlation
method with its numerous variants [8,9], and for multiple sources, such as
the subspace methods, known as, e.g., MUSIC [10] or ESPRIT [11] and their
variants, e.g., [9]. However, most of the source localization methods were orig-
inally designed only for freefield propagation and/or narrowband applications
so that none of the above-mentioned approaches takes multipath propagation
and dispersion such as room reverberation in acoustic scenarios into account.
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Each of the unmodeled reverberation paths causes an additional peak in the
correlation function like an additional source which in turn causes ambigu-
ities in these methods [12–14]. A considerable advantage of the BSI-based
source localization method over the conventional correlation-based methods
is that due to the explicit multipath model the reverberation does no longer
act as a disturbance to the position estimates so that the above-mentioned
ambiguity is inherently solved by this method. So far the literature on effi-
cient algorithmic solutions for blind adaptive system identification and their
application to source localization has mainly focused on single-input multiple-
output (SIMO) systems, i.e., for a single source [15,16]. As we will see in this
chapter, the broadband MIMO solution based on TRINICON results in a
general multidimensional localization scheme for multiple sources in rever-
berant environments. The TRINICON-based TDOA estimation for multiple
sources was first demonstrated in [6]. Due to the system identification, this
approach is also suitable for an accurate localization in the nearfield of the
sources. Moreover, a further differentiating and practically important fea-
ture of the TRINICON-based approach [6] is that its signal-separating prop-
erty also inherently resolves a fundamental spatial ambiguity. This ambiguity
generally arises in the multidimensional case of any multiple-source localiza-
tion task where the multiple TDOAs/DOAs corresponding to the multiple
sources in each dimension must be assigned to the corresponding multiple
TDOAs/DOAs of the same sources for the other dimensions. In [17] it was
demonstrated that this assignment is made possible due to the inherent blind
source separation ability of this approach, i.e., because of the availability of
the separated signals due to the relation between BSI and BSS as mentioned
above.

4.1.2 Blind adaptive MIMO Filtering Tasks and Matrix
Formulation

Blind signal processing on convolutive mixtures of unknown time series is
desirable for several application domains, a prominent example being the
so-called cocktail party problem in acoustics, where we want to recover the
speech signals of multiple speakers who are simultaneously talking in a real
room. The room may be very reverberant due to reflections on the walls,
i.e., the original source signals sq(n), q = 1, . . . , Q are filtered by a linear
multiple input and multiple output (MIMO) system before they are picked
up by the sensors yielding the sensor signals xp(n), p = 1, . . . , P . In this
chapter, we describe this MIMO mixing system by length-M finite impulse
response (FIR) filters, i.e.,

xp(n) =

Q
∑

q=1

M−1
∑

κ=0

hqp,κsq(n − κ), (4.1)
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where hqp,κ, κ = 0, . . . , M − 1 denote the coefficients of the FIR filter model
from the q-th source signal sq(n) to the p-th sensor signal xp(n) according to
Fig. 4.1. Moreover, we assume throughout this chapter that the number Q of
sources is less or equal to the number P of sensors. These cases Q ≤ P are
of particular interest in the context of blind system identification as detailed
below, and they are commonly known as overdetermined and determined,
respectively. Note that in general, the sources sq(n) may or may not be all
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Fig. 4.1. Setup for blind MIMO signal processing.

simultaneously active at a particular instant of time.
Obviously, since only the sensor signals, i.e., the output signals of the mix-

ing system are accessible by the blind signal processing, any type of linear
blind adaptive MIMO signal processing may be described by the serial struc-
ture shown in Fig. 4.1. Thus, according to a certain optimization criterion,
we are interested in finding a corresponding demixing system by the blind
adaptive signal processing whose output signals yq(n) are described by

yq(n) =

P
∑

p=1

L−1
∑

κ=0

wpq,κxp(n − κ). (4.2)

The parameter L denotes the FIR filter length of the demixing filters wpq,κ.
Depending on the chosen coefficient optimization criterion, we distinguish

two general classes of blind signal processing problems1:

• “Direct blind adaptive filtering problems”: This class summa-
rizes here blind system identification (BSI) and blind source separation
(BSS)/blind interference cancellation for convolutive mixtures.
In the BSS approach, we want to determine a MIMO FIR demixing filter
which separates the signals up to an – in general arbitrary – filtering and

1 Note that in supervised adaptive filtering we may distinguish the analogous gen-
eral classes of problems. In this case we classify system identification and interfer-
ence cancellation after [18] as the “direct supervised adaptive filtering problems”,
whereas inverse modeling and linear prediction after [18] may be classified as the
“inverse supervised adaptive filtering problems”.
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permutation by forcing the output signals to be mutually independent.
Traditionally, and perhaps somewhat misleadingly, BSS has often been
considered to be an inverse problem in the literature, e.g., in [19,20]. In an-
other interpretation, BSS may be considered as a set of blind beamformers
[21,22] under certain restricting conditions, most notably the fulfilment of
the spatial sampling theorem by the microphone array. Moreover, under
the farfield assumption, the DOAs may be extracted from the correspond-
ing array patterns, which in turn may be calculated from the BSS filter
coefficients.

In this chapter we will see that more generally, a properly designed and
configured broadband BSS system actually performs blind MIMO system
identification (which is independent of the spatial sampling theorem).
The general broadband approach shown in this chapter thus allows us to
unify the BSS and BSI concepts and provides various algorithmic synergy
effects and new applications. This general class of direct blind adaptive
signal processing problems is the main focus of this chapter.

• “Inverse blind adaptive filtering problems”: This class stands here
for multichannel blind deconvolution (MCBD)2 w.r.t. the mixing sys-
tem H.
Here, in addition to the separation, we want to recover the original signals
up to an arbitrary (frequency-independent) scaling, possibly a time shift,
and a permutation, i.e., in the acoustic applications we want to derever-
berate the signals. In terms of the MIMO system description, for this task,
effectively, an inversion of (long and usually non-minimum phase) room
impulse responses is necessary. However, using the multiple-input/output
inverse theorem (MINT) [23] any MIMO system H can exactly be in-
verted if P , Q, and L are suitably chosen, and if hqp ∀ p ∈ {1, . . . , P}
do not have common zeros in the z-plane. Therefore, in principle, there
is a general solution to the MCBD problem by using multiple sensors.
Obviously, to realize MCBD two different fundamental approaches are
conceivable. One approach is to first perform blind MIMO system identi-
fication as mentioned above, followed by a (MINT-based) inversion of the
estimated mixing system, e.g., [25,26]. The other, theoretically equivalent
but in practice often more reliable approach is to perform directly a blind
estimation of the actual inverse of the MIMO mixing system, e.g., [3,27–
29]. As we may expect, in any case there are various relations between
the general classes of direct and inverse blind adaptive filtering problems,
i.e., BSI and MCBD, and the corresponding algorithms. As a side aspect,
this chapter also tries to highlight some of these relations.

2 Later in Sect. 4.3.2 we will see that in practical systems for the blind deconvolu-
tion tasks it is important to take the spectral characteristics of the source signals
into account. The method of multichannel blind partial deconvolution (MCBPD),
introduced in Sect. 4.3.2 to address this issue also belongs to the class of inverse
blind adaptive filtering problems.



106 Herbert Buchner et al.

Matrix formulation. To analyze and to formulate the above-mentioned
blind adaptive MIMO filtering problems compactly, we introduce the follow-
ing matrix formulation of the overall system consisting of the mixing and
demixing systems. Moreover, this matrix formulation is also used directly in
the TRINICON framework described later in Sect. 4.3 in order to blindly
estimate the adaptive demixing filter coefficients.

As a compact formulation of the mixing filter coefficients hqp,κ, κ =
0, . . . , M − 1 and the demixing filter coefficients wpq,κ, κ = 0, . . . , L − 1,
p = 1, . . . , P , q = 1, . . . , Q, we form the QM × P mixing coefficient matrix

Ȟ =







h11 · · · h1P

...
. . .

...
hQ1 · · · hQP






(4.3)

and the PL × Q demixing coefficient matrix

W̌ =







w11 · · · w1Q

...
. . .

...
wP1 · · · wPQ






, (4.4)

respectively, where

hqp = [hqp,0, . . . , hqp,M−1]
T

, (4.5)

wpq = [wpq,0, . . . , wpq,L−1]
T

(4.6)

denote the coefficient vectors of the FIR subfilters of the MIMO systems, and
superscript T denotes transposition of a vector or a matrix. The downwards
pointing hat symbol on top of H and W in (4.3) and (4.4) serves to distinguish
these condensed matrices from the corresponding larger matrix structures as
introduced below in (4.10) for the case of the mixing system. The rigorous
distinction between these different matrix structures is also an essential aspect
of the general TRINICON framework as shown later.

Analogously, the coefficients cqr,κ, q = 1, . . . , Q, r = 1, . . . , Q, κ =
0, . . . , M + L − 2 of the overall system of length M + L − 1 from the sources
to the adaptive filter outputs are combined into the Q(M +L−1)×Q matrix

Č =







c11 · · · c1Q

...
. . .

...
cQ1 · · · cQQ






, (4.7)

where

cqr = [cqr,0, . . . , cqr,M+L−2]
T . (4.8)

All these subfilter coefficients cqr,κ are obtained by convolving the mixing
filter coefficients with the demixing filter coefficients. In general, a convolution
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of two such finite-length sequences can also be written as a matrix-vector
product so that the coefficient vector for the model from the q-th source to
the r-th output reads here

cqr =
P

∑

p=1

Hqp,[L]wpr. (4.9)

The so-called convolution or Sylvester matrix Hqp,[L] of size M + L − 1 × L
in this equation exhibits a special structure, containing the M filter taps in
each column,

Hqp,[L] =































hqp,0 0 · · · 0

hqp,1 hqp,0
. . .

...
... hqp,1

. . . 0

hqp,M−1

...
. . . hqp,0

0 hqp,M−1
. . . hqp,1

...
. . .

...
0 · · · 0 hqp,M−1































. (4.10)

The additional third index in brackets denotes the width of the Sylvester
matrix which has to correspond to the length of the column vector wpr in (4.9)
so that the matrix-vector product is equivalent to a linear convolution. The
brackets serve to emphasize this fact and to clearly distinguish the meaning
of this index from the meaning of the third index of the individual elements
of the matrices, e.g., in (4.10).

We may now express the overall system matrix Č after (4.7) compactly
using this Sylvester matrix formulation to finally obtain

Č = H[L]W̌, (4.11)

where H[L] denotes the Q(M + L − 1) × PL MIMO block Sylvester-matrix
combining all channels,

H[L] =







H11,[L] · · · H1P,[L]

...
. . .

...
HQ1,[L] · · · HQP,[L]






. (4.12)

Based on this matrix formulation, we are now in a position to formulate
the blind adaptive MIMO filtering tasks compactly, and to discuss the cor-
responding ideal solutions, regardless of how the adaptation is actually per-
formed in practice (note that this also means that the results are valid for
both blind and supervised adaptation). The blind adaptation of the coeffi-
cients towards these ideal solutions will be treated later in Sect. 4.3.
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Condition for Ideal Solution of Inverse Adaptive Filtering Problems
(Ideal Inversion Solution). As mentioned above, the aim of the inverse
adaptive filtering problem is to recover the original signals sq(n), q = 1, . . . , Q,
as shown in Fig. 4.1, up to an arbitrary frequency-independent scaling, time
shift, and possibly a permutation of the demixing filter outputs. Disregarding
the potential permutation among the output signals3, this condition may be
expressed in terms of an ideal overall system matrix

Čideal,inv = Bdiag
{

[0, . . . , 0, 1, 0, . . . , 0]T , . . . , [0, . . . , 0, 1, 0, . . . , 0]T
}

Λα,

(4.13)

where the Bdiag{·} operator describes a block-diagonal matrix containing the
listed vectors on the main diagonal. Here, these target vectors represent pure

delays. The diagonal matrix Λα = Diag
{

[α1, . . . , αP ]T
}

accounts for the

scaling ambiguity. The condition for the ideal inversion solution thus reads

H[L]W̌ = Čideal,inv. (4.14)

This system of equations may generally be solved exactly or approximately
by the Moore-Penrose pseudoinverse, denoted by ·+, so that

W̌LS,inv = H+
[L]Čideal,inv

=
[

HT
[L]H[L]

]−1

HT
[L]Čideal,inv. (4.15)

Note that this expression corresponds to the least-squares (LS) solution

W̌LS,inv = argmin
W̌

‖H[L]W̌ − Čideal,inv‖
2. (4.16)

It can be shown that under certain practically realizable conditions this so-
lution becomes the ideal inversion solution, i.e., the pseudoinverse in (4.15)
turns into the true matrix inverse,

W̌ideal,inv = H−1
[L]Čideal,inv. (4.17)

This method is known as the Multiple-input/output INverse Theorem
(MINT) [23] and is applicable even for mixing systems with nonminimum
phase. The basic requirement for H[L] in order to be invertible is that it is
of full rank. This assumption can be interpreted such that the FIR acoustic
impulse responses contained in H[L] do not possess any common zeros in the
z-domain, which usually holds in practice for a sufficient number of sensors

3 It could formally be described by an additional permutation matrix in the ideal
solution. However, since in many practical cases this ambiguity may easily be
resolved (e.g., by a correlation analysis), we renounced on this formal treatment
for clarity.



4 Blind MIMO System Identification, Multiple-Source Localization 109

[23]. Another requirement for invertibility of H[L] is that the number of its
rows equals the number of its columns, i.e., Q(M + L − 1) = PL according
to the dimensions noted above (4.12). From this condition, we immediately
obtain the optimum filter length for inversion [24]:

Lopt,inv =
Q

P − Q
(M − 1). (4.18)

An important conclusion of this consideration is that the MIMO mixing sys-
tem can be inverted exactly even with a finite-length MIMO demixing system,
as long as P > Q, i.e., the number of sensors is greater than the number of
sources. Note that P, Q, M must be such that Lopt,inv is an integer number
in order to allow the matrix inversion in (4.17). Otherwise, we have to resort
to the LS approximation (4.15) with Lopt,inv = ⌈Q(M − 1)/(P − Q)⌉.

Conditions for Ideal Solution of Signal Separation Problems (Ideal
Separation Solution). The goal of any separation algorithm, such as BSS
or conventional beamforming, is to eliminate the crosstalk between the dif-
ferent sources sq(n), q = 1, . . . , Q, as shown in Fig. 4.1, in the output signals
yq(n), q = 1, . . . , Q of the demixing system. Disregarding again a poten-
tial permutation among the output signals as above, this condition may be
expressed in terms of the overall system matrix Č as

Č − bdiag
{

Č
}

= boff
{

Č
}

= 0. (4.19)

Here, the operator bdiag{·} applied to a block matrix consisting of several
submatrices or vectors sets all submatrices or vectors on the off-diagonals to
zero. Analogously, the boff{·} operation sets all submatrices or vectors on
the diagonal to zero.

With the overall system matrix (4.11), the condition for the ideal separa-
tion is expressed as

boff
{

H[L]W̌
}

= 0. (4.20)

This relation for the ideal solution of the direct blind adaptive filtering prob-
lems is the analogous expression to the relation (4.14) for the ideal solution
of the inverse blind adaptive filtering problems.

As we will see in the next section, the relation (4.20) allows us

• to derive an explicit expression of the ideal separation solution analo-
gously to (4.17)

• to establish a link between BSS and BSI

• to establish the conditions for BSI
• to derive the optimum separating FIR filter length Lopt,sep analogously

to (4.18) for which the ideal separation solution (4.19) can be achieved.
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If we are only interested in separation with certain other constraints to the
output signals (e.g., minimal signal distortion between sensor signals and out-
put signals), but not in system identification, we may impose further explicit
conditions to the block-diagonal elements of H[L]W̌ in addition to the con-
dition (4.20) on the block-offdiagonals. For instance, the so-called minimum
distortion principle after [30] may in fact be regarded as such an additional
condition. However, since this is not within the scope of system identification
we will not discuss these conditions further in this chapter.

4.2 Blind MIMO System Identification and Relation

to Blind Source Separation

Traditionally, blind source separation (BSS) has often been considered as an
inverse problem. In this section we show that the theoretically ideal con-
volutive (blind) source separation solution corresponds to blind MIMO sys-
tem identification. By choosing an appropriate filter length we show that
for broadband algorithms the well-known filtering ambiguity can be avoided.
Ambiguities in instantaneous BSS algorithms are scaling and permutation
[19]. In narrowband convolutive BSS these ambiguities occur independently
in each frequency bin so that arbitrary scaling becomes arbitrary filtering,
as mentioned above. For additional measures to solve the internal permuta-
tion problem appearing independently in each frequency bin, see, e.g., [31]
and for the arbitrary filtering, e.g., [30]. On the other hand, broadband time-
domain BSS approaches are known to avoid the bin-wise permutation am-
biguity. However, traditionally, multichannel blind deconvolution (MCBD)
algorithms are often used in the literature [20,30], which have the drawback
of whitening the output signals when applied to acoustic scenarios. Repair
measures for this problem have been proposed in [30] (minimum distortion
principle) and in [20] (linear prediction). In the following we consider the
ideal broadband solution of mere MIMO separation approaches and relate
it to the known blind system identification approach based on single-input
multiple-output (SIMO) models [15,25,26]. This section follows the ideas out-
lined in [5,6]. Some of these ideas were also developed independently in [7] in
a slightly different way.

This section discusses the ideal separation condition boff
{

H[L]W̌
}

= 0
illustrated in Fig. 4.2 for the case Q = P = 3. Since in this equation we
impose explicit constraints only on the block-offdiagonal elements of Č, this
is equivalent to establishing a set of homogeneous systems of linear equations

H(:\q):,[L]W̌:q = 0, q = 1, . . . , Q (4.21)

to be solved. Each of these systems of equations results from the constraints
on one column of Č, as illustrated in Fig. 4.2 for the first column. The notation
in the indices in (4.21) indicates that for the q-th column W̌:q of the demixing
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W̌:1

W̌

H[L]

0

0

0

0

0

0

H(:\1):,[L]

Č

Fig. 4.2. Overall system Č for the ideal separation, illustrated for P = Q = 3.

filter matrix W̌, we form a submatrix H(:\q):,[L] of H[L] by striking out the
q-th row Hq:,[L] of Sylvester-submatrices of the original matrix H[L] .

For homogeneous systems of linear equations such as (4.21) it is known
that non-trivial solutions W̌:q 6≡ 0 are indeed obtained if the rank of H(:\q):,[L]

is smaller than the number of elements of W̌:q. Later in this section, we will
also derive an expression of the optimum separation filter length Lopt,sep

for an arbitrary number of sensors and sources analogously to the optimum
inversion filter length Lopt,inv in (4.18). This derivation will be based on this
observation.

In the following subsections, we first discuss the solution of (4.21) for the
case P = Q = 2, and then generalize the results to more than two sources
and sensors.

4.2.1 Square Case for Two Sources and Two Sensors

For the case Q = P = 2, the set of homogeneous linear systems of equations
(4.21) reads

H11,[L]w12 + H12,[L]w22 = 0, (4.22a)

H21,[L]w11 + H22,[L]w21 = 0. (4.22b)

Since the matrix-vector products in these equations represent convolutions
of FIR filters they can equivalently be written as a multiplication in the
z-domain:

H11(z)W12(z) + H12(z)W22(z) = 0, (4.23a)

H21(z)W11(z) + H22(z)W21(z) = 0. (4.23b)

Due to the FIR filter structure the z-domain representations can be expressed
by the zeros z0Hqp,ν , z0Wpq,µ and the gains AHqp

, AHpq
of the filters Hqp(z)
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and Wpq(z), respectively:

AH11

M−1
∏

ν=1

(z − z0H11,ν)AW12

L−1
∏

µ=1

(z − z0W12,µ) =

− AH12

M−1
∏

ν=1

(z − z0H12,ν)AW22

L−1
∏

µ=1

(z − z0W22,µ), (4.24a)

AH21

M−1
∏

ν=1

(z − z0H21,ν)AW11

L−1
∏

µ=1

(z − z0W11,µ) =

− AH22

M−1
∏

ν=1

(z − z0H22,ν)AW21

L−1
∏

µ=1

(z − z0W21,µ). (4.24b)

Analogously to the case of MINT [23] described in the previous section, we
assume that the impulse responses contained in H(:\q):,[L], i.e., H11(z) and
H12(z) in (4.24a) do not share common zeros. In the same way, we assume
that H21(z) and H22(z) in (4.24b) do not share common zeros. If no common
zeros exist and if we choose the optimum filter length for the case Q = P = 2
as Lopt,sep = M , then the equality in (4.24a) can only hold if the zeros of
the demixing filters are chosen as z0W12,µ = z0H12,µ and z0W22,µ = z0H11,µ

for µ = 1, . . . , M − 1. Analogously, the equality in (4.24b) can only hold if
z0W11,µ = z0H22,µ and z0W21,µ = z0H21,µ for µ = 1, . . . , M − 1. Additionally,
to fulfill the equality, the gains of the demixing filters in (4.24a) have to be
chosen as AW22

= α2AH11
and AW12

= −α2AH12
, where α2 is an arbitrary

scalar constant. Thus, the demixing filters are only determined up to a scalar
factor α2. Analogously, for the equality (4.24b) the gains of the demixing
filters are given as AW11

= α1AH22
and AW21

= −α1AH21
with the scalar

constant α1.
In summary, this leads to the ideal separating filter matrix W̌ideal,sep

given in the time domain as

W̌ideal,sep =

[

α1h22 −α2h12

−α1h21 α2h11

]

=

[

h22 −h12

−h21 h11

] [

α1 0
0 α2

]

, (4.25)

where due to the scaling ambiguity each column is multiplied by an unknown
scalar αq.

From (4.25) we see that under the conditions put on the zeros of the
mixing system in the z-domain, and for L = Lopt,sep, this ideal separation so-
lution corresponds to a MIMO system identification up to an arbitrary scalar
constant. Thus, a suitable algorithm which is able to perform broadband BSS
under these conditions can be used for blind MIMO system identification (if
the source signals provide sufficient spectral and temporal support for excit-
ing the mixing system). In Section 4.3, we present such a suitable algorithmic
framework for this task. Moreover, as we will see in the following subsection,
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this approach may be seen as a generalization of the state-of-the-art method
for the blind identification of SIMO systems.

Finally, since we did not impose an explicit constraint on the block-
diagonal elements of the overall system Č in the original separation condition
(4.20), we are now interested in the resulting overall system in the case of
the ideal separating solution (4.25). By inserting this solution into (4.11), we
readily obtain

Čideal,sep = H[M ]W̌ideal,sep

=

[

H11,[M ] H12,[M ]

H21,[M ] H22,[M ]

] [

α1h22 −α2h12

−α1h21 α2h11

]

=

[

α1

(

H11,[M ]h22 − H12,[M ]h21

)

α2

(

H12,[M ]h11 − H11,[M ]h12

)

α1

(

H12,[M ]h22 − H22,[M ]h21

)

α2

(

H22,[M ]h11 − H21,[M ]h12

)

]

=

[

α1

(

H11,[M ]h22 − H12,[M ]h21

)

0
0 α2

(

H22,[M ]h11 − H21,[M ]h12

)

]

,

(4.26)

where in the last line the commutativity of the convolution has been exploited
so that the crosstalk between the channels is cancelled out perfectly. The
output signals of the overall system are filtered (but not arbitrarily filtered)
versions of the original source signals.

4.2.2 Relation to SIMO System Identification

BSS algorithms aiming at the ideal solution (4.25) can be interpreted as
a generalization of the popular class of blind SIMO system identification
approaches, e.g., [25,26,32], as illustrated in Fig. 4.3a. The main reason for
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Fig. 4.3. Blind system identification based on (a) SIMO and (b) MIMO models.
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the popularity of this SIMO approach is that it can be implemented as a
relatively simple least-squares error minimization. From Fig. 4.3a and for
e(n) = 0 it follows for sufficient excitation s(n) that

h1(n) ∗ w1(n) = −h2(n) ∗ w2(n). (4.27)

This can be expressed in the z-domain as H1(z)W1(z) = −H2(z)W2(z). Com-
paring this error cancelling condition with the ideal separation conditions
(4.23a)/(4.23b), we immediately see that the SIMO-based approach indeed
corresponds exactly to one of the separation conditions, and for deriving the
ideal solution, we may apply exactly the same reasoning as in the MIMO
case above. Thus, assuming that H1(z) and H2(z) have no common zeros,
the equality of (4.27) can only hold if the filter length is chosen again as
L = M . Then, this leads to the ideal cancellation filters W1(z) = αH2(z) and
W2(z) = −αH1(z) which can be determined up to an arbitrary scaling by
the factor α as in the MIMO case. For L > M the scaling ambiguity would
result in arbitrary filtering. For the SIMO case this scaling ambiguity was
derived similarily in [26].

Note that the SIMO case may also be interpreted as a special 2 × 2
MIMO case according to Fig. 4.3b with the specialization being that one of
the sources is always identical to zero so that the BSS output corresponding
to this (virtual) source also must always be identical to zero, whereas the
other BSS output signal is not of interest in this case. This leads again to
the cancellation condition (4.27), and illustrates that the relation between
broadband BSS and SIMO-based BSI will also hold from an algorithmic point
of view, i.e., known adaptive solutions for SIMO BSI may also be derived as
special cases of the algorithmic framework for the MIMO case.

Adaptive algorithms performing the error minimization mentioned above
for the SIMO structure have been proposed in the context of blind decon-
volution, e.g., in [25,26] and for blind identification used for passive source
localization, e.g., in [15,16]. It is also known as the adaptive eigenvalue de-
composition (AED) algorithm. This name comes from the fact that in the
SIMO case, the homogeneous system of equations (4.21) may be reformu-
lated into an analogous signal-dependent homogeneous system of equations
containing the sensor-signal correlation matrix instead of the mixing filter
matrix. The solution vector (in the SIMO case the matrix W̌ reduces to a
vector) of the homogeneous system can then be interpreted as the eigenvector
corresponding to the zero-valued (or smallest) eigenvalue of the sensor corre-
lation matrix. In [16,25] this SIMO approach, i.e., the single-source case, was
also generalized to more than two microphone channels.

4.2.3 Ideal Separation Solution in the General Square Case for
More than Two Sources and Sensors

The factorized formulation of the ideal separation solution for the case Q =
P = 2 in the second part of (4.25) suggests that it may be expressed more
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generally by the adjoint of the matrix Ȟ where the entries hqp are treated
like scalar values. We formalize this operation and call it the block-adjoint
operator badjP {·}, where the index P denotes the number of submatrices in
each row or column of the argument. Using the block-adjoint operator the
general form of (4.25) for an arbitrary number Q = P of sensors or sources
reads [5]

W̌ideal,sep = badjP
{

Ȟ
}

Λα, (4.28)

where the diagonal matrix Λα = Diag
{

[α1, . . . , αP ]
T
}

again describes the

scaling ambiguity. Note that the size of badjP
{

Ȟ
}

is determined for P, Q > 2

by the internal convolutions of the FIR filters contained in Ȟ. We may easily
verify that the resulting size after the convolutions is [P (P−1)(M−1)+1]×P .

To verify that the approach (4.28) is indeed the ideal separating solution
for P, Q ≥ 2, we may calculate the overall system matrix as in the 2× 2 case
above. Extending the well-known property of the conventional adjoint of a
square matrix A

Aadj {A} = det {A} · I = Diag {det {A} , . . . , det {A}} (4.29)

to the analogous formulation of the block-adjoint it may be shown that

Čideal,sep = H[L]badjP
{

Ȟ
}

Λα

= Bdiag
{

bdetP

{

Ȟ
}

, . . . , bdetP

{

Ȟ
}}

Λα, (4.30)

where the operator bdetP

{

Ȟ
}

denotes a block-determinant operator on the
mixing system. Similarly to the block-adjoint, the block-determinant opera-
tor generalizes the conventional determinant operator so that we work with
submatrices as its entries rather than scalar values. Thus, in contrast to the
conventional determinant the block-determinant bdetP

{

Ȟ
}

is still a ma-
trix and can be interpreted as a MIMO system with FIR filters of length
P (M − 1) + 1 due to the P internal convolutions. The submatrices on the
block-diagonal in (4.26) represent this operation for the 2 × 2 case.

4.2.4 Ideal Separation Solution and Optimum Separating Filter
Length for an Arbitrary Number of Sources and Sensors

As mentioned above, for homogeneous systems of linear equations such as
the ideal separation conditions (4.21) it is known that non-trivial solutions
W̌:q 6≡ 0 are obtained if the rank of H(:\q):,[L] is smaller than the number of

elements of W̌:q. Additionally, as in the case of MINT [23] described in the
previous section, we assume that the impulse responses contained in H(:\q):,[L]

do not share common zeros in the z-domain so that H(:\q):,[L] is assumed to
have full row rank. Thus, combining these conditions leads to the requirement
that the matrix H(:\q):,[L] is wide, i.e., the number PL of its columns must be
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greater than the number (Q− 1)(M +L− 1) of its rows to obtain non-trivial
solutions, i.e., PL > (Q− 1)(M + L− 1). Solving this inequality for L yields
the lower bound for the separating filter length as

Lsep >
Q − 1

P − Q + 1
(M − 1). (4.31)

The difference between the number of columns of H(:\q):,[L] and the num-
ber of rows further specifies the dimension of the space of possible non-trivial
solutions W̌:q, i.e., the number of linearly independent solutions spanning the
solution space. Obviously, due to the bound derived above, the best choice we
can make to narrow down the solutions is a one-dimensional solution space,
i.e., PL = (Q−1)(M+L−1)+1. Solving now this equality for L and choosing
the integer value to be strictly larger than the above bound finally results in
the optimum separating filter length as

Lopt,sep =
(Q − 1)(M − 1) + 1

P − Q + 1
. (4.32)

Note that narrowing down the solution space to a one-dimensional space
by this choice of filter length precisely means that in this case the filter-
ing ambiguity of BSS reduces to an arbitrary scaling. These considerations
show that this is possible even for an arbitrary number P of sensors and
an arbitrary number Q of sources, where P ≥ Q. However, the parameters
P, Q, M must be such that Lopt,sep is an integer number in order to allow the
ideal separation solution. Otherwise, we have to resort to approximations by
choosing, e.g., Lopt,sep = ⌈[(Q − 1)(M − 1) + 1]/(P − Q + 1)⌉.

To actually obtain the ideal separation solution W̌ideal,sep with (4.32) for
the general, i.e., not necessarily square case P ≥ Q, we may not straightfor-
wardly apply the block-adjoint and block-determinant operators introduced
in the previous subsection. We therefore consider again the original set of
homogeneous systems of linear equations (4.21). For the choice L = Lopt,sep,

we may easily augment the matrix H(:\q):,[L] to a square matrix H̃(:\q):,[L] by
adding one row of zeros on both sides of (4.21). The corresponding augmented
set of linear systems of equations

H̃(:\q):,[L]W̌:q = 0, q = 1, . . . , Q. (4.33)

is equivalent to the original set (4.21). However, we may now express the
general solution vector W̌:q of (4.21) for the q-th column of W̌ as the eigen-
vector corresponding to the zero-valued eigenvalue of the augmented matrix
H̃(:\q):,[L].

The general equation (4.32) for the optimum separation filter length is the
expression which is analogous to the optimum inverse filter length considered
earlier in (4.18). Comparing these two equations, we can verify that in con-
trast to the inversion, which requires P > Q for the ideal solution using FIR
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filters, the ideal separation condition is already possible for P = Q. Moreover,
for the special case P = Q = 2, the general expression (4.32) also confirms the
choice Lopt,BSS = M as already obtained in Sect. 4.2.1. Figure 4.4 illustrates
the different optimum filter lengths by an example.
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Fig. 4.4. Comparison of the optimum filter lengths for M = 1000 and Q = 3.

In practice it is obviously difficult to choose the optimum filter length in
the blind applications precisely since the length M of the mixing system is
generally unknown. Moreover, in many applications we do not require a com-
plete identification of all reflections within the mixing system but only of the
dominant ones (e.g., in the localization application considered in later in this
chapter). Fortunately, this is in line with the above-mentioned requirement
to avoid an overestimation of the filter length in order to narrow down the
solution space, i.e., to prevent the filtering ambiguity. Thus, in any case, the
choice L ≤ Lopt,sep is preferable in practice.

4.2.5 General Scheme for Blind System Identification

In the previous Sections 4.2.1 and 4.2.2 we have explicitly shown the relation
between the ideal separation solution and the mixing system for the two-
sensor cases. These considerations did also result in a link to the well-known
SIMO-based system identification method (note that for BSI with more than
two sensors, one simple approach is to apply several of these schemes in
parallel), and also to a generalization of this method to the MIMO case
with two simultaneously active sources. In the case of more than two sources
we may not directly pick the estimated mixing system coefficients from the
separation solution W̌. The previous Sections 4.2.3 and 4.2.4 generalized the
considerations on the two-sensor cases for the separation task. In this section,
we now outline the generalization of the two-sensor cases in Sections 4.2.1
and 4.2.2 for the identification task. The considerations so far suggest the
following generic two-step BSI scheme for an arbitrary number of sources
(where P ≥ Q):

(1) Based on the available sensor signals, perform a properly designed broad-
band BSS (see Sect. 4.3) resulting in an estimate of the demixing system
matrix.
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(2) Analogously to the relation (4.21) between the mixing and demixing sys-
tems, and the associated considerations in Sect. 4.2.4 for the separation
task, determine an estimate of the mixing system matrix using the esti-
mated demixing system from the first step.

In general, to perform step (2) for more than two sources, some further consid-
erations are required. First, an equivalent reformulation of the homogeneous
system of equations (4.33) is necessary so that now the demixing system ma-
trix instead of the mixing system matrix is formulated as a blockwise Sylvester
matrix. Note that this corresponds to a block-transposition (which we denote
here by superscript ·bT) of (4.21), i.e.,

(

WbT
)

(:\q):,[M ]

(

ȞbT
)

:q
= 0, q = 1, . . . , Q. (4.34)

The block-transposition is an extension of the conventional matrix transposi-
tion. It means that we keep the original form of the channel-wise submatrices
but we may change the order of the mixing and demixing subfilters by exploit-
ing the commutativity of the convolutions similarly as in (4.26). Note that
the commutativity property does not hold for the MIMO system matrices as
a whole, i.e., W(:\q):,[M ] and Ȟ:q, so that they have to be block-transposed
to change their order.

Similarly to Sect. 4.2.4, we may then calculate the corresponding estimate
of the mixing system in terms of eigenvectors using the complementary form
(4.34) of the homogeneous system of equations. Based on this system of
equations, we can devise various powerful strategies for BSI in the general
MIMO case.

4.2.6 Summary

We have defined and analyzed the signal separation and deconvolution prob-
lems using clear conditions for the involved linear mixing and demixing sys-
tems. For both problems, the ideal demixing filter coefficients have been
derived. Thereby, signal separation was classified as a direct blind adap-
tive filtering problem, which is in contrast to deconvolution as an inverse
adaptive filtering problem. Under certain conditions, such as a suitable fil-
ter length for the demixing system and sufficient excitation by the source
signals, blind MIMO system identification can be achieved by blind signal
separation. In this case, the solutions are unique up to a scaling factor (and
a possible permutation of the output channels). From this uniqueness and
the correspondence between BSS and BSI we can draw the conclusions that
(1) arbitrary filtering may be prevented with broadband approaches, (2) the
known whitening problem is avoided, and (3) the BSS framework also allows
for several new applications, such as simultaneous localization of multiple
sources, as shown later in this chapter.
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4.3 TRINICON - A General Framework for Adaptive

MIMO Signal Processing and Application to the

Blind Adaptation Problems

For the blind estimation of the coefficients corresponding to the desired so-
lutions discussed in the previous section, we have to consider and to exploit
the properties of the excitation signals, such as their non-stationarity, their
spectral characteristics, and their probability densities.

In the existing literature, the BSS problem has mostly been addressed for
instantaneous mixtures or narrowband approaches in the frequency domain
which adapt the coefficients independently in each DFT bin, e.g., [19,33,34].
On the other hand, in the case of MCBD, many approaches either aim at
whitening the output signals as they are based on an i.i.d. model of the source
signals (e.g., [27,28]), which is undesirable for speech and audio signals which
should not be whitened, or are rather heuristically motivated, e.g., [29].

The aim of this section is to present an overview of the algorithmic part of
broadband blind adaptive MIMO filtering based on TRINICON (’TRIple-N
Independent component analysis for CONvolutive mixtures’), a generic con-
cept for adaptive MIMO filtering which takes all the above mentioned signal
properties (nonwhiteness, nonstationarity, and nongaussianity) into account,
and allows a unified treatment of broadband BSS as needed for a proper BSI,
and MCBD algorithms applicable to speech and audio signals in real acous-
tic environments [1–4]. This framework generally uses multivariate stochastic
signal models in the cost function to describe the temporal structure of the
source signals. This versatile approach provides a powerful cost function for
both, BSS/BSI and MCBD, and, for the latter, also leads to improved solu-
tions for speech dereverberation.

As in the previous sections, we will again mainly focus on the direct blind
adaptive filtering problems, such as BSS. In [4], a direct relation between the
BSS adaptation mechanism and the ideal separation solution (4.20) was es-
tablished. Moreover, although both time-domain and equivalent broadband
frequency-domain formulations of TRINICON have been developed with the
corresponding multivariate models in both the time domain and the frequency
domain [2,4], we consider in this chapter mainly the time-domain formula-
tion. We discuss here only gradient-based coefficient updates for clarity of
presentation. The algorithmic TRINICON framework is directly based on
the matrix notation developed above.

Throughout this section, we regard the standard BSS model where the
number Q of maximum simultaneously active source signals sq(n) is equal to
the number of sensor signals xp(n), i.e., Q = P . However, it should be noted
that in contrast to other BSS algorithms we do not assume prior knowledge
about the exact number of active sources. Thus, even if the algorithms will be
derived for Q = P , the number of simultaneously active sources may change
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throughout the application of the BSS algorithm and only the condition Q ≤
P has to be fulfilled.

4.3.1 Cost Function and Gradient-Based Coefficient
Optimization

Matrix notation for convolutive mixtures. To introduce an algorithm
for broadband processing of convolutive mixtures, we first need to formulate
the convolution of the FIR demixing system of length L in the following
matrix form [4]:

yT(n) = xT(n)W, (4.35)

where n denotes the time index, and

xT(n) = [xT
1 (n), . . . ,xT

P (n)], (4.36)

yT(n) = [yT
1 (n), . . . ,yT

P (n)], (4.37)

W =







W11 · · · W1P

...
. . .

...
WP1 · · · WPP






, (4.38)

xT
p (n) = [xp(n), . . . , xp(n − 2L + 1)], (4.39)

yT
q (n) = [yq(n), . . . , yq(n − D + 1)] (4.40)

=

P
∑

p=1

xT
p (n)Wpq. (4.41)

The parameter D in (4.40), 1 ≤ D < L, denotes the number of lags taken
into account to exploit the nonwhiteness of the source signals as shown below.
Wpq, p = 1, . . . , P , q = 1, . . . , P denote 2L × D Sylvester matrices that
contain all coefficients of the respective filters:

Wpq =













































wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
...

...
...

0 · · · 0 0













































. (4.42)
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Note that for D = 1, (4.35) simplifies to the well-known vector formulation of
a convolution, as it is used extensively in the literature on supervised adaptive
filtering, e.g., [18].

Optimization Criterion. Various approaches exist to blindly estimate the
demixing matrix W for the above-mentioned tasks by utilizing the follow-
ing source signal properties [19] which we all combine into an efficient and
versatile algorithmic framework [1–3]:
(i) Nongaussianity is exploited by using higher-order statistics for indepen-
dent component analysis (ICA). ICA approaches can be divided into several
classes. Although they all lead to similar update rules, the minimization of
the mutual information (MMI) among the output channels can be regarded
as the most general approach for BSS [19]. To obtain an estimator not only
allowing spatial separation but also temporal separation for MCBD, we use
the Kullback-Leibler divergence (KLD) [35] between a certain desired joint
pdf (essentially representing a hypothesized stochastic source model) and the
joint pdf of the actually estimated output signals. The desired pdf is factor-
ized w.r.t. the different sources (for BSS) and possibly also w.r.t. certain
temporal dependencies (for MCBD) as shown below. The KLD is guaranteed
to be positive [35], which is a necessary condition for a useful cost function.
(ii) Nonwhiteness is exploited by simultaneous minimization of output
cross-relations over multiple time-lags. We therefore consider multivariate
pdfs, i.e., ‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization of output
cross-relations at different time-instants. We assume ergodicity within blocks
of length N so that the ensemble average is replaced by time averages over
these blocks.

Based on the KLD, we now define the following general cost function
taking into account all three fundamental signal properties (i)-(iii):

J (m,W) = −

∞
∑

i=0

β(i, m)
1

N

iL+N−1
∑

j=iL

{log(p̂s,PD(y(j))) − log(p̂y,PD(y(j)))} ,

(4.43)

where p̂s,PD(·) and p̂y,PD(·) are the assumed or estimated PD-variate source
model (i.e., desired) pdf and output pdf, respectively. The index m denotes
the block time index for a block of N output samples shifted by L sam-
ples relatively to the previous block. Furthermore, D is the memory length,
i.e., the number of time-lags to model the nonwhiteness of the P signals as
above. β is a window function with finite support that is normalized so that
∑m

i=0 β(i, m) = 1, allowing for online, offline, and block-online algorithms
[2,36].

Gradient-Based Coefficient Update. In this chapter we concentrate on
iterative gradient-based block-online coefficient updates which can be written
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in the general form

W̌0(m) := W̌(m − 1), (4.44a)

W̌ℓ(m) = W̌ℓ−1(m) − µ∆W̌ℓ(m), ℓ = 1, . . . , ℓmax, (4.44b)

W̌(m) := W̌ℓmax(m), (4.44c)

where µ is a stepsize parameter, and the superscript index ℓ denotes an
iteration parameter to allow for multiple iterations (ℓ = 1, . . . , ℓmax) within
each block m. The LP × P coefficient matrix W̌ (defined in (4.4)) to be
optimized is smaller than the 2LP ×DP Sylvester matrix W used above for
the formulation of the cost function, and it contains only the non-redundant
elements of W.

The simplest case of the above procedure (4.44a)-(4.44c) is the gradient
descent update, which is defined by

∆W̌ℓ(m) = ∇W̌J (m,W)|
W̌=W̌ℓ(m) . (4.45)

Obviously, when calculating this gradient explicitly, we are confronted
with the problem of the different coefficient matrix formulations W and W̌
in the cost function and in the optimization procedure, respectively. This is a
direct consequence of taking into account the nonwhiteness signal property,
as mentioned above, and – although it may seem less obvious at this point –
it leads to an important building block whose actual implementation is fun-
damental to the properties of the resulting algorithm, the so-called Sylvester
constraint (SC) on the coefficient update [2,4]. Using the Sylvester constraint
operator the gradient descent update (4.45) can be rewritten as

∆W̌ℓ(m) = SC {∇WJ (m,W)}|W=Wℓ(m) . (4.46)

Depending on the particular realization of (SC), we are able to select both,
well known and also novel improved adaptation algorithms [36]. As discussed
in [36] there are two particularly simple and popular realizations of (SC)
leading to two different classes of algorithms:

(1) Computing only the first column of each channel of the update matrix to
obtain the new coefficient matrix W̌. This method is denoted as (SCC).

(2) Computing only the L-th row of each channel of the update matrix to
obtain the new coefficient matrix W̌. This method is denoted as (SCR).

It can be shown that in both cases the update process is significantly sim-
plified [36]. However, in general, both choices require some tradeoff in the
algorithm performance. While SCC may provide a potentially more robust
convergence behaviour, it will not work for arbitrary source positions (e.g.,
in the case of two sources, they are required to be located in different half-
planes w.r.t. the orientation of the microphone array), which is in contrast
to the more versatile SCR [36]. Note that the choice of SC also determines
the appropriate coefficient initialization [36].
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Next, in this chapter, we derive a novel generic Sylvester constraint to
further formalize and clarify this concept.

Let WKJ
kj = [W]

KJ
kj denote the kj-th component of the Sylvester matrix

after (4.42) for the KJ-th channel corresponding to the KJ-th submatrix
in (4.38). According to [2,4], the gradient of J w.r.t. these components is
transformed by a certain choice of (SC) to the gradient w.r.t. the components

W̌MN
m =

[

W̌
]MN

m
of the condensed matrix as used above in (4.45). This can

be expressed concisely by applying the chain rule for matrix derivatives in
the following form:

∂J

∂W̌MN
m

=
∑

k,j,K,J

∂J

∂WKJ
kj

∂WKJ
kj

∂W̌MN
m

=
∑

k,j,K,J

∂J

∂WKJ
kj

δKMδJNδk,(m+j−1)

=
∑

k,j

∂J

∂WMN
kj

δk,(m+j−1), (4.47)

where

δij =

{

1 for i = j
0 for i 6= j

(4.48)

denotes the Kronecker symbol. Hence, we have the simple linear relation

[∇W̌J ]
MN

m
=

∑

k,j

[∇WJ ]
MN

kj δk,(m+j−1) (4.49)

between the MN -th submatrices of ∇WJ and ∇W̌J . If we consider now
for illustration of (4.49) the individual elements of ∇W̌J for one channel in
more detail, i.e.,

[∇W̌J ]
MN

1 =
∑

j

[∇WJ ]
MN
jj

[∇W̌J ]
MN

2 =
∑

k,j

[∇WJ ]
MN
kj δk,(j+1) =

∑

j

[∇WJ ]
MN
j+1,j

...

[∇W̌J ]
MN

L
=

∑

k,j

[∇WJ ]
MN

kj δk,(j+L−1) =
∑

j

[∇WJ ]
MN

j+L−1,j ,

we can readily see that the generic Sylvester constraint corresponds – up to
the constant D denoting the width of the submatrices – to a channel-wise
arithmetic averaging of elements according to Fig. 4.5.

Note that the previously introduced approaches, classified by the choice
(SCC) or (SCR) as mentioned above, thus correspond to certain approxima-
tions by neglecting some of the elements within this averaging process, as
illustrated in Fig. 4.6.



124 Herbert Buchner et al.

+

+

+

+

+

+

L

D

2L

1

L

Fig. 4.5. Illustration of the generic Sylvester constraint (SC) for one channel, i.e.,
the MN-th submatrix [∇
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J ]MN of ∇

W̌
J .

+ +

+ +

(a)

W =

(b)

W =

(c)

W = W̌ =W̌ = W̌ =

SC SCC
SCR

Fig. 4.6. Illustration of two efficient approximations of (a) the generic Sylvester
constraint SC: (b) the column Sylvester constraint SCC and (c) the row Sylvester
constraint SCR.

Natural Gradient-Based Coefficient Update. It can be shown (after a
somewhat tedious but straightforward derivation) that by taking the natural
gradient [19] of J (m) with respect to the demixing filter matrix W(m) [4],

∆W̌ ∝ SC

{

WWT ∂J

∂W

}

, (4.50)

we obtain the following generic TRINICON-based update rule:

W̌(m) = W̌(m − 1) − µ∆W̌(m), (4.51a)

∆W̌(m) =
1

N

∞
∑

i=0

β(i, m)SC







iL+N−1
∑

j=iL

W(i)y(j)

·
[

Φ
T
s,PD(y(j)) − Φ

T
y,PD(y(j))

]}

, (4.51b)

with the desired score function

Φs,PD(y(j)) = −
∂log p̂s,PD(y(j))

∂y(j)
(4.51c)
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resulting from the hypothesized source model, and the actual score function

Φy,PD(y(j)) = −
∂log p̂y,PD(y(j))

∂y(j)
. (4.51d)

The hypothesized source model p̂s,PD(·) in (4.51c) is chosen according to the
class of signal processing problem to be solved. For instance, a factorization
of p̂s,PD(·) among the sources yields BSS, i.e.,

p̂s,PD(y(j))
(BSS)
=

P
∏

q=1

p̂yq,D(yq(j)), (4.52)

while a complete factorization leads to the traditional MCBD approach,

p̂s,PD(y(j))
(MCBD)

=
P
∏

q=1

D
∏

d=1

p̂yq,1(yq(j − d)). (4.53)

4.3.2 Special Cases and Illustration in the Time Domain

Besides the various options to design the Sylvester constraint, there are
many further interesting known and novel practical approximations within
the framework. To begin with, we first consider algorithms based on second-
order statistics (SOS) as they are particularly illustrative.

Realizations based on Second-Order Statistics. Here, the source mod-
els are simplified to sequences of multivariate Gaussian functions described
by PD×PD correlation matrices R·· within the length-N signal blocks. This
leads to the coefficient update [3]

∆W̌(m) =

∞
∑

i=0

β(i, m)SC
{

W(i)R̂yy

[

R̂−1
ss − R̂−1

yy

]}

=
∞
∑

i=0

β(i, m)SC
{

W(i)
[

R̂yy − R̂ss

]

R̂−1
ss

}

. (4.54)

Generic SOS-based BSS. The BSS variant of the generic SOS natural gradient
update (4.54) follows immediately by setting

R̂ss(i) = bdiag R̂yy(i). (4.55)

The update (4.54) together with (4.55) was originally obtained independently
in [4] as a generalization of the cost function of [37]:

JSOS(m) =

∞
∑

i=0

β(i, m)
{

log det R̂ss(i) − log det R̂yy(i)
}

. (4.56)
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In Fig. 4.7 the mechanism of (4.54) based on the model (4.55) is illustrated.
By minimizing JSOS(m), all cross-correlations for D time-lags are reduced
and will ideally vanish, while the auto-correlations are untouched to pre-
serve the structure of the individual signals. This class of algorithms leads

D

D

Each diagonal
represents
one time-lag

auto-correlation Ry1y1
cross-correlation Ry1y2

Fig. 4.7. Illustration of SOS-based BSS.

to very robust practical solutions even for a large number of filter taps due
to an inherent normalization by the auto-correlation matrices, reflected by
the inverse in (4.54) of bdiag R̂yy. Note that there are also various efficient
approximations of this broadband algorithm, e.g, [36,38,39], with a reduced
computational complexity allowing already real-time operation on a regu-
lar PC platform. These efficient implementations also form a powerful basis
for blind system identification and for simultaneous localization of multiple
acoustic sources, as shown later in this chapter. Moreover, a close link has
been established [2,4] to various popular frequency-domain algorithms, as we
discuss in more detail in Sect. 4.3.3.

Inverse blind adaptive filtering problems. To illustrate that TRINICON also
offers a powerful framework for inverse blind adaptive filtering problems in
the same way as it does for the direct blind adaptive filtering problems, we
give a brief overview of some of the most important ideas in this context in
the following two paragraphs, based on [3].

MCBD based on SOS. Traditionally, ICA-based MCBD algorithms assume
i.i.d. source models, e.g., [27,28]. In the SOS case, this corresponds to a
complete whitening of the output signals by not only applying a joint de-
cross-correlation, but also a joint de-auto-correlation, i.e., R̂ss = diag R̂yy

over multiple time-instants, as illustrated in Fig. 4.9 (b).

MCBPD based on SOS. Signal sources which are non i.i.d. should not be-
come i.i.d. at the output of the blind adaptive filtering stage. Therefore, their
statistical dependencies should be preserved. In other words, the adaptation
algorithm has to distinguish between the statistical dependencies within the
source signals, and the statistical dependencies introduced by the mixing
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system Ȟ. We denote the corresponding generalization of the traditional
MCBD technique as MultiChannel Blind Partial Deconvolution (MCBPD)
[3]. Equations (4.51b)-(4.51d) inherently contain a statistical source model
(signal properties (i)-(iii) in Sect. 4.3.1), expressed by the multivariate densi-
ties, and thus provide all necessary requirements for the MCBPD approach.

A typical example for MCBPD applications is speech dereverberation,
which is especially important for distant-talking automatic speech recogni-
tion (ASR), as there is a very strong need for speech dereverberation without
introducing artifacts to the signals. In this application, MCBPD allows to dis-
tinguish between the actual speech production system, i.e., the vocal tract,
and the reverberant room (Fig. 4.8). Ideally, only the influence of the room
acoustics should be minimized. In the SOS case, the auto-correlation struc-

room (slowly time-varying)
to be equalized

vocal tract (rapidly time-varying)
to be preserved

excitation

Fig. 4.8. Illustration of speech dereverberation as an MCBPD application.

ture of the speech signals can be taken into account, as shown in Fig. 4.9 (c).
While the room acoustics influences all off-diagonals, the effect of the vocal
tract is concentrated in the first few off-diagonals around the main diagonal.
These first off-diagonals of R̂yy are now taken over into R̂ss, as shown in
Fig. 4.9 (c). Alternatively, the structure in Fig. 4.9 (c) may be approximated
by small sub-matrices making its handling somewhat more efficient. Note that
there is a close link to linear prediction techniques which gives guidelines for
the number of lags to be preserved.

(a) BSS (b) MCBD (c) MCBPD

Fig. 4.9. Desired correlation matrices R̂ss for BSS, MCBD, and MCBPD with
TRINICON in the SOS case.

Realizations based on Higher-Order Statistics. The general HOS ap-
proach (4.51b)-(4.51d) provides the possibility to take into account all avail-
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able information on the statistical properties of the desired source signals.
This provides an increased flexibility and improved performance of BSS rel-
ative to the SOS case. Moreover, the more accurate modeling of the desired
source signals yields also an improved MCBPD.

To apply the general approach in a real-world scenario, appropriate mul-
tivariate score functions (4.51c) and (4.51d) have to be determined. Fortu-
nately, there is an efficient solution to this problem by assuming so-called
spherically invariant random processes (SIRPs) [40–42]. The general form of
correlated SIRPs of D-th order is given with a properly chosen function fD(·)
by

p̂D(yp(j)) =
1

√

πDdet(Rypyp
(i))

fD

(

yT
p (j)R−1

ypyp
(i)yp(j)

)

(4.57)

for the p-th channel, where Rypyp
denotes the corresponding auto-correlation

matrix with the corresponding number of lags. These models are represen-
tative for a wide class of stochastic processes. Speech signals in particular
can very accurately be represented by SIRPs [42]. A great advantage arising
from the SIRP model is that multivariate pdfs can be derived analytically
from the corresponding univariate pdf together with the (lagged) correlation
matrices. The function fD(·) can thus be calculated from the well-known uni-
variate models for speech, e.g., the Laplacian density. Using the chain rule,
the corresponding score function (4.51c) can be derived from (4.57), as shown
in [1,2] in more detail.

The calculation of the other score function (4.51d) becomes particularly
simple in most practical realizations by transforming the output pdf p̂y,PD(·)
into the corresponding multivariate input signal pdf using W, which is con-
sidered as a mapping matrix of a linear transformation (see [1,2] for the
general broadband case where W exhibits a blockwise-Sylvester structure).
The derivative of the input signal pdf vanishes as it is independent of the
demixing system.

Note that the multivariate Gaussian pdf is a special case of a SIRP and
thus, the above described SOS-based algorithms represent special cases of
the corresponding algorithms based on SIRPs [1,2]. As in the SOS case, by
transforming the model into the DFT domain, various links to novel and
existing popular frequency-domain algorithms can be established [2], as we
discuss in more detail in Sect. 4.3.3.

4.3.3 On Frequency-Domain Realizations

For convolutive mixtures, the classical approach of frequency-domain BSS ap-
pears to be an attractive alternative where all techniques originally developed
for instantaneous BSS are typically applied independently in each frequency
bin, e.g., [19]. Unfortunately, this traditional narrowband approach exhibits
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several limitations as identified in, e.g., [43–45]. In particular, the permuta-
tion problem, which is inherent in BSS, may then also appear independently
in each frequency bin so that extra repair measures have to be taken to
address this internal permutation. Problems caused by circular convolution
effects due to the narrowband approximation are reported in, e.g., [44].

In [2] it is shown how the equations of the TRINICON framework can be
transformed into the frequency domain in a rigorous way (i.e., without any
approximations) in order to avoid the above-mentioned problems. As in the
case of the time-domain algorithms, the resulting generic DFT-domain BSS
may serve both as a unifying framework for existing algorithms, and also as a
guideline for developing new improved algorithms by certain suitable selective
approximations as shown in, e.g., [2] or [38]. Figure 4.10 gives an overview
on the most important classes of DFT-domain BSS algorithms known so far
(various more special cases may be developed in the future). A very important
observation from this framework using multivariate pdfs is that, in general,
all frequency components are linked together so that the internal permutation
problem is avoided (the following elements are reflected in Fig. 4.10 by the
different approximations of the generic SIRP-based BSS):

1. Constraint matrices appearing in the generic frequency-domain formula-
tion (see, e.g., [2]) describe the inter-frequency correlation between DFT
components.

2. The multivariate score function, derived from the multivariate pdf is a
broadband score function. As an example, for SIRPs the argument of the
multivariate score function (which is a nonlinear function in the higher-
order case) is yT

p (j)R−1
ypyp

(i)yp(j) according to (4.57). Even for the sim-

ple case R−1
ypyp

(i) = I where we have yT
p (j)yp(j) = ‖yp(j)‖

2, i.e., the
quadratic norm, and - due to the Parseval theorem - the same in the
frequency domain, i.e., the quadratic norm over all DFT components,
we immediately see that all DFT-bins are taken into account simultane-
ously so that the internal permutation problem is avoided. Note that the
traditional narrowband approach (with the internal permutation prob-
lem) would result as a special case if we assumed all DFT components to
be statistically independent from each other (which is of course not the
case for real-world broadband signals such as speech and audio signals).
In contrast to this independence approximation the dependencies among
all frequency components (including higher-order dependencies) are in-
herently taken into account in TRINICON in an optimal way. Actually,
in the traditional narrowband approach, the additionally required repair
mechanisms for permutation alignment try to exploit such inter-frequency
dependencies.

From the viewpoint of the blind system identification the broadband algo-
rithms with constraint matrices (i.e., the algorithms represented in the first
column of Fig. 4.10) are of particular interest. Among these algorihms, the
system described in [38] has turned out to be very efficient in this context and
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Fig. 4.10. Overview of BSS algorithms in the DFT domain.



4 Blind MIMO System Identification, Multiple-Source Localization 131

for multiple source localization as described later in this chapter. A pseudo-
code of this algorithm is also included in [38].

Another important consideration for the practical implementation of BSI
is the proper choice of the Sylvester constraint. Since the column constraint
SCC is not suited for arbitrary source positions, it is generally not appropriate
for BSI and the source localization application discussed next in this chapter.
Thus, in the implementations discussed below the row constraint SCR is used.

4.4 Acoustic Source Localization: An Overview of the

Approaches and TRINICON as a Generic Source

Localization Scheme

The precision of acoustic source localization is determined by several fac-
tors. Critical parameters of the acoustic environment itself are the Signal-to-
Noise Ratio (SNR, additive distortion) and the reverberation time (T60) or
the power ratio between the direct path and the reverberation of the room
(Signal-to-Reverberation Ratio, SRR). Further important conditions are de-
termined by the sources (number of sources, spatial diversity, velocity of the
motion, signal statistics) and the sensors (number of sensors, array geometry,
temporal sampling rate).

In the literature (e.g., [9]) existing approaches for acoustic source local-
ization are often roughly divided into three categories:

(1) Maximization of the output power of steered beamformers (SRP, steered
response power)

(2) Approaches based on high-resolution spectral estimation (also called sub-
space approaches)

(3) Approaches based on the estimation of time differences of arrival
(TDOA) as an intermediate step

All of these methods may essentially be seen as two-step methods consisting
of a certain signal processing stage, based on the available sensor signals,
and a certain mapping from the signal processing output to the geometrical
source position(s) by taking into account the sensor array geometry.

The first category of source localization approaches is based on the vari-
ation of the spatial alignment of a beamformer and results in systematic
scanning of the acoustic environment so that basically this method may pro-
vide a very accurate localization even for multiple sources. Note that in this
method, both of the above-mentioned two steps, i.e., the signal processing,
and the geometric mapping step are included in the scanning process. In
principle, the number of microphones is easily scalable in this concept. It
also allows a relatively high robustness to additive interferences [9]. However,
known disadvantages of this technique are that due to the (fixed) beamformer
design one normally has to assume an ideal freefield propagation of the acous-
tic signals, and the search process necessarily becomes computationally very
demanding if the desired spatial resolution increases.



132 Herbert Buchner et al.

The second category includes a class of algorithms which can be con-
sidered as an advancement and a systematization of the first category. The
corresponding approach is based on the P × P correlation matrix of the P
microphone signals (without time lags) and it allows also inherently a simulta-
neous localization of multiple active sources. If the number Q of sources is less
or equal to the number P of sensors then it can be shown [50] that the eigen-
vectors for the Q largest eigenvalues of the correlation matrix span a certain
subspace (’signal subspace’). This subspace corresponds to the one resulting
from the direction vectors of the sources. From these direction vectors, we can
extract the corresponding directions of arrival (DOA) in a separate mapping
step. The remaining P −Q eigenvectors, i.e., the eigenvectors corresponding
to the P − Q smallest eigenvalues of the correlation matrix, constitute the
subspace of the background noise which is orthogonal to the signal subspace.
This concept forms the basis for several well-known algorithms proposed in
the literature, e.g., MUSIC [10] and ESPRIT [11]. Unfortunately, however,
these algorithms were originally developed only for narrowband signals and
therefore they are not immediately applicable to acoustic broadband signals,
such as speech. One of the problems is that, in general, each frequency com-
ponent yields a different signal subspace. Moreover, just as above in category
(1), the room reverberation is not modeled by this method. Therefore, numer-
ous modifications of these algorithms have been proposed in the literature.
In order to solve the problem due to the narrowband assumption, [51] pro-
poses an introduction of a focussing to a certain center frequency so that
only a single signal subspace is obtained which ideally contains the complete
information on the source positions. Unfortunately, in practice this is often
problematic due to robustness issues and due to the necessity of a good initial
guess which is difficult to obtain. Therefore, so far this approach has not been
widely used for audio signals [9]. In addition, if there is multipath propaga-
tion due to spatial reflections, then these reflected signal components act on
the microphones as additional correlated sources. In order to solve the nar-
rowband problem, and thus the focussing problem in an optimal way, a new
approach has been proposed in [52] which takes into account the underlying
physics of wave propagation. There, the sound field for freefield propagation
is decomposed into eigenfunctions. Thereby even the scattering on the mi-
crophone array itself can be efficiently taken into account, and by using a
circular or spherical array, a full 360 degrees field-of-view is possible.

Finally, according to the above discussions in this section and in Sect. 4.2,
broadband BSS may be also regarded as a generalized subspace approach
based on the block-diagonalization of the signal correlation matrix in the case
of second-order statistics. Due to the systematic incorporation of time lags
into the correlation matrix in contrast to the instantaneous correlation matrix
used in the conventional subspace methods, we are now able to take into
account the room reverberation. Thus, as illustrated in Fig. 4.11, the blind
broadband adaptive MIMO filtering approach generalizes and unifies both
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the traditional subspace methods, and the SIMO-based BSI. Note that both
of these traditional methods are based on the calculation of the eigenvector(s)
corresponding to the smallest eigenvalue(s) of the (lagged or instantaneous)
sensor correlation matrix (see also the note at the end of Sect. 4.2.2 for the
case of SIMO-based BSI).

Category (3) is by far the most widely used. As in the previous category,
we split here the determination of the source position using multiple micro-
phone signals into two separate steps. In contrast to the first two categories,
the first step is here the explicit estimation of the temporal signal delays
between different pairs of microphones (time difference of arrival, TDOA).
The second step constitutes the calculation of the position in the three-
dimensional space or in the two-dimensional plane using these estimates.
Under the assumption that the relative microphone positions are known a-
priori, the problem of source localization from a given set of TDOAs can be
reduced to a purely geometrical problem.

For the explicit determination of TDOAs many different techniques have
been proposed in the literature [9,16]. Of particular interest is the fact that
there are some more recent and powerful TDOA estimation techniques based
directly on the blind system identification methods presented earlier in this
chapter. Thus, since these techniques inherently take the room reflections
into account, they promise a high robustness even in real reverberant envi-
ronments.

Another advantage of the TDOA-based method is that it also allows for
an accurate localization of sources in the nearfield.

In summary, the TDOA-based method using a blind system identifica-
tion technique may be considered as the most general and versatile source
localization approach. However, most of the BSI techniques known so far
from the literature are based on SIMO systems, as shown in Sect. 4.2.2, i.e.,
the localization systems based on these techniques are only suitable for one
source. The MIMO BSI technique described earlier in this chapter thus also
generalizes this type of TDOA-based method to allow a simultaneous local-
ization of multiple sources in reverberant environments even in the nearfield.
In the following we therefore consider this two-step TDOA-based approach
in more detail. To begin with, the geometrical considerations in Section 4.5.1
concentrate on the second step for the actual localization, particularly on the
necessary number of different TDOA measurements and the array geometry.
In contrast, for the first step, i.e., the TDOA estimation, the acoustic con-
ditions of the room play a very important role. For that, we also consider
the popular generalized cross-correlation (GCC) method as a reference in
Sect. 4.5.3.

Figure 4.11 summarizes the above considerations and illustrates that the
TRINICON-based MIMO BSI scheme may be considered as a generic source
localization approach. Note also that in principle, broadband BSS can be
applied to all three of the above-mentioned categories of acoustic source lo-
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Fig. 4.11. Relations between various localization approaches.

calization approaches since broadband BSS may be considered as (1) mul-
tiple blind beamformers, (2) a generalized subspace approach based on the
block-diagonalization of the signal correlation matrix, and (3) a method for
MIMO-based BSI, as discussed above.

4.5 Acoustic Source Localization based on

Time-Differences of Arrival

4.5.1 Basic Geometric Considerations

The obtained information on the source position r̂s from an estimated TDOA
τ̂ij between the signals of microphones i and j can be expressed as

cτ̂ij = ‖r̂s − ri‖ − ‖r̂s − rj‖ , (4.58)

where c denotes the velocity of sound and the vectors ri and rj denote the
three-dimensional (or two-dimensional) positions of microphones i and j,
respectively.

In three-dimensional space such an equation describes a hyperbolöıd, as
exemplarily shown in Fig. 4.12 (a).

From information on another time difference one obtains a second hyper-
bolöıd. If the two pairs of microphones are placed on one straight line, the
points fulfilling both conditions are describing a circle. To provide information
on the position of the source on the circle, the TDOA of a third microphone
pair has to be taken into account. To avoid linear dependencies, this micro-
phone pair must not be placed on the same straight line as the former two.
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diagonally in the xy-plane)

Fig. 4.12. Determination of the possible source positions in the room.

For example, if we want to restrict ourselves for practical reasons to a two-
dimensional microphone array in the xy-plane, the third microphone pair will
be in the same plane. This results in two unique intersection points, one with
positive, and one with negative z-coordinate, as shown in Fig. 4.12 (b). In
many scenarios one can already uniquely determine the position with such
a setup since either the negative or positive z-coordinates may be excluded
(e.g., if the array is mounted on a wall).

4.5.2 Microphone Array Geometry and Grid of Potential Source
Positions

Equation (4.58) represents a nonlinear set of equations. Considering this set
of equations, we readily see that the geometry of the microphone array has a
major influence on the calculation of the positions. In the following, we ex-
emplarily study this influence for two different arrays for the two-dimensional
case where two TDOA estimates are needed (see Section 4.5.1).

The setup in Fig. 4.13 uses the signal from the center microphone simul-
taneously for two equations by estimating the TDOA between microphones
1 and 2, and between 2 and 3, respectively. This has two advantages. It not
only reduces the necessary number of microphones, but the calculation of
the source positions, based on the nonlinear set of equations (4.58) will be-
come much easier as there are fewer geometrical parameters if we set the
origin on the position of the center microphone. Note that in general, the
solution of this set of equations is not trivial and in some cases there is
no closed-form solution. Thus, for more complicated array geometries, we
have to resort to numerical and/or approximate solutions, rather than exact
closed-form solutions. There is a rich literature on this problem which also in-
cludes the consideration of overdetermined sets of equations, i.e., taking into
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account more TDOA estimates in order to further improve the robustness to
measurement errors. Important distinctions between these methods include
likelihood-based [53–56] together with iterative optimization (e.g., using the
Newton-Raphson [57] or Gauss-Newton [58] methods) versus least-squares
and linear approximation versus closed-form algorithms [59–65].

On the other hand, there may also be a major disadvantage with the
microphone setup after Fig. 4.13, depending on the chosen TDOA estimation
method, as we will discuss in the following.

The TDOAs, estimated by the methods discussed in Section 4.5.3 are
ordinarily represented by integer numbers, corresponding to discrete sampling
instants along the time axis. Therefore the estimates of the potential source
positions are restricted to a grid of discrete positions. The density of this grid
depends on the sampling rate and on the positions of the microphones. Note
that in principle this density is independent of the chosen TDOA estimation
method for a given array geometry.

Figure 4.15 shows the possible positions that can be obtained using the
microphone array after Fig. 4.13 with a spacing of d = 16cm and a temporal
sampling rate of fs = 48kHz. As we can see, the spatial resolution decreases
with increasing distance (range) between the source and the microphone ar-
ray.

microphone 1 microphone 2 microphone 3

d d

Fig. 4.13. Microphone array 1.

microphone 1 microphone 2 microphone 3 microphone 4

dd

origin

Fig. 4.14. Microphone array 2.

To obtain a better resolution with a fixed sampling rate and integer
TDOAs, we can either place more pairs of microphones in the room that
are closer to the respective source positions, or we change the geometric pa-
rameters of the setup in Fig. 4.13. A first possibility is to increase the distance
d, i.e., the spatial diversity between the microphones. For d = 50cm the res-
olution is already dramatically improved, as can be seen in Fig. 4.16, and in
the case of, e.g., d = 200cm, we would obtain a very dense grid, and a much
wider coverage. This is due to the fact that the maximum time difference of
arrival is increased (τmax = cd

fs
). With increasing τmax the number of poten-

tial TDOA values for each microphone pair is also increased, and thus the
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number of potential positions is increased significantly. The full potential of
this method can be exploited with TDOA estimators based on blind system
identification (Section 4.5.3). With other TDOA estimators, one drawback
of this method is that the precision of the TDOA estimation itself may be
affected due to spatial aliasing if the microphone spacing is too large. This
ambiguity problem typically occurs with narrowband implementations, i.e.,
the signal processing is carried out independently for each frequency bin in
that implementations. The GCC is often implemented in this way. There-
fore, an alternative for that case would be to use the modified setup after
Fig. 4.14. Instead of increasing the spacing within the microphone pairs, we
only increase the distance between the individual pairs as this affects the ge-
ometrical calculation. The TDOA estimation is only affected by the spacing
d. Note, however, that a small spacing generally increases the error vari-
ance, i.e., small TDOA deviations will have a larger influence on the final
position estimate. Therefore, in any case a broadband implementation of the
blind system identification is recommended for accurate source localization.
Moreover, to further improve the spatial resolution of the localizer at a low
computational cost, fractional delays can be obtained with the BSI-based
method by performing a sinc interpolation [66] on the filters of the unmixing
system W̌ before performing the effective TDOA estimations, given in (4.60)
and (4.61a)/(4.61b), without further increasing the sampling rate for the BSS
operations.
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Fig. 4.15. Potential source positions using three equidistant microphones with a
spacing of 16cm at a sampling rate of 48kHz.
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Fig. 4.16. Potential source positions using three equidistant microphones with a
spacing of 50cm at a sampling rate of 48kHz.

4.5.3 Estimation of Time Differences of Arrival

The key for an effective localization with the two-step approach is an ac-
curate and robust TDOA estimator. In the following we examine different
possibilities for TDOA estimation. Thereby, as in the previous section, we
concentrate here on the use of microphone pairs for clarity, although it has
recently become possible to simultaneously take into account multiple micro-
phone signals [16].

The Method of the Generalized Cross-Correlation. The method of
the generalized cross-correlation (GCC) [8] is based on the ideal free-field
propagation model xi(t) = αis(t − τi) + bi(t), where bi is an additive noise
signal on the i-th microphone, and αi denotes an attenuation factor. Due to
its simplicity the method is nevertheless often applied in reverberant environ-
ments so that to date it is still the most widely used method for single-source
localization.

The basic principle of this technique consists of the maximization of the
inverse Fourier transformation of a weighted cross-power spectral density, i.e.,

τ̂ij = argmax
τij

F−1
{

Φ(f)Sxixj
(f)

}

, (4.59)

where Φ(f) is the weighting function, and Sxixj
(f) denotes the estimated

cross-power spectral density between xi and xj .
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The numerous variants of the GCC method [8,67] differ mainly in their
weighting functions and in the estimation procedure for Sxixj

(f). The clas-
sical cross-correlation method (CC) uses Φ(f) = 1. The weighting function
Φ(f) = 1

|Sxixj
(f)| yields the Phase Transform (PHAT) technique in which a

behaviour independent of the spectral support is achieved by the normaliza-
tion by the magnitude of the power spectral density [8].

Other improvements concentrate on the pre-filtering of the input signal,
such as, e.g., the cepstral processing in [68].

However, these methods suffer from the fact that the underlying signal
model of the GCC does not reflect the conditions in real acoustic environ-
ments. This becomes particularly obvious in very reverberant environments.
It can be shown that here the robustness can break down abruptly with
increasing reverberation time T60 [12,13] as will also be confirmed by our
experimental evaluation in sect. 4.6.

The Blind System Identification Method. To treat this reverberation
problem, a completely different approach was presented for single-source lo-
calization in [15] which is based on blind adaptive filtering using the adaptive
eigenvalue decomposition algorithm. According to Sect. 4.2.2, the AED al-
gorithm adapts itself directly to the impulse responses h1 and h2, i.e., the
SIMO model between a source s and the microphones. Therefore, this ap-
proach is inherently based on the realistic convolutive propagation model.
Note that the scaling ambiguity in blind system identification is uncritical
for the TDOA estimation (as can be easily seen by Eq. (4.60) below).

To perform the adaptation, a wide range of adaptation algorithms, such
as the Least-Mean-Squares (LMS) algorithm [18] (in modified form [15]),
realized in the time domain, or in efficient frequency-domain realization [18]
can be used.

Based on the estimated filter coefficients, the TDOA can then be calcu-
lated after each coefficient update according to

τ̂ = arg max
n

|ĥ2,n| − argmax
n

|ĥ1,n|

= arg max
n

|w1,n| − arg max
n

|w2,n|. (4.60)

Note that here, as above in the case of GCC, we consider only one microphone
pair. However, there are generalizations, both of GCC [16] and AED [16] for
more than two sensors, in order to further increase the robustness by spatial
redundancy.

Motivated by the high accuracy of the above-mentioned adaptive SIMO
filter approach for localizing only one source, the more general approach of
blind adaptive MIMO filtering for simultanteous localization of multiple si-
multaneously active sources was proposed in [6], based on the considerations
discussed in Sect. 4.2 of this chapter. Thereby, the objective was to maintain
the realistic convolutive propagation model for the localization, as in the case
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of AED. As with AED, we may calculate the Q TDOAs for the Q sources from
the FIR filters wpq once they are estimated by a TRINICON-based broad-
band adaptation algorithm, such as [38], as discussed in Sect. 4.3.3. Thereby
we make the reasonable assumption that the sources are mutually uncor-
related. The extraction of the multiple TDOAs from the estimated MIMO
filter coefficients is based on the relationship between the broadband BSS
framework and the AED, as discussed in Sect. 4.2.2. For instance, in the case
of two simultaneously active sources, (4.22a) is the corresponding equation
to estimate the TDOA of source 1, while (4.22b) gives the TDOA of source
2. Moreover, since the coefficient initialization in the case of Sylvester con-
straint (SCR), described in [6], also corresponds to the one recommended for
the AED in [15], we can expect similar steady-state performances due to this
close link. This is verified in Section 4.6. From these findings, we can express
the TDOA estimates immediately in the same way as in (4.60) as

τ̂1 = arg max
n

|w12,n| − arg max
n

|w22,n|, (4.61a)

τ̂2 = arg max
n

|w11,n| − arg max
n

|w21,n|. (4.61b)

4.6 Simultaneous Localization of Multiple Sound

Sources in Reverberant Environments using Blind

Adaptive MIMO System Identification

The audio data used for the evaluation have been recorded at a sampling
rate of 48 kHz in a TV studio with a reverberation time of T60 ≈ 700 ms.
These data are made available as part of an audio-visual database [70]. This
database also includes reference data of the speaker positions measured using
infrared sensors. From the reference positions reference TDOAs are calculated
by geometric considerations. This allows us to consider both, fixed and mov-
ing speakers in a real acoustic environment. From the database, we chose
two scenes in the same environment with one fixed and one moving source,
respectively. Those are used separately for the SIMO-based approaches, and
a superposition (Fig. 4.17) is used for the MIMO-based approach. The dis-
tance between the two microphones was 16 cm. For the adaptation algo-
rithms, the filter lengths were chosen to 1024 (Obviously, this length is shorter
than Lopt,sep, given the above mentioned reverberation time. However, for
the localization application in the given scenario, it turned out to be suffi-
cient in order to capture the dominant reflections. Moreover, as discussed in
Sect. 4.2.4, the disturbing filtering ambiguity is still avoided in this case.).
The block length for the GCC (using a phase-transform (PHAT) weighting
rule [8]) has been set to 1024. GCC and AED have been complemented by
a signal power-based voice-activity detector. Figures 4.18 (a) and (b) show
the reference and estimated TDOAs for the fixed and the moving speakers,
respectively. In these first experiments, only one speaker was active (also in
case of the MIMO-based approach). Subplot (a) confirms that both of the
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Fig. 4.17. Scenario used for the simulations.

blind adaptation algorithms lead to the same accurate TDOA estimates in
this static case, as expected from the considerations in Sect. 4.5. Note that
the TDOA estimates can only attain integer values.
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Fig. 4.18. TDOA estimation for one source.

In Fig. 4.19 we consider the simultaneous estimation of two TDOAs by
the proposed MIMO approach. Due to the scenario in Fig. 4.17 the two
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TDOAs exhibit different signs. The estimates deviate only slightly from the
corresponding results of the MIMO-based approach in Figs. 4.18 (a) and
(b) during some very short time intervals. This may be explained by the
different speech activity of the two sources which is typical and inevitable
for realistic situations. However, the short peaks in Fig. 4.19 may be easily
removed by appropriate post-processing. Further experimental results, which
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Fig. 4.19. Simultaneous TDOA estimation for two sources.

also illustrate the robustness of the multiple TDOA estimates with respect
to background noise and shadowing effects caused by objects placed between
the sensors, may be found in [69].

4.7 Conclusions

In this chapter we have shown the relation between convolutive broadband
BSS and blind MIMO system identification. From this we can draw the con-
clusions that (1) for a suitable choice of the filter length arbitrary filtering
is prevented with broadband approaches, (2) the known whitening problem
is avoided, and (3) the BSS framework also allows for several new applica-
tions, such as the simultaneous localization of multiple sources. Based on the
relationship between MIMO BSI and broadband BSS we were also able to
further clarify the relations between various source localization approaches.
As a side aspect, also some relations and similarities to the inverse problems,
such as blind dereverberation of speech signals have been illuminated. For all
of these applications it became obvious that a proper broadband adaptation
of the filter coefficients is desirable and in some cases even absolutely neces-
sary. In many ways the TRINICON framework turned out to be a useful tool
to solve the associated problems. On the algorithmic side, we have derived
a generic Sylvester constraint which unifies previous algorithmic results and
may serve as a guideline for the development of new efficient algorithms.
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