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In this chapter, we develop an analytical top-down approach to the problem
of blind dereverberation of speech and audio signals based on TRINICON, a
general framework for broadband adaptive MIMO signal processing. Two fun-
damentally different approaches to the dereverberation problem for realistic
scenarios can be distinguished: The “identification-and-inversion approach”
which results in a two-step procedure consisting of blind identification of the
acoustic MIMO mixing system, followed by an inversion of the identified sys-
tem. As an alternative, the “direct-inverse approach” blindly estimates the
inverse of the acoustic mixing system directly. As shown in this chapter, for
both cases TRINICON yields the information-theoretically optimum estima-
tion procedures in a unified way and allows for a direct comparison between
the approaches, paves the way to synergies, and yields various useful insights
for practical realizations. This chapter also relates other known algorithms,
and presents novel improved algorithms as special cases of the generic concept.
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1 Introduction

Blind signal processing of convolutive mixtures of unknown time series is an
important building block in modern systems involving broadband signal ac-
quisition by sensor arrays in multipath or convolutive environments. A chal-
lenging and important example for such environments is given by ’natural’
acoustic human/machine interfaces using multiple microphones to support
sound signal acquisition so that the users may be untethered and mobile in
real rooms. To obtain the desired source signals, the signal processing gener-
ally has to cope with two fundamental problems due to the distance between
the sources and the sensors: (i) the presence of additive noise and interferers,
e.g., competing speakers, and (ii) the disturbing effect of reflections and scat-
tering of the desired source signals in the recordings. In this chapter we tackle
these problems by blind adaptive multiple input/multiple output (MIMO)
filtering.

In this introductory section, we first formulate the fundamental adaptive
filtering problems and distinguish ’direct’ and ’inverse’ problems in Sect. 1.1.
Moreover, we introduce a classification into two different generic approaches to
blind deconvolution which are fundamental to the dereverberation approaches
for speech and audio signals. In Sect. 1.2 we introduce a compact matrix
notation which we will use throughout this chapter. Section 1.3 provides an
overview of our analysis of the two generic approaches to blind deconvolution
as useful for blind dereverberation.

1.1 Generic Tasks for Blind Adaptive MIMO Filtering

The signal acquisition scenario mentioned above is modeled such that the
original source signals sq(n), q = 1, . . . , Q are filtered by a linear MIMO
system before they are picked up by the sensors yielding the sensor signals
xp(n), p = 1, . . . , P . In this chapter, we describe this MIMO mixing system
by length-M finite impulse response (FIR) filters, i.e.,

xp(n) =

Q
∑

q=1

M−1∑

κ=0

hqp,κsq(n − κ), (1)

where hqp,κ, κ = 0, . . . , M − 1 denote the coefficients of the FIR filter model
from the q-th source signal sq(n) to the p-th sensor signal xp(n) according
to Fig. 1. Throughout this chapter, we assume that the number Q of sources
is less or equal to the number P of sensors. The cases Q < P and Q = P
are of particular interest as detailed below, and they are commonly known
as overdetermined and (fully) determined, respectively. Note that in general,
the sources sq(n) may or may not be all simultaneously active at a particular
instant of time.

Obviously, since only the sensor signals, i.e., the output signals of the
mixing system, are assumed to be accessible to the blind signal processing, any
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Fig. 1. Setup for blind MIMO signal processing.

type of linear blind adaptive MIMO signal processing may be described by the
structure shown in Fig. 1. Thus, with respect to a yet undefined optimization
criterion, we are interested in finding a corresponding demixing system by the
blind adaptive signal processing whose output signals yq(n) are described by

yq(n) =

P∑

p=1

L−1∑

κ=0

wpq,κxp(n − κ) (2)

and where the parameter L denotes the FIR filter length of the demixing
filters with coefficients wpq,κ.

Depending on the optimization criterion for determining the coefficients
wpq,κ, we distinguish two general classes of blind signal processing problems as
summarized in Tab. 1 along with the corresponding supervised problems3,4:

• “Direct blind adaptive filtering problems”: This class summa-
rizes here blind system identification (BSI) and blind source separation
(BSS)/blind interference cancellation for convolutive mixtures.
In the BSS approach, we want to determine a MIMO FIR demixing fil-
ter which separates the signals up to an – in general arbitrary – filtering
and permutation ambiguity by forcing the output signals to be mutually
independent. Traditionally, and perhaps somewhat misleadingly, BSS has
often been considered to be an inverse problem in the literature, e.g., in
[2, 3]. In another interpretation, BSS may be considered as a set of blind
beamformers [4, 5] under certain restricting conditions, most notably the

3 Note that in supervised adaptive filtering one may distinguish the analogous gen-
eral classes of problems. There, we classify system identification and interference
cancellation after [1] as (there may be others, or at least other terms) “direct
supervised adaptive filtering problems”, whereas inverse modeling and linear pre-
diction after [1] may be classified as “inverse supervised adaptive filtering prob-
lems”.

4 The TRINICON framework for broadband adaptive MIMO filtering presented in
Sect. 4 of this chapter is applicable to all of the problems listed in Tab. 1 and
yields corresponding generic adaptation algorithms.
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fulfilment of the spatial sampling theorem by the microphone array. Fur-
thermore, under the farfield assumption, the directions of arrival (DOAs)
can be extracted from the corresponding array patterns, which in turn can
be calculated from the BSS filter coefficients, e.g., [6].
In this chapter (Sect. 3) we will see that, more generally, a properly de-
signed broadband BSS system actually performs blind MIMO system iden-
tification (which is independent of the spatial sampling theorem). The gen-
eral broadband approach presented here unifies the BSS and BSI concepts
and provides various algorithmic synergy effects and new applications. One
important and particularly illustrative application of the general broad-
band approach to MIMO BSI is the acoustic localization of multiple si-
multaneously active sources even in reverberant environments as detailed
in [7, 8]. In this chapter, we utilize the general MIMO BSI approach for
deconvolution and especially to dereverberation of acoustic signals (see
below) as another new application.

• “Inverse blind adaptive filtering problems”: This class stands here
for multichannel blind deconvolution (MCBD) and the so-called multi-
channel blind partial deconvolution (MCBPD)5 w.r.t. the mixing system H
and forms the main part of this chapter. Furthermore, the linear predic-
tion problem as known from the literature on supervised adaptive filtering
may also be considered as an inverse blind adaptive filtering problem,
as we show in this chapter. The relation between linear prediction and
MCBD/MCBPD will also be shown later in this chapter.
The goal of any blind deconvolution approach is to recover the original sig-
nals up to an arbitrary (frequency-independent) scaling and possibly a time
shift. In the general MIMO case, i.e., for multiple simultaneously active
sources, blind deconvolution also includes separation of the source signals
(up to a permutation ambiguity). MCBD and MCBPD provide adaptive
methods to the blind deconvolution problem for independent identically
distributed (i.i.d.) sources and for general nonwhite sources, respectively.
For the intended acoustic applications, i.e., for speech and audio source
signals, the problem of blind deconvolution means that we want to derever-
berate the signals by inverting the effect of the convolutive mixture matrix
H. In this case, blind deconvolution is denoted by blind dereverberation.
Furthermore, for blind dereverberation, i.e., in acoustic applications, we
typically have to deal with nonwhite sources. Hence, for a direct adaptive
approach to blind dereverberation the more general MCBPD method has
to be used, as we will discuss later in more detail.
In terms of the MIMO system description, for the task of blind deconvo-

5 Later in Sect. 6 we will see that in practical systems for the blind deconvolution
tasks it is important to take the spectral characteristics of the source signals
into account. The method of multichannel blind partial deconvolution (MCBPD),
introduced in Sect. 6 of this chapter to address this issue, also belongs to the class
of inverse blind adaptive filtering problems.
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lution/blind dereverberation, strictly speaking, an inversion of (long and
usually nonminimum-phase) room impulse responses is necessary. How-
ever, using the multiple-input/output inverse theorem (MINT) [9], any
MIMO FIR system H can exactly be inverted by a MIMO FIR system
W if P , Q, and L are suitably chosen, and if the impulse responses hqp

∀ p ∈ {1, . . . , P} do not have common zeros in the z-plane. Therefore,
in principle, there is a general solution to the MCBD problem by using
multiple sensors. In this chapter we present adaptive blind deconvolution
algorithms which should ideally converge to the ideal MINT solution.

supervised blind
adaptive filtering problems adaptive filtering problems

(after [1]) (treated in this chapter)

“direct system identification blind system identification
adaptive
filtering

problems” interference cancellation blind source separation/
blind interference cancellation

“inverse inverse modeling/equalization blind (partial) deconvolution
adaptive
filtering

problems” linear prediction linear prediction

Table 1. Classification of the linear adaptive filtering problems.

From the two classes of blind adaptive filtering problems shown in Tab. 1, it
becomes obvious that two different fundamental approaches to effective blind
deconvolution – and thus to dereverberation – are conceivable.

One approach is to first perform blind MIMO system identification as men-
tioned above, followed by a (MINT-based) inversion of the estimated mix-
ing system, e.g., [10, 11]. In this chapter we refer to this approach as the
identification-and-inversion approach (II approach) to blind deconvolution.

The other, theoretically equivalent but, as we will see later, in practice
often more reliable approach is to perform directly a blind estimation of the
actual inverse of the MIMO mixing system, e.g., [12, 13, 14, 15]. In this chapter
we refer to this approach as the direct-inverse approach (DI approach) to blind
deconvolution. Note that for blind dereverberation, the DI approach implies
the application of MCBPD for nonwhite signals.
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1.2 A Compact Matrix Formulation for MIMO Filtering Problems

To compactly formulate and analyze the blind adaptive MIMO filtering prob-
lems in Sections 2 and 3, respectively, we introduce the following matrix for-
mulation of the overall system in Fig. 1 consisting of the mixing and demixing
systems. This matrix formulation is also used in the TRINICON framework
described later in Sect. 4 in order to blindly estimate the adaptive demixing
filter coefficients.

For capturing the mixing system with coefficients hqp,κ, κ = 0, . . . , M − 1
and the demixing system with coefficients wpq,κ, κ = 0, . . . , L−1, p = 1, . . . , P ,
q = 1, . . . , Q, we form the QM × P mixing coefficient matrix

Ȟ =






h11 · · · h1P

...
. . .

...
hQ1 · · · hQP




 (3)

and the PL × Q demixing coefficient matrix

W̌ =






w11 · · · w1Q

...
. . .

...
wP1 · · · wPQ




 , (4)

respectively, where

hqp = [hqp,0, . . . , hqp,M−1]
T

, (5)

wpq = [wpq,0, . . . , wpq,L−1]
T

(6)

denote the coefficient vectors of the individual FIR filters of the MIMO sys-
tems, and where superscript T denotes transposition of a vector or a matrix.
The downwards pointing hat symbol (‘check’) on top of H and W in (3) and
(4) serves to distinguish these condensed matrices from the corresponding
larger matrix structures as introduced below in (10). Although seemingly a
merely formal peculiarity, the rigorous distinction between these different ma-
trix structures is an essential tool for the development of the general TRINI-
CON framework, as shown later.

Analogously, the coefficients cqr,κ, q = 1, . . . , Q, r = 1, . . . , Q, κ =
0, . . . , M +L−2 of the overall system of length M +L−1 from the sources to
the demixing filter outputs are combined into the Q(M + L − 1) × Q matrix

Č =






c11 · · · c1Q

...
. . .

...
cQ1 · · · cQQ




 , (7)

where
cqr = [cqr,0, . . . , cqr,M+L−2]

T . (8)
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All these subfilter coefficients cqr,κ are obtained by convolving the mixing filter
coefficients with the demixing filter coefficients. In general, a convolution of
two such finite-length sequences can also be written as a matrix-vector product
so that the coefficient vector for the model from the q-th source to the r-th
output reads here

cqr =

P∑

p=1

Hqp,[L]wpr. (9)

The so-called convolution matrix or Sylvester matrix Hqp,[L] of size M + L −
1×L in this equation exhibits a special structure, containing M filter taps in
each column,

Hqp,[L] =


















hqp,0 0 · · · 0

hqp,1 hqp,0
. . .

...
... hqp,1

. . . 0

hqp,M−1

...
. . . hqp,0

0 hqp,M−1
. . . hqp,1

...
. . .

...
0 · · · 0 hqp,M−1


















. (10)

The additional third index in brackets denotes the width of the Sylvester
matrix which has to correspond to the length of the column vector wpr in (9)
so that the matrix-vector product is equivalent to a linear convolution. The
brackets serve to emphasize this fact and to clearly distinguish the meaning
of this index from the meaning of the third index of the individual matrix
elements, e.g., i of hqp,i in (10).

We may now compactly express the overall system matrix Č after (7) using
this Sylvester matrix formulation to finally obtain

Č = H[L]W̌, (11)

where H[L] denotes the Q(M + L − 1) × PL MIMO block Sylvester-matrix
combining all channels,

H[L] =






H11,[L] · · · H1P,[L]

...
. . .

...
HQ1,[L] · · · HQP,[L]




 . (12)

Based on this matrix formulation, we are now able to compactly formulate the
blind adaptive MIMO filtering problems in the upcoming Sections 2 and 3, and
to discuss the corresponding ideal solutions, regardless of how the adaptation
is actually performed in practice (note that this also implies that the results
are valid for both blind and supervised adaptation). The blind adaptation of
the demixing filter coefficients towards these ideal solutions will be treated
later in Sections 4 to 6.
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1.3 Overview of this Chapter

This chapter consists of three parts. Based on the matrix notation in Sect. 1.2,
we formulate and analyze both the above-mentioned inverse and the direct
blind adaptive MIMO filtering problems in Sections 2 and 3 respectively, and
we relate these categories of adaptive MIMO filtering problems to the two
fundamental approaches to blind deconvolution, i.e., the DI approach and
the II approach. As it turns out, the explicit formulation and analysis of the
theoretically ideal solution of the direct filtering problems is somewhat more
involved and less well known than the one of the inverse filtering problem. Ac-
cordingly, Sect. 3 gives a detailed review of a recent comprehensive treatment
[8] of the direct filtering problems. Thereby, a fundamental relation between
BSI and BSS for convolutive mixtures is of particular practical importance.
The resulting practical scheme for BSI serves as a basis for the identification-
and-inversion approach to blind deconvolution in the general MIMO case.
Section 3 follows in this regard the ideas first outlined in [7, 16].

Section 4 constitutes the second major part of this chapter and is devoted
to the adaptation of the MIMO demixing system towards the ideal solutions
discussed in Sections 2 and 3. Our considerations are based on TRINICON,
a previously introduced versatile framework for broadband adaptive MIMO
signal processing [12, 18, 19, 20], which is especially well suited for speech
and audio signals. The general information-theoretic optimization criterion
of TRINICON allows to exploit all fundamental properties of the excitation
signals, such as their nonstationarity, their spectral characteristics (nonwhite-
ness), and their probability densities (nongaussianity). Moreover, in addition
to the inherent broadband structure necessary for a proper system identifica-
tion and deconvolution, the top-down, i.e., deductive approach of the TRINI-
CON framework also allows us to present relations to both already known and
new efficient algorithms. So far, this deductive approach has already led to
various new insights into several classes of adaptive filtering problems shown
in Table 1, most notably blind source separation [8, 19], blind system identifi-
cation including a generic framework for source localization [8], and the corre-
sponding supervised adaptive problems [21]. Based on the ideas first outlined
in [12], the aim of this chapter is to consider TRINICON for the inverse blind
adaptive problems in more detail.

In the third part of this chapter we first apply TRINICON to BSS and the
identification-and-inversion approach to blind deconvolution/blind derever-
beration in Sect. 5, followed by the application to the direct-inverse approach
in Sect. 6. As in the previously studied classes of adaptive filtering problems,
we will see that the general framework again allows us to relate various known
and seemingly different algorithms for dereverberation, and it also yields im-
provements beyond the current state of the art. Section 7 presents results for
both the II approach and the DI approach.
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2 Ideal Inversion Solution and Direct-Inverse Approach
to Blind Deconvolution

This section presents a concise summary on the ideal inversion solution for
MIMO FIR systems. This inversion solution represents the ideal solution of
the DI approach to blind deconvolution. Hence, its discussion also yields im-
portant guidelines for the design of the adaptive system based on the DI
approach.

As mentioned above, the aim of the inverse adaptive filtering problem is
to recover the original signals sq(n), q = 1, . . . , Q, as shown in Fig. 1, up to
an arbitrary frequency-independent scaling, time shift, and possibly a permu-
tation of the demixing filter outputs. Disregarding the potential permutation
among the output signals6, this condition may be expressed in terms of an
ideal Q(M + L − 1) × Q overall system matrix

Čideal,inv = Bdiag
{

[0, . . . , 0, 1, 0, . . . , 0]
T

, . . . , [0, . . . , 0, 1, 0, . . . , 0]
T
}

Λα,

(13)
where the Bdiag{·} operator describes a block-diagonal matrix containing
the listed vectors on the main diagonal. Here, these target vectors, i.e., the
ideal overall impulse responses, represent pure delays. The diagonal matrix

Λα = Diag
{

[α1, . . . , αQ]
T
}

accounts for the scaling ambiguity. The condition

for the ideal inversion solution thus reads

H[L]W̌ = Čideal,inv. (14)

This system of linear equations may generally be solved exactly or approx-
imately by the Moore-Penrose pseudoinverse (e.g., [22]), denoted by ·+, so
that

W̌LS,inv = H+
[L]Čideal,inv

=
[

HT
[L]H[L]

]−1

HT
[L]Čideal,inv. (15)

Note that this expression corresponds to the least-squares (LS) solution

W̌LS,inv = argmin
W̌

‖H[L]W̌ − Čideal,inv‖2. (16)

It can be shown that under certain conditions which can be fulfilled in practice
and are described below, this solution becomes the ideal inversion solution,
i.e., the pseudoinverse in (15) turns into the true matrix inverse,

6 It could formally be described by an additional permutation matrix in the ideal
solution. However, since in many practical cases this ambiguity may be resolved
by a signal classification approach or other prior information, we renounced on
this formal treatment for clarity.
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W̌ideal,inv = H−1
[L]Čideal,inv. (17)

The principle to calculate the exact inverse using (17) is known as the
Multiple-input/output INverse Theorem (MINT) [9] and is applicable even
for mixing systems with nonminimum phase. The basic requirement for H[L]

in order to be invertible is that it is of full row rank. This assumption can be
interpreted such that the FIR acoustic impulse responses contained in H[L]

do not possess any common zeros in the z-domain, which usually holds in
practice for a sufficient number of sensors [9]. Another requirement for invert-
ibility of H[L] is that the number of its rows equals the number of its columns,
i.e., Q(M + L − 1) = PL according to the dimensions noted above in con-
junction with (12). From this condition, we immediately obtain the optimum
filter length for inversion [23]:

Lopt,inv =
Q

P − Q
(M − 1). (18)

As an important consequence the MIMO mixing system can be inverted ex-
actly even with a finite-length MIMO demixing system, as long as P > Q,
i.e., the number of sensors is greater than the number of sources. Note that
P, Q, M must be such that Lopt,inv is an integer number in order to allow
the matrix inversion in (17). Otherwise, we have to resort to the general LS
approximation (15) with Lopt,inv = ⌈Q(M − 1)/(P − Q)⌉.

Based on the generic TRINICON framework for adaptive MIMO filtering
in Sect. 4, we will present in Sect. 6 a coherent overview of blind deconvolution
algorithms which aim at the ideal inversion solution (15) or the general LS
solution (17) for a suitable choice of parameters, respectively.

3 Ideal Solution of Direct Adaptive Filtering Problems,
and Identification-and-Inversion Approach to Blind
Deconvolution

As an alternative deconvolution approach, the “identification-and-inversion
approach” to blind deconvolution is based on a two-step procedure: first, the
acoustic MIMO mixing system is blindly identified, and then the identified
system is inverted in a separate step. Obviously, for the latter step the re-
sults of the previous section can be applied, preferably the MINT solution.
In this section, we therefore concentrate on the ideal solution of the system
identification step. As we shall see in this section, the relation between source
separation and MIMO system identification is of fundamental importance for
the practical realization of blind system identification.

In contrast to the inversion problem, the goal of any separation algorithm,
such as BSS or conventional beamforming, is to eliminate only the crosstalk
between the different sources sq(n), q = 1, . . . , Q in the output signals yq(n),
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q = 1, . . . , Q of the demixing system (see Fig. 1). Disregarding again a poten-
tial permutation among the output signals, this condition may be expressed
in terms of the overall system matrix Č as

Č− bdiag
{
Č
}

= boff
{
Č
}

= 0. (19)

Here, the operator bdiag{·} applied to a block matrix consisting of several
submatrices or vectors sets all submatrices or vectors on the off-diagonals to
zero. Analogously, the boff{·} operation sets all submatrices or vectors on the
diagonal to zero.

With the overall system matrix (11), the condition for the ideal separation
is expressed as

boff
{
H[L]W̌

}
= 0. (20)

This relation for the ideal solution of the direct blind adaptive filtering prob-
lems is the analogous expression to the relation (14) for the ideal solution of
the inverse blind adaptive filtering problems.

As we will see in this section, the relation (20) allows us

• to derive an explicit expression of the ideal separation solution analogously
to (17)

• to establish a link between BSS and BSI which will serve as an important
basis to the identification-and-inversion approach to blind dereverberation
in the general MIMO case

• to establish the conditions for ideal BSI
• to derive the optimum separation FIR filter length Lopt,sep analogously to

(18) for which the ideal separation solution (19) can be achieved.

If we are only interested in separation with certain other constraints to the
output signals, but not in system identification, we may impose further ex-
plicit conditions to the block-diagonal elements of H[L]W̌ in addition to the
condition (20) on the block-offdiagonals. For instance, the so-called minimum
distortion principle after [24] can in fact be regarded as such an additional
condition. However, since this is not within the scope of system identification
we will not discuss these conditions further in this chapter.

Traditionally, blind source separation (BSS) has often been considered as
an inverse problem (e.g., [2, 3]). In this section we show that the theoreti-
cally ideal convolutive (blind) source separation solution corresponds to blind
MIMO system identification. By choosing an appropriate filter length L we
show that for broadband algorithms the well-known filtering ambiguity (e.g.,
[50]) can be avoided. In the following we consider the ideal broadband solution
of mere MIMO separation approaches and relate it to the known blind system
identification approach based on single-input multiple-output (SIMO) models
[10, 11, 26]. This section follows the ideas outlined in [7, 16]. Some of these
ideas were also developed independently in [17] in a slightly different way.

This section discusses the ideal separation condition boff
{
H[L]W̌

}
= 0

as illustrated in Fig. 2 for the case Q = P = 3. Since in this equation we



14 Herbert Buchner et al.

W̌:1

W̌

H[L]

0

0

0

0

0

0

H(:\1):,[L]

Č

Fig. 2. Overall system Č for the ideal separation, illustrated for P = Q = 3.

impose explicit constraints only on the block-offdiagonal elements of Č, this
is equivalent to establishing a set of homogeneous systems of linear equations

H(:\q):,[L]W̌:q = 0, q = 1, . . . , Q (21)

to be solved. Each of these systems of equations results from the constraints
on one column of Č, as illustrated in Fig. 2 for the first column. The notation
in the indices in (21) indicates that for the q-th column W̌:q of the demixing
filter matrix W̌, we form a submatrix H(:\q):,[L] of H[L] by removing the q-th
row Hq:,[L] of Sylvester-submatrices of the original matrix H[L] .

For homogeneous systems of linear equations such as (21) it is known that
non-trivial solutions W̌:q 6≡ 0 are indeed obtained if the rank of H(:\q):,[L]

is smaller than the number of elements of W̌:q. Based on this and later in
this section, we will also derive an expression of the optimum separation filter
length Lopt,sep for an arbitrary number of sensors and sources analogously to
the optimum inversion filter length Lopt,inv in (18).

In the following subsections, we first discuss the solution of (21) for the
case P = Q = 2, and then generalize the results to more than two sources
and sensors.

3.1 Ideal Separation Solution for Two Sources and Two Sensors

For the case Q = P = 2, the set of homogeneous linear systems of equations
(21) reads

H11,[L]w12 + H12,[L]w22 = 0, (22a)

H21,[L]w11 + H22,[L]w21 = 0. (22b)

Since the matrix-vector products in these equations represent convolutions
of FIR filters they can equivalently be written as a multiplication in the z-
domain:
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H11(z)W12(z) + H12(z)W22(z) = 0, (23a)

H21(z)W11(z) + H22(z)W21(z) = 0. (23b)

Due to the FIR filter structure the z-domain representations can be expressed
by the zeros z0Hqp,ν , z0Wpq,µ and the gains AHqp , AHpq of the filters Hqp(z)
and Wpq(z), respectively:

AH11

M−1∏

ν=1

(z − z0H11,ν) · AW12

L−1∏

µ=1

(z − z0W12,µ) =

− AH12

M−1∏

ν=1

(z − z0H12,ν) · AW22

L−1∏

µ=1

(z − z0W22,µ), (24a)

AH21

M−1∏

ν=1

(z − z0H21,ν) · AW11

L−1∏

µ=1

(z − z0W11,µ) =

− AH22

M−1∏

ν=1

(z − z0H22,ν) · AW21

L−1∏

µ=1

(z − z0W21,µ). (24b)

Analogously to the case of MINT [9] described in the previous section, we
assume that the impulse responses contained in H(:\q):,[L], i.e., H11(z) and
H12(z) in (24a) and H21(z) and H22(z) in (24b), respectively, do not share
common zeros. If no common zeros exist and if we choose the optimum7 filter
length for the case Q = P = 2 as Lopt,sep = M , then the equality in (24a) can
only hold if the zeros of the demixing filters are chosen as z0W12,µ = z0H12,µ

and z0W22,µ = z0H11,µ for µ = 1, . . . , M −1. Analogously, the equality in (24b)
can only hold if z0W11,µ = z0H22,µ and z0W21,µ = z0H21,µ for µ = 1, . . . , M − 1.
Additionally, to fulfill the equality, the gains of the demixing filters in (24a)
have to be chosen as AW22 = α2AH11 and AW12 = −α2AH12 , where α2 is
an arbitrary scalar constant. Thus, the demixing filters are only determined
up to a scalar factor α2. Analogously, for the equality (24b) the gains of the
demixing filters are given as AW11 = α1AH22 and AW21 = −α1AH21 with the
scalar constant α1.

In summary, this leads to the ideal separation filter matrix W̌ideal,sep given
in the time domain as

W̌ideal,sep =

[
α1h22 −α2h12

−α1h21 α2h11

]

=

[
h22 −h12

−h21 h11

] [
α1 0
0 α2

]

, (25)

where due to the scaling ambiguity each column is multiplied by an unknown
scalar αq.

7 Note that for L < Lopt,sep = M it is obviously not possible to compensate all zeros
of H11(z) and H12(z) by W22(z) and W12(z), respectively. On the other hand,
in the case L > Lopt,sep = M , the filters W12(z) and W22(z) will exhibit L − M

arbitrary common zeros which are undesired. We will consider the practically
important issue of order-overestimation in Sect. 3.5.
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From (25) we see that under the conditions put on the zeros of the mixing
system in the z-domain, and for L = Lopt,sep, this ideal separation solution
corresponds to a MIMO system identification up to an arbitrary scalar con-
stant. Thus, a suitable algorithm which is able to perform broadband BSS
under these conditions can be used for blind MIMO system identification (if
the source signals provide sufficient spectral support for exciting the mixing
system). In Section 4, a suitable algorithmic framework for this task will be
presented. Moreover, as we will see in the following subsection, this approach
can be seen as a generalization of the state-of-the-art method for the blind
identification of SIMO systems.

In practice, the difficulty of finding the correct filter length Lopt,sep is ob-
viously another important issue since the length M of the mixing system is
generally unknown. In Sect. 3.5 we will address this problem and the conse-
quences of overestimation and underestimation, respectively.

3.2 Relation to MIMO and SIMO System Identification

From a system-theoretic point of view, the BSS approach aiming at the ideal
solution (25) can be interpreted as a generalization of the popular class of
blind SIMO system identification approaches, e.g., [10, 11, 27], as illustrated
in Fig. 3a. The main reason for the popularity of this SIMO approach is

s x1
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h2
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w2

Alg.
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... ... ...
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wPP
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w1P
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y1
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Fig. 3. Blind system identification based on (a) SIMO and (b) MIMO models.

that the optimum filters can be found as the result of a relatively simple
least-squares error minimization. From Fig. 3a and for e(n) = 0 it follows for
sufficient excitation s(n) that

h1(n) ∗ w1(n) = −h2(n) ∗ w2(n). (26)

This can be expressed in the z-domain as H1(z)W1(z) = −H2(z)W2(z). Com-
paring this error cancelling condition with the ideal separation conditions
(23a) and (23b), we immediately see that the SIMO-based approach indeed
corresponds exactly to one of the separation conditions, and for deriving the
ideal solution, we may apply exactly the same reasoning as in the MIMO
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case above. Thus, assuming that H1(z) and H2(z) have no common zeros,
the equality of (26) can only hold if the filter length is chosen again as
L = M . Then, this leads to the ideal cancellation filters W1(z) = αH2(z)
and W2(z) = −αH1(z) which can be determined up to an arbitrary scaling
by the factor α as in the MIMO case. For L > M the scaling ambiguity would
result in arbitrary filtering. For the SIMO case this scaling ambiguity was
derived similarly in [11].

Note that the SIMO case may also be interpreted as a special 2×2 MIMO
case according to Fig. 3b with the specialization being that one of the sources
is always identical to zero so that the BSS output corresponding to this (vir-
tual) source must also be identical to zero, whereas the other BSS output
signal is not of interest in this case. This leads again to the cancellation con-
dition (26), and illustrates that the relation between broadband BSS and
SIMO-based BSI will also hold from an algorithmic point of view, i.e., known
adaptive solutions for SIMO BSI can also be derived as special cases of the
algorithmic framework for the MIMO case.

Adaptive algorithms performing the error minimization mentioned above
for the SIMO structure have been proposed in the context of blind decon-
volution, e.g., in [10, 11], and blind system identification for passive source
localization, e.g., in [26, 28]. In the latter case, this algorithm is also known
as the adaptive eigenvalue decomposition (AED) algorithm which points to
the fact that, in the SIMO case, the homogeneous system of equations (21)
may be reformulated as an analogous signal-dependent homogeneous system
of equations containing the sensor-signal correlation matrix instead of the
mixing filter matrix. The solution vector (in the SIMO case the matrix W̌
reduces to a vector) of the homogeneous system can then be interpreted as
the eigenvector corresponding to the zero-valued (or smallest) eigenvalue of
the sensor correlation matrix. In [10, 28] this SIMO approach, i.e., the single-
source case, was also generalized to more than P = 2 microphone channels.
In Sect. 5 we will present how - from an algorithmic point of view - the AED
indeed directly follows from the general TRINICON framework for broadband
adaptive MIMO filtering. Moreover, this will lead to a generalization of the
original least-squares-based AED algorithm so that it is able to additionally
exploit higher-order statistics and also contains an inherent adaptation con-
trol. This algorithmic link between the SIMO and MIMO cases will also lead
to important insights for the direct-inverse approach to blind deconvolution
later in Sect. 6.

3.3 Ideal Separation Solution and Optimum Separation Filter
Length for an Arbitrary Number of Sources and Sensors

As mentioned above, for homogeneous systems of linear equations such as the
ideal separation conditions (21) it is known that non-trivial solutions W̌:q 6≡ 0
are obtained if the rank of H(:\q):,[L] is smaller than the number of elements

of W̌:q. Additionally, as in the case of MINT [9] described in the previous
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section, we assume that the impulse responses contained in H(:\q):,[L] do not
share common zeros in the z-domain so that H(:\q):,[L] is assumed to have full
row rank. Thus, combining these conditions leads to the requirement that the
matrix H(:\q):,[L] is wide, i.e., the number PL of its columns must be greater
than the number (Q−1)(M +L−1) of its rows to obtain non-trivial solutions,
i.e., PL > (Q − 1)(M + L − 1). Solving this inequality for L yields the lower
bound for the separation filter length as

Lsep >
Q − 1

P − Q + 1
(M − 1). (27)

The difference between the number of columns of H(:\q):,[L] and the number
of rows further specifies the dimension of the space of possible non-trivial
solutions W̌:q, i.e., the number of linearly independent solutions spanning the
solution space. Obviously, due to the bound derived above, the best choice we
can make to narrow down the solutions is a one-dimensional solution space,
i.e., PL = (Q−1)(M +L−1)+1. Solving now this equality for L and choosing
the integer value to be strictly larger than the above bound finally results in
the optimum separation filter length as

Lopt,sep =
(Q − 1)(M − 1) + 1

P − Q + 1
. (28)

Note that narrowing down the solution space to a one-dimensional space
by this choice of filter length precisely means that in this case the filtering
ambiguity of BSS reduces to an arbitrary scaling. These considerations show
that this is possible even for an arbitrary number P of sensors and an arbitrary
number Q of sources, where P ≥ Q. However, the parameters P, Q, M must be
such that Lopt,sep is an integer number in order to allow the ideal separation
solution. Otherwise, we have to resort to approximations by choosing, e.g.,
the next higher integer, i.e., Lopt,sep = ⌈[(Q − 1)(M − 1) + 1]/(P − Q + 1)⌉.

To actually obtain the ideal separation solution W̌ideal,sep with (28) for
the general, i.e., not necessarily square case P ≥ Q, we consider again the
original set of homogeneous systems of linear equations (21). For the choice
L = Lopt,sep, we may easily augment the matrix H(:\q):,[L] to a square matrix

H̃(:\q):,[L] by adding one row of zeros on both sides of (21). The corresponding
augmented set of linear systems of equations

H̃(:\q):,[L]W̌:q = 0, q = 1, . . . , Q. (29)

is equivalent to the original set (21). However, we may now interpret the
general solution vector W̌:q of (21) for the q-th column of W̌ as the eigenvector

corresponding to the zero-valued eigenvalue of the augmented matrix H̃(:\q):,[L].
The general equation (28) for the optimum separation filter length plays

the same role for BSI as (18) for inversion. Comparing these two equations,
we can verify that in contrast to the inversion, which requires P > Q for the
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ideal solution using FIR filters, the ideal separation condition can be met for
P = Q. Moreover, for the special case P = Q = 2, the general expression
(28) also confirms the choice Lopt,BSS = M as already obtained in Sect. 3.1.
Figure 4 compares the different optimum filter lengths by an example.
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Fig. 4. Comparison of the optimum filter lengths for inversion and separation for
M = 1000 and Q = 3.

3.4 General Scheme for Blind System Identification

In Sections 3.1 and 3.2 we have explicitly shown the relation between the ideal
separation solution and the mixing system for the two-sensor cases. These
considerations did also result in a link to the well-known SIMO-based sys-
tem identification method (note that for BSI with more than two sensors, a
simple approach is to apply several of these schemes in parallel, e.g., [29]),
and also showed that the MIMO case with two simultaneously active sources
is a generalization of the SIMO system identification method. In the case of
more than two sources we cannot directly extract the estimated mixing system
coefficients hqp,κ from the separation solution W̌. The previous Section 3.3
generalized the considerations on the two-sensor cases for the separation task.
In this section, we now outline the generalization of the two-sensor cases in
Sections 3.1 and 3.2 for the identification task which is the first step of the
identification-and-inversion approach to blind deconvolution, as detailed in
Sect. 3.5. The considerations so far suggest the following generic two-step BSI
scheme for an arbitrary number of sources (where P ≥ Q):

(1) Based on the available sensor signals, perform a properly designed broad-
band BSS (see Sect. 4) resulting in an estimate of the demixing system
matrix.

(2) Analogously to the relation (21) between the mixing and demixing sys-
tems, and the associated considerations in Sect. 3.3 for the separation
task, determine an estimate of the mixing system matrix using the esti-
mated demixing system from the first step.
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In general, to perform step (2) for more than two sources, some further consid-
erations are required. First, an equivalent reformulation of the homogeneous
system of equations (21) is necessary so that now the demixing system matrix
instead of the mixing system matrix is formulated as a blockwise Sylvester
matrix. Note that this corresponds to a block-transposition (which we denote
here by superscript ·bT) of (21), i.e.,

(
WbT

)

(:\q):,[M ]

(
ȞbT

)

:q
= 0, q = 1, . . . , Q. (30)

The block-transposition is an extension of the conventional matrix transpo-
sition. It means that we keep the original form of the channel-wise subma-
trices but we may change the order of the mixing and demixing subfilters by
exploiting the commutativity of the convolutions. Note that the commutativ-
ity property does not hold for the MIMO system matrices as a whole, i.e.,
W(:\q):,[M ] and Ȟ:q, so that they have to be block-transposed to change their
order.

Similarly to Sect. 3.3, we may then calculate the corresponding estimate of
the mixing system in terms of eigenvectors using the complementary form (30)
of the homogeneous system of equations. Based on this system of equations,
we can devise various powerful strategies for BSI in the general MIMO case.

3.5 Application of Blind System Identification to Blind
Deconvolution

In order to obtain a complete blind dereverberation system after the iden-
tification-and-inversion approach, the considerations in the previous sections
suggest the structure shown in Fig. 5. As discussed above, the acoustic MIMO
mixing system can be blindly identified by means of an adaptive broadband
BSS algorithm. Algorithmic solutions will be detailed in Sect. 5 based on the
TRINICON framework outlined in Sect. 4. For the subsequent inversion of
the estimated mixing system we refer to Sect. 2.

BSS
(Sect. 5)

W → Ĥ
(Sect. 3.1-3.4)

BSI

inversion
(Sect. 2)

filtering
(post

processing)

Fig. 5. Identification-and-inversion approach to blind dereverberation.

Attractive features of the identification-and-inversion approach to blind
dereverberation are that (1) it is relatively easy to deal with an increased
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number of microphone channels (the so-called overdetermined case for blind
adaptive filtering) by simple parallelization of BSI algorithms, and (2) the
approach is applicable for nearly arbitrary audio source signals, as long as
they exhibit sufficient spectral support.

Based on the blind SIMO system identification mentioned in Sect. 3.2 (i.e.,
the estimate of the channel impulse responses is the eigenvector corresponding
to the minimum eigenvalue of the correlation matrix), the identification-and-
inversion approach to blind dereverberation was proposed, e.g., in [10, 11] for
one acoustic source signal.

Using the general scheme for blind MIMO system identification from the
previous Sect. 3.1-3.4 and the TRINICON framework shown below, we are
now in a position to generalize the identification-and-inversion approach to
multiple simultaneously active sources, i.e., to the MIMO case. Note that
the MINT after Sect. 2 is already capable of handling the general MIMO
case for P < Q. As in the SIMO case, the blind MIMO system identification
approach has already been successfully applied in the context of passive source
localization in reverberant environments, e.g., in [7, 8].

Note that previously, in [29], the identification-and-inversion approach was
discussed for the MIMO case under the assumption that from time to time
each source signal occupies a time interval exclusively. Then, during every
single-talk interval, a SIMO system was blindly identified and its channel
impulse responses were saved for later dereverberation when more than one
source was active. Obviously, in practice, the applicability of this approach
will be very limited in time-varying environments and with increasing num-
bers of independent sources (consider, e.g., a cocktail party scenario). In ad-
dition, a sophisticated multichannel sound source detection algorithm that
distinguishes single and multiple speaker activity would be needed in prac-
tice. Such a required multichannel adaptation control is inherently available
in TRINICON-based BSS/BSI algorithms for the general MIMO case.

However, both in the SIMO case and in the general MIMO case, there
are still some fundamental challenges in the context of this dereverberation
approach:

• The channel impulse responses must not exhibit common zeros in the z-
domain (both for the system identification (see Sections 3.1 and 3.3) and
also for the subsequent system inversion (see Sect. 2)).

• The filter length must be known exactly (both for the system identification
(see Sections 3.1 and 3.3) and for the subsequent system inversion (see
Sect. 2)).

The first problem can be mitigated in practice by increasing the number of
microphones so that the probability for common zeros is reduced [9]. Hence,
the choice of the correct filter length Lopt,sep is the major remaining difficulty
in this approach8.

8 Note that in some other applications of blind adaptive filtering we do not re-
quire a complete identification of the mixing system. For instance, for acoustic
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The consequences of overestimation and underestimation of the filter or-
der can be seen, e.g., from (24a) and (24b): In the case of underestimation,
i.e., for L < Lopt,sep = M it is obviously not possible to compensate all zeros
of H11(z) and H12(z) by W22(z) and W12(z), respectively. The case of over-
estimation, i.e., L > Lopt,sep = M , is by far more problematic. In this case,
the filters W12(z) and W22(z) will exhibit L − M arbitrary common zeros
which are undesired. This corresponds to the requirement to narrow down
the solution space addressed in Sect 3.3, by avoiding an overestimation of the
filter length in order to prevent a filtering ambiguity. In other words, in the
overestimated case, the ideal blind identification solution Ĥ1(z) = αH1(z) and
Ĥ2(z) = αH2(z) turns into Ĥ1(z) = Cmin(z)H1(z) and Ĥ2(z) = Cmin(z)H2(z)
with the common polynomial Cmin(z) corresponding to an arbitrary filtering.
Consequently, after the inverse filtering in Fig. 5, the overestimation of the
filter length would result in a remaining filtering 1/Cmin(z) of the original
source signals.

Various ways exist to solve the filtering ambiguity problem caused by the
overestimation of the filter order. The transfer function order could be ob-
tained if the dimension of the nullspace in the autocorrelation matrix of the
observed signals is precisely calculated [10, 30], i.e., by counting the number
of very small eigenvalues. Another way to find the optimum order is to use
a suitable cost function, e.g., [11, 31, 32]. Unfortunately, these blind system
order estimation approaches are often unreliable (particularly in noisy envi-
ronments) and computationally too complex (especially the latter ones, i.e.,
[11, 31, 32]). An alternative approach proposed, e.g., in [33] is to compensate
for the remaining filtering 1/Cmin(z) using a post filter (Fig. 5) by estimating
the common polynomial with a multichannel linear prediction scheme. This
approach seems to be numerically very sensitive for large filter lengths. Note
also that this latter approach slightly limits the application domain by assum-
ing sources that can be modeled by AR processes, such as speech signals.

A fundamentally different alternative to the identification-and-inversion
approach to blind dereverberation is the direct-inverse approach. Here, the
aim is to directly estimate the inverse MIMO filter after Sect. 2 based on a
dereverberation cost function. It is therefore inherently more robust to the
order-overestimation problem. However, as we will see later in this chapter,
this comes at the cost of the requirement for a more precise stochastic model-
ing of the source signals which again specializes the application domain, e.g.,
to speech signals. Moreover, the direct-inverse approach requires to take into
account all microphone channels at once which renders the adaptation more
complex.

source localization only the positions of the dominant components are required.
Fortunately, this is in line with the requirement to avoid an overestimation of the
filter length. Thus, in these applications the choice L ≤ Lopt,sep is preferable in
practice.
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Similar to the adaptation aspects of the identification-and-inversion ap-
proach in Sect. 5, we will treat the algorithmic aspects of the direct-inverse
approach in Sect. 6. Both approaches are presented in a unified way based on
TRINICON as outlined next in Sect. 4. The unified treatment also allows for
an illuminating comparison.

4 TRINICON - A General Framework for Adaptive
MIMO Signal Processing and Application to the Blind
Adaptation Problems

For the blind estimation of the coefficients corresponding to the desired so-
lutions discussed in the previous section, we have to consider and to exploit
the properties of the excitation signals, such as their nonstationarity, their
spectral characteristics, and their probability densities.

In the existing literature, the known algorithms for blind system iden-
tification, blind source separation, and blind deconvolution were introduced
independently. The BSS problem has mostly been addressed for instantaneous
mixtures or by narrowband approaches in the frequency domain which adapt
the coefficients independently in each DFT bin, e.g., [2, 34, 35]. On the other
hand, in the case of MCBD, many approaches either aim at whitening the out-
put signals as they are based on an i.i.d. (independent identically distributed)
model of the source signals (e.g., [13, 14]), which is undesirable for the gen-
erally nonwhite speech and audio signals as these should not be whitened, or
are rather heuristically motivated, e.g., [15].

The aim of this section is to present an overview of the algorithmic part of
broadband blind adaptive MIMO filtering based on TRINICON (’TRIple-N
Independent component analysis for CONvolutive mixtures’), a generic con-
cept for adaptive MIMO filtering which takes the signal properties of speech
and audio signals (nonwhiteness, nonstationarity, and nongaussianity) into
account, and allows a unified treatment of broadband BSS (as needed for a
proper BSI) and MCBD algorithms as applicable to speech and audio sig-
nals in real acoustic environments [12, 18, 19, 20]. This framework generally
uses multivariate stochastic signal models in the cost function to describe
the temporal structure of the source signals and thereby provides a powerful
cost function for both, BSS/BSI and MCBD, and, for the latter, also leads to
improved algorithms for speech dereverberation.

Although both time-domain and equivalent broadband frequency-domain
formulations of TRINICON have been developed with the corresponding mul-
tivariate models in both the time domain and the frequency domain [19, 20],
we consider in this chapter mainly the time-domain formulation. Furthermore,
we restrict ourselves here to gradient-based coefficient updates and disregard
Newton-type adaptation algorithms for clarity and brevity. The algorithmic
TRINICON framework is directly based on the matrix notation developed
above.
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Throughout this section, we regard the symmetric case where the num-
ber Q of maximum simultaneously active source signals sq(n) is equal to the
number of sensor signals xp(n), i.e., Q = P . However, it should be noted
that in contrast to other blind algorithms in the ICA literature, we do not
assume prior knowledge about the exact number of active sources. Thus, even
if the algorithms will be derived for Q = P , the number of simultaneously ac-
tive sources may change throughout the application of the TRINICON-based
algorithm and only the condition Q ≤ P has to be fulfilled.

4.1 Matrix notation for convolutive mixtures

To introduce an algorithm for broadband processing of convolutive mixtures,
we first need to formulate the convolution of the FIR demixing system of
length L in the following matrix form [20]:

yT(n) = xT(n)W, (31)

where n denotes the time index, and

xT(n) = [xT
1 (n), . . . ,xT

P (n)], (32)

yT(n) = [yT
1 (n), . . . ,yT

P (n)], (33)

W =






W11 · · · W1P

...
. . .

...
WP1 · · · WPP




 , (34)

xT
p (n) = [xp(n), . . . , xp(n − 2L + 1)], (35)

yT
q (n) = [yq(n), . . . , yq(n − D + 1)] (36)

=

P∑

p=1

xT
p (n)Wpq. (37)

The parameter D in (36), 1 ≤ D < L, denotes the number of lags taken
into account to exploit the nonwhiteness of the source signals as shown below.
Wpq, p = 1, . . . , P , q = 1, . . . , P denote 2L×D Sylvester matrices that contain
all coefficients of the respective filters:
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Wpq =

























wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
...

...
...

0 · · · 0 0

























. (38)

Note that for D = 1, (31) simplifies to the well-known vector formulation of a
convolution, as it is used extensively in the literature on supervised adaptive
filtering, e.g., [1].

4.2 Optimization Criterion

Various approaches exist to blindly estimate the demixing matrix W for the
above-mentioned tasks by utilizing the following source signal properties [2]
which we all combine into an efficient and versatile algorithmic framework
[18, 19, 12]:
(i) Nongaussianity is exploited by using higher-order statistics for indepen-
dent component analysis (ICA). ICA approaches can be divided into several
classes. Although they all lead to similar update rules, the minimization of
the mutual information (MMI) among the output channels can be regarded as
the most general approach to solve the direct adaptive filtering problems after
Table 1, such as source separation [2, 19] and system identification [8, 21]. To
obtain an even more versatile estimator not only allowing spatial separation
but also temporal separation for dereverberation and inverse adaptive filter-
ing problems in general, we use the Kullback-Leibler divergence (KLD) [36]
between a certain desired joint pdf (essentially representing a hypothesized
stochastic source model) and the joint pdf of the actually estimated output
signals [12]. Note that the mutual information is a special case of the KLD
[36]. The desired pdf in the KLD is factorized w.r.t. the different sources (for
the direct adaptive filtering problems, such as source separation) and possibly
also w.r.t. certain temporal dependencies (for inverse adaptive filtering prob-
lems, such as dereverberation) as shown below. The KLD is guaranteed to be
positive [36], which is a necessary condition for a useful cost function.
(ii) Nonwhiteness is exploited by simultaneous minimization of output
cross-relations over multiple time-lags. We therefore consider multivariate
pdfs, i.e., ‘densities including D time-lags’.
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(iii) Nonstationarity is exploited by simultaneous minimization of output
cross-relations at different time-instants. We assume ergodicity within blocks
of length N so that the ensemble average is replaced by time averages over
these blocks.

Based on the KLD, we now define the following general cost function taking
into account all three fundamental signal properties (i)-(iii):

J (m,W) = −
∞∑

i=0

β(i, m)
1

N

iNL+N−1∑

j=iNL

{log(p̂s,PD(y(j))) − log(p̂y,PD(y(j)))} ,

(39)

where p̂s,PD(·) and p̂y,PD(·) are the assumed or estimated PD-variate source
model (i.e., desired) pdf and output pdf, respectively. In this chapter we as-
sume that these pdfs are generally described by certain data-dependent pa-
rameterizations, so that we can write in more detail

p̂s,PD = p̂s,PD

(

y, Q(1)
s , Q(2)

s , . . .
)

(40a)

and
p̂y,PD = p̂y,PD

(

y, Q(1)
y , Q(2)

y , . . .
)

, (40b)

respectively. We further assume that the model parameter estimates are given
by the generic form

Q
(r)
s (i) =

1

N

iNL+N−1∑

j=iNL

{

G
(r)
s (y(j))

}

, r = 1, 2, . . . , (41a)

Q
(r)
y (i) =

1

N

iNL+N−1∑

j=iNL

{

G
(r)
y (y(j))

}

, r = 1, 2, . . . , (41b)

where G
(r)
s and G

(r)
y are suitable functions of the observation vectors y, and

Q
(r)
s and Q

(r)
y represent block-averages of G

(r)
s (y) and G

(r)
y (y), respectively.

In general, the bold calligraphic symbols denote multidimensional arrays,
or in other words, tensorial quantities. The elements of Q

(r)
s , Q

(r)
y , G

(r)
s ,

and G
(r)
y are denoted by Q(r)

s,i1,i2,..., Q(r)
y,i1,i2,..., G(r)

s,i1,i2,..., and G(r)
y,i1,i2,..., re-

spectively, where i1, i2, . . . are the indices in the corresponding tensor di-
mensions. Well-known special cases of such parameterizations are estimates
of the variance σ̂2

y(i) = 1
N

∑iNL+N−1
j=iNL

{
y2(j)

}
and the correlation matrix

Ryy(i) = 1
N

∑iNL+N−1
j=iNL

{
y(j)yT (j)

}
in the multivariate case PD > 1. The

index m denotes the block time index for a block of N output samples shifted
by NL samples relatively to the previous block. Furthermore, D is the mem-
ory length, i.e., the number of time-lags to model the nonwhiteness of the P
signals as above. β is a window function with finite support that is normal-
ized so that

∑m
i=0 β(i, m) = 1, allowing for online, offline, and block-online

algorithms [19, 37].
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4.3 Gradient-Based Coefficient Update

In this chapter we concentrate on iterative gradient-based block-online coeffi-
cient updates which can be written in the general form

W̌0(m) := W̌(m − 1), (42a)

W̌ℓ(m) = W̌ℓ−1(m) − µ∆W̌ℓ(m), ℓ = 1, . . . , ℓmax, (42b)

W̌(m) := W̌ℓmax(m), (42c)

where µ is a stepsize parameter, and the superscript index ℓ denotes an iter-
ation parameter to allow for multiple iterations (ℓ = 1, . . . , ℓmax) within each
block m. The LP × P coefficient matrix W̌ (defined in (4)) to be optimized
is smaller than the 2LP ×DP Sylvester matrix W used above for the formu-
lation of the cost function, and it contains only the non-redundant elements
of W.

Obviously, when calculating the gradient of J (m,W) w.r.t. W̌ explicitly,
we are confronted with the problem of the different matrix formulations W
and W̌. The larger dimensions of W (see, e.g., (38)) are a direct consequence
of taking into account the nonwhiteness signal property by choosing D > 1. As
noted above, the rigorous distinction between these different matrix structures
is an essential aspect of the general TRINICON framework and leads to an
important building block whose actual implementation is fundamental to the
properties of the resulting algorithm, the so-called Sylvester constraint (SC)
on the coefficient update, formally introduced in [19, 20]. Using the Sylvester
constraint operator the gradient descent update can be written as

∆W̌ℓ(m) = SC {∇WJ (m,W)}|W=Wℓ(m) . (43)

Depending on the particular realization of (SC), we are able to select both,
well-known and novel improved adaptation algorithms [37]. As discussed in
[37] there are two particularly simple and popular realizations of (SC) leading
to two different classes of algorithms (see Fig. 7):

(1) Computing only the first column of each channel of the update matrix to
obtain the new coefficient matrix W̌. This method is denoted as (SCC).

(2) Computing only the L-th row of each channel of the update matrix to
obtain the new coefficient matrix W̌. This method is denoted as (SCR).

It can be shown that in both cases the update process is significantly sim-
plified [37]. However, in general, both choices require some tradeoff regarding
algorithm performance. While SCC may provide a potentially more robust
convergence behaviour, it will not work for arbitrary source positions, which
is in contrast to the more versatile SCR [37]. Specifically, SCC allows to adapt
only causal demixing systems. In geometrical terms this means that in the
case of separating two sources using SCC, they are required to be located
in different half-planes w.r.t. the orientation of the microphone array [37].
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For separating sources located in the same half-plane, or for more than two
sources, noncausal demixing filters are required. With SCR it is possible to
initialize W̌pp, p = 1, . . . , P with shifted unit impulses to allow noncausal
filter taps [37]. Since acoustic scenarios exhibit nonminimum phase impulse
responses, the need for noncausal demixing filters is further amplified in the
dereverberation application.

In [8] an explicit formulation of a generic Sylvester constraint was derived
to further formalize and clarify this concept, and to combine the versatility of
SCR with the robust performance of SCC [38]. It turns out that the generic
Sylvester constraint corresponds – up to the constant D denoting the width of
the submatrices – to a channel-wise arithmetic averaging of elements according
to Fig. 6.

+

+

+

+

+

+

L

D

2L

1

L

Fig. 6. Illustration of the generic Sylvester constraint (SC) after [8] for one channel.

Note that the previously introduced approaches, classified by the choice
of (SCC) or (SCR) as mentioned above, thus correspond to approximations
of (SC) by neglecting most of the elements within this averaging process, as
illustrated in Fig. 7. In Sect. 6 of this chapter, we will see that by choosing the
different Sylvester constraints, we are also able to establish relations to various
known multichannel blind deconvolution algorithms from the literature.

It can be shown (see Appendix A) that by taking the gradient of J (m)
with respect to the demixing filter matrix W̌(m) according to (43), we obtain
the following generic gradient descent-based TRINICON update rule:

∆W̌ℓ(m) =
1

N

∞∑

i=0

β(i, m)SC







iNL+N−1∑

j=iNL

x(j)
[

Φ
T
s,PD(y(j)) − Φ

T
y,PD(y(j))

]







(44a)

with the desired generalized score function
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+ +

+ +

(a)

W =

(b)

W =

(c)

W = W̌ =W̌ = W̌ =

SC SCC
SCR

Fig. 7. Illustration of two efficient approximations of (a) the generic Sylvester con-
straint SC: (b) the column Sylvester constraint SCC and (c) the row Sylvester con-
straint SCR.

Φs,PD(y(j)) = −∂log p̂s,PD(y(j))

∂y(j)

− 1

N

∑

r

∑

i1,i2,...

∂G(r)
s,i1,i2,...

∂yT

iNL+N−1∑

j=iNL

∂p̂s,PD

∂Q(r)
s,i1,i2,...

(44b)

resulting from the hypothesized source model p̂s,PD, and the actual general-
ized score function

Φy,PD(y(j)) = −∂log p̂y,PD(y(j))

∂y(j)

− 1

N

∑

r

∑

i1,i2,...

∂G(r)
y,i1,i2,...

∂yT

iNL+N−1∑

j=iNL

∂p̂y,PD

∂Q(r)
y,i1,i2,...

, (44c)

where the stochastic model parameters are given by (41), and G(r)
s,i1,i2,...,

G(r)
y,i1,i2,..., Q

(r)
s,i1,i2,..., and Q(r)

y,i1,i2,... are the elements of G
(r)
s , G

(r)
y , Q

(r)
s , and

Q
(r)
y , respectively, as explained below (41). The form of the coefficient update

(44a) with the generalized score functions (44b) and (44c) also fits well into
the theory of so-called estimating functions [39].

The hypothesized source model p̂s,PD(·) in (44b) is chosen according to the
class of signal processing problem to be solved (see Table 1). For instance, a
factorization of p̂s,PD(·) among the sources yields BSS (or BSI via the scheme
described in Sect. 3.4), i.e.,

p̂s,PD(y(j))
(BSS)
=

P∏

q=1

p̂yq,D(yq(j)), (45a)

while a complete factorization leads to the traditional MCBD approach,

p̂s,PD(y(j))
(MCBD)

=

P∏

q=1

D∏

d=1

p̂yq,1(yq(j − d + 1)). (45b)

Additionally, in Sect. 6 we will introduce another, more general class, called
the multichannel blind partial deconvolution (MCBPD) approach.
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Alternative formulation of the gradient-based coefficient update

Both for practical realizations and also for some theoretical considerations, an
equivalent reformulation of the gradient-based update (44a) is often useful.
This alternative formulation is obtained by transforming the output signal pdf
p̂y,PD(y) in the cost function into the PD-dimensional input signal pdf using
W as a mapping matrix for this linear transformation. The relation (134) in
Appendix B shows this pdf transformation. (Note that the result of Appendix
B is needed again later in this chapter). Gradient calculation as above leads
to the alternative formulation of the gradient-based update,

∆W̌ℓ(m) =

1

N

∞∑

i=0

β(i, m)SC







iNL+N−1∑

j=iNL

[

x(j)ΦT
s,PD(y(j)) − V

((
Wℓ−1(m)

)T
V
)−1

]





,

(46a)

with the window matrix

V = Bdiag{Ṽ, . . . , Ṽ}, (46b)

Ṽ =
[
ID×D, 0D×(2L−D)

]T
. (46c)

4.4 Natural Gradient-Based Coefficient Update

It is known that stochastic gradient descent generally suffers from slow conver-
gence in many practical problems due to statistical dependencies in the data
being processed. A modification of the ordinary gradient which is especially
popular in the field of ICA and BSS due to its computational efficiency, is
the so-called natural gradient [2]. It can be shown that by taking the natural
gradient of J (m) with respect to the demixing filter matrix W(m) [20],

∆W̌ ∝ SC
{

WWT ∂J
∂W

}

, (47)

we obtain the following generic TRINICON-based update rule:

∆W̌ℓ(m) =

1

N

∞∑

i=0

β(i, m)SC







iNL+N−1∑

j=iNL

Wℓ(i)y(j)
[

Φ
T
s,PD(y(j)) − Φ

T
y,PD(y(j))

]






.

(48)

Moreover, from (46a) we obtain an alternative formulation of (48):

∆W̌ℓ(m) =

∞∑

i=0

β(i, m)SC






Wℓ(i)




1

N

iNL+N−1∑

j=iNL

y(j)ΦT
s,PD(y(j)) − I










,

(49)
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which exhibits an especially simple – and thus computationally efficient –
structure. An important feature of this natural gradient update is that its
adaptation performance is largely independent of the conditioning of the
acoustic mixing system matrix [20].

4.5 Incorporation of Stochastic Source Models

The general update equations (42) with (44), (46), (48), (49) offer the pos-
sibility to account for all available information on the statistical properties
of the desired source signals. To apply this general approach in a real-world
scenario, appropriate multivariate score functions Φ

T
s,PD(y) (and Φ

T
y,PD(y)

where required) in the update equations have to be determined, based on
appropriate multivarate stochastic signal models.

The selection of the stochastic signal models is based on several different
considerations. As already illustrated by (45a) and (45b), the design of the
signal model is instrumental in defining the class of the adaptive filtering
problem according to Tab. 1. This aspect will be detailed in Sect. 5 and 6.
Another important aspect is that many of the different adaptation techniques
in the literature represent different approximations of the probability density
functions.

For estimating pdfs a distinction between parametric and non-parametric
techniques is common (see, e.g., [40]).

A parametric technique defines a family of density functions in terms of a
set of parameters as in (40a) and (40b). The parameters are then optimized so
that the density function corresponds to the observed samples. In the context
of ICA different parametric representations have been used. Examples include
Gaussian models in the simplest case, Gaussian mixture models, and general-
ized Gaussian. The important class of spherically-invariant random processes,
as detailed below, may also be understood as a parametric approach. Other
parametric techniques are based on higher moments [41], e.g., Gram-Charlier
expansion, Parson densities, or on higher cumulants [41], e.g., the Edgeworth
expansion. As an important representative of these techniques, we consider
the Gram-Charlier expansion for TRINICON, as detailed below.

The non-parametric techniques usually define the estimated density di-
rectly in terms of the observed samples. The best known non-parametric es-
timate is the histogram, which is very data intensive. Somewhat less data is
required by the Parzen-Windows method [40]. Note that sometimes also the
above-mentioned techniques based on series with higher moments are classi-
fied as non-parametric in the literature [41]. Obviously, the incorporation of
various assumptions about the densities by truncating these series expansions
in practice provides a smooth transition to powerful parametric techniques
which require less data than the simpler non-parametric techniques.

Another important aspect in the choice of stochastic models is their robust-
ness. According to [42], robustness denotes insensitivity to a certain amount
of deviations from the statistical modeling assumptions due to some fraction
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of outliers with some arbitrary probability density. Unfortunately, many of
the traditional estimation techniques, such as least-squares estimation, or the
higher-order techniques mentioned above turn out to be fairly sensitive in this
sense. The theory of robust statistics [42] provides a systematic framework to
robustify the various techniques and it has been very successfully applied to
adaptive filtering, e.g., [43]. In [21] the theory of multivariate robust statistics
was introduced in TRINICON. Although in this chapter we will not consider
the robustness extensions in detail, it is important to note that they fit well
into the general class of spherically-invariant random processes detailed below.

Finally, it should be noted that in addition to the model selection the
choice of estimation procedure for the corresponding stochastic model param-
eters (e.g., correlation matrices in (50) below, higher-order moments, scaling
parameter for robust statistics in [21], etc.), in other words, the practical re-
alization of (41), is another important design consideration. The estimation
of the stochastic model parameters and the TRINICON-based updates of the
adaptive filter coefficients are performed in an alternating way.

Similar to the estimation of correlation matrices in linear prediction prob-
lems [68] we have to distinguish in actual implementations between the
more accurate so-called covariance method and the approximative correla-
tion method leading to a lower complexity, e.g., [37]. As we will see later in
this chapter, based on these different estimation methods for the correlation
matrices and on the above-mentioned approximations SCR{·} and SCC{·} of
the Sylvester constraint SC{·} we can establish an illustrative classification
scheme for BSI and deconvolution algorithms.

Spherically Invariant Random Processes as Signal Model

An efficient and fairly general solution to the problem of determining the
high-dimensional score functions in broadband adaptive MIMO filtering is to
assume so-called spherically invariant random processes (SIRPs), e.g., [44, 45,
46], as proposed in [18, 19]. The general form of correlated SIRPs of D-th
order is given with a properly chosen function fp,D(·) for the p-th output
channel of the MIMO system by

p̂yp,D(yp(j)) =
1

√

πDdet(Rypyp(i))
fp,D

(

yT
p (j)R−1

ypyp
(i)yp(j)

)

, (50)

where Rypyp denotes the corresponding D × D autocorrelation matrix with
the corresponding number of lags. These models are representative for a wide
class of stochastic processes. Speech signals in particular can very accurately
be represented by SIRPs [46]. A major advantage arising from the SIRP
model is that multivariate pdfs can be derived analytically from the corre-
sponding univariate pdf together with the (lagged) correlation matrices. The
function fp,D(·) can thus be calculated from the well-known univariate models
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for speech, e.g., the Laplacian density. Using the chain rule, the corresponding
score function, e.g., (44b) can be derived from (50), as detailed in [18, 19].

To calculate the score function for SIRPs in general, we employ the chain
rule to (50) so that the first term in (44b) reads

−∂ log p̂yp,D(yp)

∂yp
= −

∂p̂yp,D(yp)

∂yp

p̂yp,D(yp)
=

[

− 1

fp,D(up)

∂fp,D(up)

∂up

]

︸ ︷︷ ︸

:=φyp,D(up)

R−1
ypyp

(i)yp(j),

(51)
where up = yT

p R−1
ypyp

yp. For convenience, we call the scalar function φyp,D(up)
the SIRP score. It can be shown (after a somewhat tedious but straightforward
derivation) that for SIRPs in general, the second term in (44b) is equal to zero
so that the general score function is given by the simple expression (51). A
great advantage of SIRPs is that the required function fD(u) can actually be
derived analytically from the corresponding univariate pdf [46]. As a practical
important example, following the procedure in [46], we obtain, e.g., as the
optimum SIRP score for univariate Laplacian pdfs [18]:

φyq,D(uq) = − 1

D −
√

2uq
KD/2+1(

√
2uq)

KD/2(
√

2uq)

, (52)

where Kν(·) denotes the ν-th order modified Bessel function of the second
kind.

Multivariate Gaussians as Signal Model: Second-Order Statistics

To see the link to adaptation algorithms that are based purely on second-order
statistics (SOS), we use the model of multivariate Gaussian pdfs

p̂yp,D(yp(j)) =
1

√

(2π)DdetRypyp(i)
e
− 1

2yT
p (j)R−1

ypyp
(i)yp(j)

(53)

as a special case of a SIRP with fq,D(uq) = 1√
2D

exp(− 1
2uq). Hence, the score

function for the generic SOS case is obtained straightforwardly from (51) for
the constant SIRP score φyp,D(up) = 1/2, and it can be shown that most of
the popular SOS-based adaptation algorithms represent special cases of the
corresponding algorithms based on SIRPs, e.g., [12, 18, 19, 21]. Moreover, by
transforming the model into the DFT domain, this relation also carries over
to various links to novel and existing popular frequency-domain algorithms
[8, 19].

It is interesting to note that the generic SOS-based update was originally
obtained independently in [20] (first for the BSS application) as a generaliza-
tion of the cost function of [47]:
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JSOS (m,W) =
∞∑

i=0

β(i, m) {log detRss(i) − log detRyy(i)} . (54)

This cost function can be interpreted as a distance measure between the actual
time-varying output-correlation matrix Ryy and a certain desired output-
correlation matrix Rss.

Nearly Gaussian Densities as Signal Model

Two different expansions are commonly used to obtain a parameterized repre-
sentation of probability density functions which only slightly deviate from the
Gaussian density (often called nearly Gaussian densities): the Edgeworth and
the Gram-Charlier expansions, e.g., [2]. They lead to very similar approxima-
tions, so we only consider here the Gram-Charlier expansion. As explained in
Appendix C, these expansions are based on the so-called Chebyshev-Hermite
polynomials PH,n(·).

We first illustrate the idea in the univariate case. A fourth-order expan-
sion of a univariate, zero-mean, and nearly Gaussian pdf is given in (140) in
Appendix C with the estimates of skewness κ̂3 = Ê

{
y3
}

and the kurtosis

κ̂4 = Ê
{
y4
}
− 3σ̂4, the latter one being the most important higher-order

statistical quantity in our context. Generally, speech signals exhibit super-
gaussian densities whose third-order cumulants are negligible compared to
its fourth-order cumulants. Therefore, we are particularly interested in the
approximation

p̂(y) ≈ 1√
2πσ̂

e−
y2

2σ̂2

(

1 +
κ̂4

4! σ̂4
PH,4

( y

σ̂

))

. (55)

Similar to the specialization (54) of the TRINICON optimization criterion
for the case of SOS, the Gram-Charlier-based model also allows for an inter-
esting illustration of the criterion. By exploiting the near-gaussianity by the
approximation log(1 + ǫ) ≈ ǫ for log

(
1 + κ̂4

4! σ̂4 PH,4

(
y
σ̂

))
in the logarithmized

respresentation of (55), and noting that PH,4

(
y
σ̂

)
=
(

y
σ̂

)4 − 6
(

y
σ̂

)2
+ 3 we can

develop the following expression appearing in the TRINICON criterion (39):

1

N

iNL+N−1∑

j=iNL

log p̂(y)

≈ 1

N





iNL+N−1∑

j=iNL

log
1√
2πσ̂

e−
y2

2σ̂2



+
1

N





iNL+N−1∑

j=iNL

κ̂4

4! σ̂4
PH,4

( y

σ̂

)





=
1

N





iNL+N−1∑

j=iNL

log
1√
2πσ̂

e−
y2

2σ̂2



+
κ̂2

4

4! (σ̂2)4
, (56)
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where κ̂4 = 1
N

∑iNL+N−1
j=iNL

y4 − 3σ̂4 represents an estimate for the kurtosis
based on block averaging. As we can see, in addition to the SOS, the opti-
mization is directly based on the normalized kurtosis, which is a widely-used
measure of nongaussianity. This additive representation will play a particu-
larly important role in the application to the direct-inverse approach to blind
dereverberation in Sect. 6.

To obtain general coefficient update rules based on this representation, we
finally consider the multivariate formulation of the Gram-Charlier expansion
after (146a) in Appendix C. To calculate the multivariate Chebyshev-Hermite
polynomials, we apply the relation

PH,n(yp) =

D∏

d=1

PH,nd
(yd,p) (57)

after (144) so that

p̂yp,D(yp(j)) =
1

√

(2π)DdetRypyp(i)
e
− 1

2yT
p (j)R−1

ypyp
(i)yp(j)

·
∞∑

n1=0

· · ·
∞∑

nD=0

an1···nD ,p PH,n1

([
L−1

p (i)yp(j)
]

1

)

· · · · · PH,nD

([
L−1

p (i)yp(j)
]

D

)

with the coefficients according to (146b),

an1···nD ,p =
Ê
{

PH,n1

([
L−1

p (i)yp(j)
]

1

)

· · · · · PH,nD

([
L−1

p (i)yp(j)
]

D

)}

n1! · · · · · nD!
.

(58)
Multivariate generalizations of the skewness and the kurtosis were introduced
by Mardia in [48]. In our context the corresponding multivariate generalization
of the kurtosis can be written as

κ̂
(D)
4,norm = Ê

{[

yT
p (j)R−1

ypyp
(i)yp(j)

]2
}

− D(D + 2). (59)

Similar to the univariate case, this quantity can be related to our formulation
of the multivariate probability density. Note that for D = 1 it corresponds to
the traditional normalized kurtosis κ̂4/σ̂4 = Ê{y4

p}/σ̂4 − 3, as it appears in,
e.g., (55).

In this chapter, we further consider an important special case of this gen-
eral multivariate model, which is particularly useful for speech processing. In
this case, the inverse covariance matrix R−1

ypyp
= (LT

p Lp)
−1 is first factorized

as [49]
R−1

ypyp
(i) = Ap(i)Σ

−1
ỹpỹp

(i)AT
p (i), (60)

where Ap(i) and Σỹpỹp
(i) denote a D×D unit lower triangular matrix (i.e., its

elements on the main diagonal are equal to 1) and a diagonal matrix, respec-
tively [49]. The D × D unit lower triangular matrix Ap(i) can be interpreted
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as a (time-varying) convolution matrix of a whitening filter. It is therefore
convenient for computational reasons to model the signal yp as an autoregres-
sive (AR) process of order nA = D − 1, with time-varying AR coefficients
ap,k(n), and residual signal ỹp(n), i.e.,

yp(n) = −
D−1∑

k=1

ap,k(n)yp(n − k) + ỹp(n). (61)

The matrices Ap and Σỹpỹp
can then be written as

Ap =








1 ap,1(n) ap,2(n) · · · · · · · · · · · · ap,D−1(n)
0 1 ap,1(n − 1) · · · · · · · · · · · · ap,D−2(n − 1)
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1








T

(62)

and

Σỹpỹp
= Diag

{

σ̂2
ỹp

(n), . . . , σ̂2
ỹp

(n − D + 1)
}

= Ê












ỹp(n)
...

ỹp(n − D + 1)




 [ỹp(n), . . . , ỹp(n − D + 1)]







. (63)

Now, the multivariate stochastic signal model can be rewritten by shifting the
prefiltering matrix Ap into the data terms, i.e.,

ỹp := AT
p yp = [ỹp(n), ỹp(n − 1), . . . , ỹp(n − D + 1)]

T
. (64)

Moreover, by assuming the whitened elements of vector ỹp to be i.i.d. (which
in practice is a widely used assumption in AR modeling), so that the ex-
pansion coefficients an1···nD ,p are factorized, we obtain thanks to (57) with

Lp(i) = Diag
{

1
σ̂ỹp (j) , . . . ,

1
σ̂ỹp (j−D+1)

}

AT (i) and (64) the following model

representation:

p̂yp,D(yp(j)) =

D∏

d=1

1
√

2π σ̂2
ỹp

(j − d + 1)
e
−

ỹ2
p(j−d+1)

2σ̂2
ỹp

(j−d+1)

·
∞∑

nd=0

Ê
{

PH,nd

(
ỹp(j−d+1)
σ̂ỹp (j−d+1)

)}

nd!
PH,nd

(
ỹp(j − d + 1)

σ̂ỹp(j − d + 1)

)

.

By considering only the fourth-order term in addition to SOS again, i.e.,

p̂yp,D(yp(j)) =

D∏

d=1

1
√

2π σ̂2
ỹp

(j − d + 1)
e
− ỹ2

p(j−d+1)

2σ̂2
ỹp

(j−d+1)

·
(

1 +
κ̂4,ỹp

4!σ4
ỹp

(j − d + 1)
PH,nd

(
ỹp(j − d + 1)

σ̂ỹp(j − d + 1)

))

,
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and by exploiting the near-gaussianity using the approximation log(1+ǫ) ≈ ǫ,
we obtain after a straightforward calculation the following expression for the
score function (44c):

Φy,PD(y(j)) =

= A(i)






ỹp(j − d + 1)

2σ̂2
ỹp

(j − d + 1)
−






∑iNL+N−1
j=iNL

ỹ4
p(j − d + 1)

3
(
∑iNL+N−1

j=iNL
ỹ2

p(j − d + 1)
)2 − 1






·
(

ỹ3
p(j − d + 1)

σ̂4
ỹp

(j − d + 1)
−

ỹp(j − d + 1)
∑iNL+N−1

j=iNL
ỹ4

p(j − d + 1)

σ̂6
ỹp

(j − d + 1)

)]

,

(65)

where the expression in brackets denotes a column vector composed of the
elements for d = 1, . . . , D and p = 1, . . . , P , and A(i) = [A1(i), . . . ,AP (i)]
after (62). Note that the first term corresponds to the SOS as in (51), while the
second term is related to the multivariate normalized kurtosis. This expression
will play an important role in Sect. 6.

5 Application of TRINICON to Blind System
Identification and the Identification-and-Inversion
Approach to Blind Deconvolution

In Sect. 3 we developed the identification-and-inversion approach to blind de-
convolution from a system-theoretic point of view. We have seen that in the
general MIMO case its practical (i.e., adaptive) realization can be traced back
to the problem of blind source separation for convolutive mixtures with ap-
propriately chosen filter length L and subsequent inversion, e.g., using MINT
(Fig. 5). Both signal separation and system identification belong to the class
of direct adaptive filtering problems according to Tab. 1. On the other hand,
it was shown that in the SIMO case this approach leads to a well-known class
of realizations for which the AED algorithm in its various versions is known
from the literature. Hence, as the two main aspects in this section

• we discuss the specialization of the TRINICON framework to practical
algorithms that are suitable for adaptive MIMO BSI. Various different
BSS algorithms have been proposed in recent years (e.g., [50]), and many of
them can be related to TRINICON [8, 19]. However, of special importance
for BSI and the identification-and-inversion approach to dereverberation
are efficient realizations of broadband BSS algorithms.

• we develop the relation to the SIMO case explicitly from an algorithmic
point of view. This will lead to various new insights and also to some
generalizations of the AED.
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Both of these main aspects will also serve as important starting points for the
developments in Sect. 6. An experimental comparison of the identification-
and-inversion approach with the direct-inverse approach to blind dereverber-
ation also follows in Sect. 6.

5.1 Generic Gradient-Based Algorithm for Direct Adaptive
Filtering Problems

To begin with, we specialize TRINICON to the case of direct adaptive fil-
tering problems, i.e., signal separation and system identification. Again, for
simplicity of the presentation, we concentrate here on iterative Euclidean
gradient-based and natural gradient-based block-online coefficient updates.
As mentioned in Sect. 4, the class of signal separation and system identifi-
cation algorithms is specified by the factorization of the hypothesized source
model p̂s,PD(·) among the sources according to (45a). The desired multivariate
score function then becomes the partitioned vector

Φs,PD(y(j)) =
[

Φ
T
y1,D(y1(j)), . . . , Φ

T
yP ,D(yP (j))

]T

, (66a)

Φyp,D(yp(j)) = −∂log p̂yp,D(yp(j))

∂yp(j)
. (66b)

The corresponding generic coefficient update rules are then directly given by
(44a), (46a), (48), and (49).

In this section, our considerations are based on the SIRP model (including
SOS as a special case). Accordingly, each partition of the vector (66a) is
given by (51). The resulting general class of broadband BSS algorithms was
first presented in [18] and has led to various efficient realizations so far (see
Sect. 5.3). The idea of using a SIRP model was also adopted, e.g., in the
approximate DFT-domain realizations [51, 52].

Illustration for Second-Order Statistics

By setting the SIRP scores φyp,D(·) = 1/2, p = 1, . . . , P , we obtain the
particularly illustrative case of SOS-based adaptation algorithms. Here, the
source models are simplified to multivariate Gaussian functions described by
PD×PD correlation matrices R·· estimated from the length-N signal blocks,
so that the update rules (44a) and (48) lead to [12]

∆W̌(m) =

∞∑

i=0

β(i, m)SC
{
Rxy(i)

[
R−1

ss (i) − R−1
yy(i)

]}
(67)

and
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∆W̌(m) =
∞∑

i=0

β(i, m)SC
{
W(i)Ryy(i)

[
R−1

ss (i) − R−1
yy(i)

]}

=

∞∑

i=0

β(i, m)SC
{
W(i) [Ryy(i) − Rss(i)]R

−1
ss (i)

}
, (68)

respectively. The BSS versions of these generic SOS natural gradient updates
follow immediately by setting

Rss(i) = bdiag Ryy(i). (69)

The update (68) together with (69) was originally obtained independently in
[20] from the cost function (54). In Fig. 8 the mechanism of (68) based on the
model (69) is illustrated. By minimizing JSOS(m), all cross-correlations for D
time-lags are reduced and will ideally vanish, while the auto-correlations are
untouched to preserve the structure of the individual signals.

D

D

Each diagonal
represents
one time-lag

auto-correlation Ry1y1 cross-correlation Ry1y2

Fig. 8. Illustration of SOS-based broadband BSS.

A very important feature of the TRINICON-based coefficient updates is
the inherent normalization by the auto-correlation matrices, reflected by the
inverse of Rss(i) = bdiag Ryy(i) in (68). As we will see in Sect. 5.2, this nor-
malization can in fact be interpreted as an adaptive stepsize control. In fact,
as was shown in [19], the update equations of another very popular subclass
of second-order BSS algorithms, based on a cost function using the Frobenius
norm9 ‖A‖2

F =
∑

i,j a2
ij of a matrix A = (aij), e.g., [2],[53]-[57], differ from

the more general TRINICON-based updates mainly in the inherent normal-
ization. The gradient-based update resulting from the Frobenius norm can be
regarded as an analogon to the traditional least mean square (LMS) algorithm
[1] in supervised adaptive filtering without stepsize control. Indeed, many sim-
ulation results have shown that for large filter lengths L, this Frobenius-based
updates are prone to instability, while the properly normalized updates show

9 Analogously to the TRINICON-based JSOS this approach may be generalized for
convolutive mixtures to JF(m) =

P∞
i=0 β(i, m) ‖Ryy(i) − bdiag Ryy(i)‖2

F.
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a very robust convergence behaviour even for hundreds or thousands of fil-
ter coefficients for the application in real acoustic environments, e.g., [20].
As we will see in Sect. 6, an analogous consideration concerning the inherent
normalization is also possible for dereverberation algorithms of the direct-
inverse-type.

The realization of this normalization is also an important aspect in various
efficient approximations of the generic broadband algorithms, e.g., [37, 58, 59],
with a reduced computational complexity for real-time operation. Moreover,
a close link has been established [19, 20] to various popular frequency-domain
algorithms, as we discuss in more detail in Sect. 5.3.

In the following Sect. 5.2 we show that taking into account the nongaus-
sianity (in addition to the SOS) can be regarded as a further improvement of
the inherent adaptation control.

5.2 Realizations for the SIMO Case

As mentioned in Sect. 3.5, most of the existing literature on the identification-
and-inversion approach to blind deconvolution is based on the SIMO mixing
model, e.g., [10, 11, 29, 30, 31, 32, 33]. Using the TRINICON framework,
the approach has been developed rigorously for the more general MIMO case
based on first principles.

In this section we show how to deduce the class of SIMO-based algorithms
from TRINICON. Besides a generalization of these algorithms, this consider-
ation will also serve as an important background for the later developments
in Sect. 6.

As a starting point, we consider the gradient-based update (46a) of the
MIMO demixing system W̌ with the specialized score function (66) for sepa-
ration and identification problems.

The ideal separation filter matrix W̌ideal,sep in the 2 × 2 case is given by
(25), i.e.,

W̌ideal,sep =

[
h22 −h12

−h21 h11

] [
α1 0
0 α2

]

, (70)

where due to the scaling ambiguity (in blind problems) each column is mul-
tiplied by an unknown scalar αq. For L = Lopt,sep = M , this ideal separation
solution corresponds to a MIMO system identification up to an arbitrary
scalar constant (independently of the adaptation method and the possible
prior knowledge).

We now consider the SIMO mixing model in Fig. 3(a) as a specialization
of the MIMO mixing model in Fig. 3(b), i.e., h11 → h1, h12 → h2, h21 → 0,
h22 → 0.

According to the right-hand side of (70) the corresponding ideal demixing
system taking into account this prior knowledge reads

[
w11 w12

w21 w22

]

= α

[
0 −h2

0 h1

]

. (71)
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By comparing both sides of this equation, we immediately obtain the corre-
sponding demixing system structure shown on the right side in Fig. 3(a). This
is indeed the well-known SIMO BSI/AED approach, which in this way follows
rigorously from the general equation (70) together with the prior knowledge on
the specialized mixing system. Moreover, we see that only the second column
of the demixing matrix is relevant for the adaptation process. The elements
of the first column can be regarded as don’t cares.

We now consider the second term of the coefficient update (46a). From the
relation (134) in Appendix B immediately follows

log p̂y,PD(y(n)) = const. ∀ W ⇒ log
∣
∣det

{
VTW

}∣
∣ = const. ∀ W. (72)

Specifically, in the case of SOS (e.g., (54)) this leads to

log |detRyy| = const. ∀ W ⇒ log
∣
∣det

{
VTW

}∣
∣ = const. ∀ W. (73)

As the second term in the update (46a) respresents the gradient of the ex-
pression log

∣
∣det

{
VTW

}∣
∣ w.r.t. W, we conclude that the second term in the

coefficient update is equal to zero if detRyy is independent of W. We there-
fore consider now the dependence of detRyy on W in more detail. Since

Ryy = Ê{yyT } = WTHTRssHW, we have

log |detRyy| = log |detRss|
︸ ︷︷ ︸

=const. ∀ W

+2 log
∣
∣det{WTHT }

∣
∣ . (74)

Now let W =
[
WT

1 , . . . ,WT
P

]T
and H = [H1, . . . ,HP ] be MISO and SIMO,

respectively, as special case of the MIMO definition (12). In this special case,
the input-output-relation of the overall system reads

y = WTHT s =

(
P∑

p=1

WT
p HT

p

)

s, (75)

and
∑P

p=1 WT
p HT

p represents an upper triangular matrix with diagonal ele-

ments
∑P

p=1 wp,0hp,0. Hence, in the SIMO case, (74) simplifies to

log |detRyy| = const. + 2N log

∣
∣
∣
∣
∣

P∑

p=1

wp,0hp,0

∣
∣
∣
∣
∣
. (76)

Again, in the special case of only one active source, we can formulate an inter-
esting statement concerning the first taps wp,0 of the demixing subfilters. As
the demixing subfilters ideally compensate for the individual time-differences
of arrival at the microphones, only the subfilter wpfar

connected to the micro-
phone which has the greatest distance to the source, may exhibit a nonzero
value at its first tap weight, i.e.,
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wp,0 = α · δp,pfar
, (77)

where δij denotes the Kronecker symbol. Introducing this property finally
leads to

log |detRyy| = const. + 2N log |αhpfar,0|
= const.. (78)

Hence, together with (73), we can draw the conclusion that in the SIMO
case, the second term of the coefficient update (46a) disappears without loss
of generality.

Next, we consider the first term x(j)ΦT
s,PD(y(j)) in the coefficient up-

date (46a) for the SIMO case and note that its second (block-)column reads
x(j)ΦT

y2,D(y2(j)). We now perform the following formal substitutions in or-
der to be in accordance with the literature on blind SIMO identification and
supervised adaptive filtering, e.g., [1] (see Fig. 3(a) and Fig. 3(b)):

y2 → e,

[
w12

w22

]

=

[
−ĥ2

ĥ1

]

→ w =

[
w1

w2

]

. (79)

Hence, the second column of the first term of the coefficient update is finally
expressed as x(j)ΦT

e,D(e(j)). Note that the substitution of the coefficient no-
tation in (79) is justified by (71).

Thus, we obtain the following sub-matrix of the specialized gradient-based
TRINICON update:

wℓ(m) = wℓ−1(m) +
µ

N

∞∑

i=0

β(i, m)SC







iNL+N−1∑

j=iNL

x(j)ΦT
e,D(e(j))






. (80)

This formally represents the triple-N-generalization of the Least-Mean-Squares
(LMS) algorithm from supervised adaptive filtering theory (see also [21])
which in its well-known original form exhibits the simple update [1]

w(n) = w(n − 1) + µ x̌(n)e(n), (81)

where the length-L vector x̌ is a truncated version of x (formally, this trun-
cation is obtained by (SC) for D = 1, see Fig. 6). Although not shown in
this chapter, it is possible to analogously derive the corresponding generaliza-
tions of other supervised algorithms (NLMS, RLS, etc., which may essentially
be seen as special cases of a Newton-type update, e.g., [60]) by choosing a
Newton-type TRINICON coefficient update instead of the gradient descent-
type update.

From the generalized LMS update (80) above we can make the following
observations in comparison with the simple case (81): Due to the generalized
approach, we inherently obtain
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• block online adaptation, possibly with multiple iterations ℓ to speed up
the convergence [19],

• block averaging by N > 1 for a more uniform convergence,
• an error nonlinearity to take into account the nongaussianity of the signals

(by a proper choice of Φ
T
e,D(·)),

• multivariate error e to take into account the nonwhiteness of the signals
(by choosing D > 1).

Note that in various ways, the RLS algorithm can be seen as the optimal su-
pervised adaptation algorithm. However, the RLS is optimum only in the case
of a Gaussian source signal and Gaussian additive noise on the microphones,
with the noise being additionally stationary and white. The general update
resulting from TRINICON does not have these restrictions.

Coefficient initialization

The general relation between MIMO BSI and SIMO BSI also leads to an im-
portant guideline for the initialization of the filter coefficients. In particular,
we consider the question whether the algorithm can converge to the (unde-
sired) trivial solution w = 0. As we will show, the answer is no, as long as the

initialization w(0) is not orthogonal to the ideal solution wideal =
[
−hT

2 hT
1

]T
.

To prove this condition, we pre-multiply the update (80) with wT
ideal on

both sides of the update equation:

wT
idealw

ℓ(m) = wT
idealw

ℓ−1
(m)

+
µ

N

∞∑

i=0

β(i, m)
[
−hT

2 hT
1

]
SC







iNL+N−1∑

j=iNL

[
x1(j)
x2(j)

]

Φ
T
e,D(e(j))






, (82)

wT
idealw

ℓ(m) = wT
idealw

ℓ−1
(m) +

µ

N

∞∑

i=0

β(i, m)

iNL+N−1∑

j=iNL

(

hT
1 SC

{

x2(j)Φ
T
e,D(e(j))

}

− hT
2 SC

{

x1(j)Φ
T
e,D(e(j))

})

. (83)

With (148) from Appendix D this expression can be expanded to

wT
idealw

ℓ(m) = wT
idealw

ℓ−1
(m)

+
µ

N

∞∑

i=0

β(i, m)

iNL+N−1∑

j=iNL

D∑

l=1

(
hT

1 x̌2(j − l + 1) − hT
2 x̌1(j − l + 1)

)
Φe,l(e(j)).

(84)

Since hT
1 x̌2(·) − hT

2 x̌1(·) ≡ 0 is fixed due to the acoustic model, we have

wT
idealw

ℓ(m) = wT
idealw

ℓ−1
(m) = const., i.e., provided that wT

idealw(0) 6= 0,
the coefficient vector w will not converge to zero. ⋄
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Efficient implementation of the Sylvester Constraint for the
special case of SIMO models

As already explained for the general MIMO case, we also further specialize the
generalized LMS update (80) by incorporating the SIRP model. Introducing
the score function (51) immediately leads to SIRPs-based generalized LMS
update analogously to [21]

wℓ(m) = wℓ−1(m) +
µ

N

∞∑

i=0

β(i, m)

iNL+N−1∑

j=iNL

SC
{
x(j)eT (j)R−1

ee (i)
}

φe,D

(
eT (j)R−1

ee (i)e(j)
)
. (85)

As in the general MIMO case, we see that the SIRP model leads to an in-
herent normalization by the auto-correlation matrix. Note that the SOS case
follows for φe,D (·) = 1/2. In both the SOS case and for general SIRPs the
normalization by the correlation matrix in conjunction with N > 1 may be
interpreted as an inherent stepsize control. (It also illustrates why BSS does
not require a separate double-talk detector, such as traditional supervised al-
gorithms do, e.g., for acoustic echo cancellation or adaptive beamforming.)
Moreover, in [21] it was shown that for a suitable choice of parameters, the
general SIRP-based update (85) can be interpreted as a multivariate, i.e.,
triple-N generalization of the robust LMS algorithm based on robust statistics
[42], as mentioned in Sect. 4.5.

To further simplify the realization, we next study the expression

SC
{
x(j)eT (j)R−1

ee (i)
}

(86)

appearing in (85). According to the structure of the generic Sylvester con-
straint in Fig. 6 and [8] (see also Appendix D), the l-th element of the p-th
subvector (contributing to the p-th channel impulse response) can be expanded
to

D∑

d=1

[xp(j)]l+d−1

[
R−1

ee (i)e(j)
]

d
= x̌T

p,D(j − l + 1)R−1
ee (i)e(j), (87)

where x̌p,D denotes the length-D vector

x̌p,D(n) = [xp(n), xp(n − 1), . . . , xp(n − D + 1)]
T

. (88)

With this expansion, the expression (86) reads

SC
{
x(j)eT (j)R−1

ee (i)
}

=













x̌T
1,D(j)

...
x̌T

1,D(j − L + 1)

x̌T
2,D(j)

...
x̌T

2,D(j − L + 1)













R−1
ee (i)e(j). (89)
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In the same way as shown in Sect. 4.5 in the context of nearly Gaussian
source models, we now factorize the inverse covariance matrix R−1

ee as [49]

R−1
ee (i) = A(i)Σ−1

ẽẽ (i)AT (i), (90)

where A(i) and Σẽẽ(i) denote again a D × D unit lower triangular matrix
and a diagonal matrix, respectively [49].

By interpreting A(i) as a time-varying convolution matrix of a whitening
filter, we model the signal e as an AR process of order D−1, with time-varying
AR coefficients ak(n), and residual signal ẽ(n), i.e.,

e(n) = −
D−1∑

k=1

ak(n)e(n − k) + ẽ(n). (91)

Now, the expression (89) can be rewritten by shifting the prefiltering ma-
trix A into the data terms, i.e.,

ẽ := ATe = [ẽ(n), ẽ(n − 1), . . . , ẽ(n − D + 1)]
T

, (92)

ˇ̃xp,D := AT x̌p,D = [x̃p(n), x̃p(n − 1), . . . , x̃p(n − D + 1)]
T

, (93)

so that

SC
{
x(j)eT (j)R−1

ee (i)
}

=













ˇ̃xT
1,D(j)

...
ˇ̃xT

1,D(j − L + 1)
ˇ̃xT

2,D(j)
...

ˇ̃xT
2,D(j − L + 1)













Σ
−1
ẽẽ (i)ẽ(j)

=
[
ˇ̃x(j), . . . , ˇ̃x(j − D + 1)

]







ẽ(j)
σ2

ẽ(j)

...
ẽ(j−D+1)

σ2
ẽ(j−D+1)







=
D−1∑

d=0

ˇ̃x(j − d)
ẽ(j − d)

σ2
ẽ(j − d)

. (94)

Finally, (85) becomes

wℓ(m) = wℓ−1(m) +
µ

N

∞∑

i=0

β(i, m)

iNL+N−1∑

j=iNL

D−1∑

d=0

ˇ̃x(j − d)
ẽ(j − d)

σ2
ẽ(j − d)

φe,D

(
ẽT (j)Σ−1

ẽẽ (i)ẽ(j)
)
. (95)
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Note that this formulation provides a computationally efficient realization of
the generic Sylvester constraint.

Moreover, it is interesting to note that both the error signal e and the input
(i.e., microphone) signal vector x̌ appear as filtered versions in the update.
After interpreting A in (90) as a whitening filter, this adaptation algorithm
can in fact be interpreted as a so-called filtered-x-type algorithm [61]. As shown
in Fig. 9, this type of algorithms typically appears whenever there is another
filter between the adaptive filter and the position of the error calculation. This
cascade structure will also be of fundamental importance in the direct-inverse
approach in Sect. 6.

x̌
w

ŷ

y

e
+

− x̌
w

ˆ̃y

ỹ

ẽ+
−

a

Fig. 9. Supervised adaptive filtering in (a) conventional and (b) filtered-x configu-
ration.

5.3 Efficient Frequency-Domain Realizations for the MIMO Case

For convolutive mixtures, the classical approach of frequency-domain BSS ap-
pears to be an attractive alternative where all techniques originally developed
for instantaneous BSS are typically applied independently in each frequency
bin, e.g., [2]. However, this traditional narrowband approach exhibits several
limitations as identified in, e.g., [62, 63, 64]. In particular, the permutation
problem, which is inherent to BSS, may then also appear independently in
each frequency bin so that extra repair measures are needed to address this
internal permutation. Problems caused by circular convolution effects due to
the narrowband approximation are reported in, e.g., [63].

In [19] it is shown how the equations of the TRINICON framework can be
transformed into the frequency domain in a rigorous way (i.e., without any
approximations) in order to avoid the above-mentioned problems. As in the
case of the time-domain algorithms, the resulting generic DFT-domain BSS
may serve both as a unifying framework for existing algorithms, and also as a
guideline for developing new improved algorithms by certain suitable selective
approximations as shown in, e.g., [19] or [58]. Figure 10 gives an overview
on the most important classes of DFT-domain BSS algorithms known so far.
A very important observation from this framework using multivariate pdfs
is that, in general, all frequency components are linked together so that the
internal permutation problem is avoided (the following elements are reflected
in Fig. 10 by different approximations of the generic SIRP-based BSS):
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Fig. 10. Overview of BSS algorithms in the DFT domain. Note that the broad-
band algorithms on the left column are also suitable for BSI, and thus, for the
identification-and-inversion approach to blind deconvolution/blind dereverberation.
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1. Constraint matrices appearing in the generic frequency-domain formula-
tion (see, e.g., [19]) describe the inter-frequency correlation between DFT
components.

2. The multivariate score function, derived from the multivariate pdf is a
broadband score function. As an example, for SIRPs the argument of the
multivariate score function (which is a nonlinear function in the higher-
order case) is yT

p (j)R−1
ypyp

(i)yp(j) according to (50). Even for the simple

case R−1
ypyp

(i) = I where we have yT
p (j)yp(j) = ‖yp(j)‖2, i.e., the quadratic

norm, and - due to the Parseval theorem - the same in the frequency do-
main, i.e., the quadratic norm over all DFT components, we immediately
see that all DFT-bins are taken into account simultaneously so that the
internal permutation problem is avoided. Note that the traditional nar-
rowband approach (with the internal permutation problem) would result
as a special case if we assumed all DFT components to be statistically in-
dependent from each other (which is of course not the case for real-world
broadband signals such as speech and audio signals). In contrast to this
independence approximation the dependencies among all frequency com-
ponents (including higher-order dependencies) are inherently taken into
account in TRINICON in an optimal way by considering the joint den-
sities as the most comprehensive description of random signals. Actually,
in the traditional narrowband approach, the additionally required repair
mechanisms for permutation alignment try to exploit such inter-frequency
dependencies.

From the viewpoint of blind system identification, the broadband algorithms
with constraint matrices (i.e., the algorithms represented in the first column
of Fig. 10) are of particular interest. Among these algorithms, the system
described in [58] has turned out to be very efficient in this context. A pseudo-
code of this algorithm is also included in [58].

Another important consideration for the practical implementation of BSI is
the proper choice of the Sylvester constraint. Since the column constraint SCC

is not suited for arbitrary source configurations, it is generally not appropriate
for BSI and deconvolution. Thus, for the implementations discussed in this
chapter the row constraint SCR is used.

6 Application of TRINICON to the Direct-Inverse
Approach to Blind Deconvolution

In this section we discuss multichannel blind adaptation algorithms with the
aim to solve the inverse adaptive filtering problem (see Table 1) directly with-
out BSI as an intermediate step. This section mainly follows and extends the
concept first presented in [12].

The two main aspects in this section are as follows:
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• First, we briefly discuss traditional ICA-based multichannel blind decon-
volution (MCBD) algorithms from the literature. Unfortunately, as we
will see, these algorithms are not well suited for speech and audio signals.
However, our considerations lead to various insights and to a classification
scheme which is also useful for both the pure separation/identification al-
gorithms from the previous section, and also to the multichannel blind
partial deconvolution (MCBPD) algorithms considered afterwards.

• The main aspect in this section is the discussion of the MCBPD algo-
rithms. These algorithms can be regarded as advanced versions of MCBD
so that they are also suitable for speech and audio signals. As already men-
tioned at the end of Sect. 3.5, these algorithms are not just based on the
spatial diversity and the statistical independence of the different source
signals, but they require more precise stochastic source models. Based on
the results of Sect. 4, and to some extent of Sect. 5, we present a general
framework which unifies the treatment of many of the known algorithms
for the direct-inverse approach to blind dereverberation of speech signals,
and also leads to various new algorithms.

6.1 Multichannel Blind Deconvolution (MCBD)

Analogously to the Sect. 5.1, we now specialize TRINICON to the case of tra-
ditional MCBD algorithms. As shown by (45b), this class of algorithms is spec-
ified by a complete factorization of the hypothesized source model p̂s,PD(·),
i.e., traditionally, ICA-based MCBD algorithms assume i.i.d. source models,
e.g., [13, 14]. In other words, in addition to the separation of statistically
independent sources, MCBD algorithms also temporally whiten the output
signals, so that this approach is not directly suitable for audio signals. Nev-
ertheless, studying these algorithms leads to some important insights, as in
contrast to some BSS algorithms they are inherently broadband algorithms.
Their popularity results from the fact that due to the complete factorization
of the source model, they only require univariate pdfs. Thereby, the multivari-
ate score function (44b) reduces to a vector of univariate score functions each
representing a scalar nonlinearity. As, additionally, the second term in (44b)
is commonly neglected in most of these algorithms, the scalar nonlinearity
reads

Φyp,1(yp(j − d + 1)) = −∂log p̂yp,1(yp(j − d + 1))

∂yp(j − d + 1)
. (96)

The corresponding generic coefficient update rules are then given by (44a),
(46a), (48), and (49).

In the SOS case, analogously to the representation in Sect. 5.1, the com-
plete factorization of the output pdf corresponds to the desired correlation
matrix Rss = diagRyy, as illustrated in Fig. 11(b).

Using (96) several relationships between the generic HOS natural gradi-
ent update rule (49) and well-known MCBD algorithms in the literature can
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(a) BSS (b) MCBD (c) MCBPD

Fig. 11. Desired correlation matrices Rss for BSS (Sect. 5), MCBD (Sect. 6.1), and
MCBPD (Sect. 6.2) with TRINICON in the SOS case.

be established [67]. As noted in Sect. 4.5, these links are obtained by the
application of different implementations of the Sylvester constraint SC, the
distinction between the correlation and covariance method [68] for the esti-
mation of the cross-relation

RyΦ(y)(i) =
1

N

iNL+N−1∑

j=iNL

y(j)ΦT
s,PD(y(j)) (97)

in (49), and the different approximations of the multivariate pdfs. This alto-
gether spans a whole tree of algorithms as depicted in Fig. 12. Here, the most
general algorithm is given as the generic HOS natural gradient algorithm (49)
which is based on multivariate pdfs. A distinction with respect to the im-
plementation of the Sylvester constraint SC leads to two branches which can
again be split up with respect to the method used for the estimation of the
cross-relation matrices. Approximating the multivariate pdfs by univariate
ones, neglecting the nonstationarity, and using the Sylvester constraint SCR

yields two block-based MCBD algorithms presented in [69, 70]. By changing
the block-based adaptation to a sample-by-sample algorithm, a link to the
popular MCBD algorithm in [13] and [71] can be established. (It should be
noted that also the so-called nonholonomic extension [19] of [13] presented in
[14] can be derived from the framework.) By using the Sylvester constraint
SCC a link to the MCBD algorithm in [72] is obtained. However, it should
be remembered that algorithms based on SCC are less general as only causal
filters can be adapted and thus for MCBD algorithms only minimum-phase
systems can be treated as was pointed out in [72].

Note that by using the general Sylvester constraint without approxima-
tions, a performance gain both over SCR and SCC is possible [38].

6.2 Multichannel Blind Partial Deconvolution (MCBPD)

Signal sources which are non i.i.d. should not become i.i.d. at the output of the
blind adaptive filtering stage. Therefore, their statistical dependencies should
be preserved. In other words, the adaptation algorithm has to distinguish
between the statistical dependencies within the source signals, and the statis-
tical dependencies introduced by the mixing system Ȟ, i.e., the reverberant
room. We denote the corresponding generalization of the traditional MCBD
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Fig. 12. Overview of links between the generic algorithm (49) and existing MCBD
algorithms after [67].

technique as MultiChannel Blind Partial Deconvolution (MCBPD) [12]. Equa-
tions (44)-(49) inherently contain a statistical source model (signal properties
(i)-(iii) in Sect. 4.2), expressed by the multivariate densities, and thus provide
all necessary requirements for the MCBPD approach.

Ideally, only the influence of the room acoustics should be minimized. A
typical example for MCBPD applications is speech dereverberation, which is
especially important for distant-talking automatic speech recognition (ASR),
where there is a strong demand for speech dereverberation without introducing
artifacts to the signals. In this application, MCBPD allows to distinguish
between the actual speech production system, i.e., the vocal tract, and the
reverberant room (Fig. 13).

For the distinction between the production system of the source signals
(e.g., the speech production system) and the room acoustics we can again
exploit all three fundamental signal properties already mentioned in Sect. 4.2:

(i) Nonwhiteness. The auto-correlation structure of the speech signals can
be taken into account, as illustrated in Fig. 11(c) after [12]. While the
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room (slowly time-varying)
to be equalized

vocal tract (rapidly time-varying)
to be preserved

excitation

Fig. 13. Illustration of speech dereverberation as an MCBPD application (after
[12]).

room acoustics influences all off-diagonals, the effect of the vocal tract is
concentrated in the first few off-diagonals around the main diagonal. In
the simplest case, these first Z off-diagonals of Ryy are now taken over
into the banded matrix

Rss = bandbdiagZ Ryy, (98)

as illustrated in Fig. 11(c). Note that there is a close link to linear predic-
tion techniques as detailed below which gives guidelines for the number of
lags to be preserved.

(ii) Nonstationarity. The speech production system and the room acous-
tics also differ in their time-variance according to Fig. 13 after [12]. While
the room acoustics is assumed to be constant during the adaptation pro-
cess, the speech signal is only short-time stationary [68], modeled by the
time-varying speech production model. Typically, the duration of the sta-
tionarity intervals is assumed to be approximately 20ms [68]. We therefore
adjust the block length N and in practice preferably also the block shift NL

in the criterion (39) with the model parameter estimates (41) and in the
corresponding updates (44)-(49) to the assumed duration of the stationar-
ity interval. Note that for a block-based adaptation (typically performed
by exploiting the efficiency of the FFT, cf. Sect. 5.3 for the case of BSS)
and N = NL < L, this corresponds to a partitioned block formulation as
known from supervised adaptive filtering, e.g., [60].

(iii) Nongaussianity. Speech is a well-known example for supergaussian
signals. Due to a convolutive sum – describing in our application the fil-
tering by the room acoustics – the pdfs of the recorded sensor/microphone
signals tend to be somewhat closer to Gaussians. Hence, another strategy
is to maximize the nongaussianity of the output signals of the demixing
system (as far as possible by the MIMO FIR filters), e.g., [73, 74, 75, 76].
This strategy is addressed, e.g., using the kurtosis as a widely-used dis-
tance measure of nongaussianity as in the second term in (56). It can be
shown that this second term can indeed be identified as an estimate of the
so-called negentropy which is an information-theoretic distance measure to
the Gaussian [2].
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Formally, the above-mentioned exploitation of the nonwhiteness to distin-
guish between the coloration of the sources and the mixing system is achieved
by decoupling the prediction order nA in (61) from the dimension D of the
correlation matrix Ryy, i.e.,

ỹp(n) =

nA∑

k=0

ap,k(n)yp(n − k) (99)

with 0 ≤ nA ≤ D − 1 and ap,0(n) ≡ 1. This corresponds to a generalization
of the upper triangular matrix structure (62) in the factorization (60) to the
banded matrix

Ap =








1 ap,1(n) ap,2(n) · · · ap,nA(n) 0 · · · 0
0 1 ap,1(n − 1) · · · ap,nA−1(n − 1) ap,nA(n − 1) · · · 0
...

...
...

. . .
...

...
. . .

...
0 0 0 · · · 0 0 · · · 1








T

(100)

so that we can again apply the compact notation

ỹp = AT
p yp = [ỹp(n), ỹp(n − 1), . . . , ỹp(n − D + 1)]T , (101)

ˇ̃xp,D = AT
p x̌p,D = [x̃p(n), x̃p(n − 1), . . . , x̃p(n − D + 1)]

T
. (102)

Hence, the resulting formulation of the generalized score function (65) car-
ries over to MCBPD, as well as to the traditional MCBD and to broadband
BSS/BSI, depending on the parameter nA. In other words, the different modes
in Fig. 11 are selected by certain choices of the order nA. This is further il-
lustrated in Fig. 14.

... ...MCBD (MCBPD) BSS/BSI

0 ≤≤ nA D − 1

vocal tract room

Fig. 14. Illustration of the parameter nA.

The corresponding general gradient descent-based coefficient update for
nearly Gaussian sources is then obtained by introducing the score function
(65) into the generic update (46a). Note that for an efficient implementation
of the Sylvester constraint of the first term in (46a) we can apply the same
procedure as demonstrated in (87) and (89). With (102) we then obtain
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W̌ℓ(m) = W̌ℓ−1(m) − µ

N

∞∑

i=0

β(i, m)

iNL+N−1∑

j=iNL

D−1∑

d=0

ˇ̃x(j − d)

·
[

ỹp(j − d)

2σ̂2
ỹp

(j − d)
−
(∑iNL+N−1

j=iNL
ỹ4

p(j − d)

3σ̂4
ỹp

(j − d)
− 1

)

·
(

ỹ3
p(j − d)

σ̂4
ỹp

(j − d)
−

ỹp(j − d)
∑iNL+N−1

j=iNL
ỹ4

p(j − d)

σ̂6
ỹp

(j − d)

)]

+ µ

∞∑

i=0

β(i, m)SC
{

V
((

Wℓ−1(m)
)T

V
)−1

}

, (103)

where the expression in brackets denotes a row vector composed of the el-
ements for p = 1, . . . , P . This general TRINICON-based MIMO coefficient
update for nearly Gaussian sources leads both to blind separation and derever-
beration of the signals.

Analogously to the considerations at the end of Sect. 5.2 we see that this
update rule can again be interpreted as a so-called filtered-x-type algorithm
since both the input (i.e., microphone) signal vector and the output signals
appear as filtered versions in the update. Analogously to Fig. 9 we immedi-
ately obtain Fig. 15 for the dereverberation application as a consequence of
this filtered-x interpretation. While W, driven by the filtered-x-type coeffi-
cient update, ideally inverts the room acoustic mixing system H, the (set of)
linear prediction filter(s) A from the stochastic source model ideally inverts
the (set of) speech production system(s) of the source(s). The coefficient up-
dates of W and the estimation of A are carried out in an alternating fashion
like the estimation of the other stochastic model parameters, as mentioned
in Sect. 4.5. Note that (in accordance with the known filtered-x concept) the
filtered input vector ˇ̃x in (103) is obtained using the filter coefficients from
the linear prediction (LP) analysis of the output signals yp. In other words,
the coefficients of the output LP analysis filters are copied to the input trans-
formation filters according to (102).

x̌
WH

y

ỹs̃

s

vocal tract(s)

speech production model(s)

blind signal processing

A

Fig. 15. Inversion of the speech production models within the blind signal processing
and filtered-x-type interpretation.
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It should be mentioned that the linear prediction is also classified as a
(blind) inverse adaptive filtering problem in Table 1, and hence, the estimate of
the prediction coefficients can also be obtained directly from the TRINICON
optimization criterion (39). Assuming a single-source scenario and SOS-based
estimation of the prediction coefficients, we obtain for this inverse adaptive
filtering problem as a special case of (39) according to (54) and the consider-
ations in Sect. 5.2 for the single-source case

Jpred (m,A) =

∞∑

i=0

β(i, m) log det diagRỹỹ(i) ∝
∞∑

i=0

β(i, m) log σ̂2
ỹ,i. (104)

Furthermore, assuming stationarity, this criterion is equivalent to the tradi-
tional least-squares-based estimate Jpred,LS (m,A) ∝ σ̂2

ỹ,m due to the mono-
tonicity of the logarithm, while for non-stationary signals, it is more gen-
eral. Nevertheless, for the practical experiments in Sect. 7 we will apply the
Levinson-Durbin algorithm as an efficient realization of the LS-based estima-
tion using the so-called correlation method [68].

6.3 Special Cases and Links to Known Algoritms

According to Fig. 14, all of the previously discussed algorithms from the vari-
ous classes according to Tab. 1 can be regarded as special cases of the MCBPD
concept. In this section, we only discuss algorithms that are specifically de-
signed for dereverberation using the direct-inverse approach. Moreover, we
focus here on algorithms based on the Gram-Charlier model, i.e., we discuss
special cases of (103) and relations to some known algorithms.

SIMO vs. MIMO mixing systems

Similar to the considerations in Sect. 5.2 for SIMO-based BSI, we deduce now
the specialized coefficient update for the case of SIMO mixing systems, i.e.,
for the case of only one source signal. Again, we first consider the last term
of the generic gradient-based update (103). According to the corresponding
steps of the derivation in Sect. 5.2 (Eqs. (72)-(78)) we can see that in the
same way the last term also disappears for MCBPD in the SIMO case. Next,
we pick the filter coefficients of interest for the SIMO case. Assuming the
active source signal will appear on the first output of the demixing filter, it is
straightforward to pick w as the first column of the general MIMO coefficient
matrix W̌. This way we immediately obtain
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wℓ(m) = wℓ−1(m) − µ
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·
(
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2σ̂2
ỹ(j − d)

−
(∑iNL+N−1

j=iNL
ỹ4(j − d)

3σ̂4
ỹ(j − d)

− 1

)

·
(

ỹ3(j − d)

σ̂4
ỹ(j − d)

−
ỹ(j − d)

∑iNL+N−1
j=iNL

ỹ4(j − d)

σ̂6
ỹ(j − d)

))

.

(105)

Note that the structure of the resulting algorithm is very similar to the one of
the generalized AED (95) in Sect. 5.2. The main differences are the different
sign of the update term and the fact that we now pick the first column of W̌
since we are now interested in obtaining the enhanced signal rather than in
minimizing an error signal for the signal cancellation in the AED.

Efficient implementation using the correlation method

An efficient implementation which still exploits all three fundamental signal
properties as discussed in Sect. 6.2 is obtained by assuming a global nonsta-
tionarity of the source signals but short-time stationarity in each block as
known from linear prediction. As a first step to obtain a simplified update
equation, we integrate the sum over d into the sum over j. Next, we replace
the time-varying output prediction error variances by blockwise constant val-
ues σ̂ỹp,i for the i-th block. This finally allows us to move the sum over j into
the numerators in the brackets in order to obtain the compact expression

W̌ℓ(m) = W̌ℓ−1(m) − µ

N

∞∑

i=0

β′(i, m)

·





∑iN ′
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j=iN ′

L

ˇ̃x(j)ỹp(j)
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ỹp,i
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L+N−1

j=iN ′

L
ỹ4

p(j)

3σ̂4
ỹp,i

− 1





·
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j=iN ′

L

ˇ̃x(j)ỹ3
p(j)

σ̂4
ỹp,i

−
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j=iN ′

L

ˇ̃x(j)ỹp(j)
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ỹ4

p(j)
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ỹp,i









+ µ

∞∑

i=0

β(i, m)SC
{

V
((

Wℓ−1(m)
)T

V
)−1

}

. (106)

Note that for the SIMO case this expression is simplified in a straightfor-
ward way as mentioned in the previous paragraph so that the last term again
disappears. This efficient version is also used for the experiments in Sect. 7.

Relations to some known HOS approaches

As already mentioned in Sect. 6.2 most of the HOS-based blind deconvolution
approaches aim at finding deconvolution filters that render the output signals
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as nongaussian as possible [73, 74, 75] with kurtosis being the most common
measure for nongaussianity.

In [76] an approach to speech dereverberation by kurtosis maximization
was presented. It is based on the idea of performing the whole adaptation
and filtering procedure on LP residuals as a heuristic extension of the ideas in
[77, 78]. Hence, the main structural difference of this approach to the general
TRINICON-based update rule is that the LP analysis is carried out using the
microphone signals, i.e., the input signals of the blind adaptive filter rather
than on its output signals as in the above-mentioned and systematically ob-
tained filtered-x structure. Nevertheless, the resulting algorithm also exhibits
several remarkable similarities to the generic update. The adaptation rule in
[76] is based directly on the kurtosis, i.e., the square root of only the second
term in (56). The update therefore structurally corresponds to the part in
the second parentheses of the second term in the brackets in (103). (The first
term in (103) results from the SOS and the expression in the first parentheses
in the second term results from the application of the chain rule due to the
square of the kurtosis in the Gram-Charlier expansion.)

The same approximate expression of the update rule, i.e., the gradient
descent directly based on the kurtosis is also used in [79]. Note that these
approaches are based on the acoustic SIMO model.

Relations to some known SOS approaches

It is known that linear filtering of a source signal increases the temporal
predictability of the observed signal. A deconvolution filter which makes its
output less predictable may thus be able to recover the source signal. This
observation is the key to most of the SOS-based linear deconvolution methods,
i.e., in essence they aim at finding deconvolution filters which minimize a
measure of predictability of the output signal, e.g., [80]. Hence, in a certain
sense, blind deconvolution may also be interpreted as the application of a
very long linear prediction error filter. Note that this is also reflected by the
symmetric structure in Fig. 15.

As a simple approach, the optimization criterion in [80] is directly based
on the variance of the long-term prediction error at the output of the decon-
volution filter. In order to avoid trivial solutions and to preserve some of the
temporal structure of the source signals, this long-term prediction error vari-
ance is normalized by a short-term prediction error variance, and finally the
logarithm of this ratio is taken. Although this approach does not explicitly
exploit the nonstationarity of the signals in the sense as outlined in Sect. 6.2,
this logarithm of the ratio between the prediction error variances – which can
be expressed as a difference between two logarithmic prediction error variances
– can still roughly be related to the generic SOS-based optimization criterion
(54) considering the link with linear prediction at the end of Sect. 6.2, and
the short-term prediction error variance in the normalization as a special case
of the desired correlation matrix Rss.
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Another related approach to preserve the temporal structure of the original
source signal is called correlation shaping in [15]. The heuristically introduced
optimization criterion after Gillespie and Atlas in [15] for the SIMO case reads

JGA =
∑

κ

γ(κ) (ryy(κ) − rss(κ))
2
, (107)

where κ denotes the lag of the output correlation sequence ryy(κ) and a certain
desired correlation sequence rss(κ). The factor γ(κ) allows for an individual
weighting of the lags. As a preferred embodiment of this concept, it is pro-
posed in [15] to choose γ(κ) and rss(κ) such that ryy(κ) is minimized for all
lags outside of the don’t care region −Z ≤ κ ≤ Z. Obviously, this approach is
equivalent to the minimization of the Frobenius norm JF,GA = ‖Ryy−Rss‖2

F

with the banded matrix Rss = bandbdiagZ Ryy after (98) and Fig. 11(c) if
the so-called correlation method is used for the estimation of Ryy (i.e., this
matrix is assumed to be Toeplitz). Hence, in the context of dereverberation
the approach [15] can be seen directly as an analogon to the Frobenius-based
approaches for BSS/BSI mentioned in Sect. 5.1 (e.g., [2],[53]-[57]). The main
differences between [15] and the generic SOS-based MCBPD are:
(i) The criterion (107) does not exploit the nonstationarity of the signals in
the sense as outlined in Sect. 6.2.
(ii) As already explained in Sect. 5.1, in contrast to the generic SOS criterion
(54) the minimization of the Frobenius-based criterion does not lead to the in-
herent normalization of the coefficient update which can be interpreted as an
inherent stepsize control according to Sect. 5.2, and hence is an important fea-
ture for a robust adaptation performance. Similar to the BSS/BSI case, many
simulation results have shown that for large filter lengths L, the Frobenius-
based adaptation is prone to instability, while the generic MCBPD adaptation
shows a very robust convergence behavior for real acoustic environments, as
we will see in Sect. 7.

In [23, 81] a third related SOS-based approach was presented. As in the
previously described SOS-based algorithms, this approach distinguishes be-
tween the speech production system and the room acoustics by exploiting
only the nonwhiteness. It explicitly takes into account an estimate of the
long-term power spectral density of the speech signal. Moreover, an inter-
esting aspect of this approach is that it was originally derived directly from
MINT (see Sect. 2) describing the ideal inversion solution at the equilibrium
of the adaptation. Indeed, it can be shown (analogously to the analysis of the
equilibria for BSS in [20] in the SOS case) that ideally the equilibrium of the
SOS-based update (67) in the case of MCBPD with (98) corresponds to the
MINT solution according to Sect. 2. We now show how this approach can be
derived rigorously from the TRINICON-based coefficient update (67). Under
the stationarity assumption we have in the equilibrium

∆W = Rxy

[
R−1

ss − R−1
yy

]
= 0, (108)

i.e.,
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Rxy = RxyR
−1
yyRss. (109)

Developing the left hand side of this equation as RxxW and the right
hand side of this equation using Sylvester matrices and corresponding data
matrices X, Y, S of compatible dimensions as in [20] as RxyR

−1
yyRss =

XT Y(YT Y)−1ST S = XT (YT )+STS = XT (ST )+(CT )+STS = XTS = Rxs,
where ·+ denotes the Moore-Penrose pseudoinverse, we obtain

RxxW = Rxs. (110)

Note that this relation is in fact the Wiener-Hopf equation for the inverse
filtering configuration. (This again reflects the equivalence to the traditional
LS approach for inverse adaptive filtering problems in the stationary case, as
mentioned at the end of Sect. 6.2 for the linear prediction problem.) Next,
a filter B in Sylvester structure modeling the vocal tract is introduced so
that S = S0B, where S0 denotes a corresponding data matrix of the i.i.d.
excitation signal. Hence

Rss = STS = BTRs0s0B = BT B. (111)

Using this model, we can rewrite (110) as

RxxW = HTRss = HTBTB. (112)

Multiplication by the pseudo inverse of B on both sides, and exploiting the
commutation property of the convolution (B denotes a SISO system), we can
write

RxxB
+W = BTHT (113)

or
(
B+
)T

RxxB
+W = HT . (114)

Let us denote the inverse filter of the vocal tract similarly as in the previous
sections as A := B+. Using this filter the correlation matrix Rxx is trans-
formed into Rx̃x̃ = AT RxxA so that

Rx̃x̃W = HT . (115)

We now pick only the first columns of the Sylvester matrices for the SIMO case
on both sides. Moreover, it is important to assume that the first microphone
is the one that is closest to the source [81]. Using this assumption we finally
obtain

w = h1,0R
−1
x̃x̃1, (116)

where 1 = [1, 0, . . . , 0]T and h1,0 denotes the first coefficient of the acoustic
model from the source to the first microphone which acts as an arbitrary scal-
ing factor. This expression exactly corresponds to the algorithm presented in
[81] including the whitening procedure, originally introduced in a heuristic
way. We can see from this derivation that this algorithm indeed follows from
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TRINICON for the SOS case and stationarity assumption. Moreover, we see
that in contrast to the previously presented approaches, this algorithm re-
quires some prior knowledge on the source position. In other words, it may in
fact be regarded as a semi-blind deconvolution algorithm. Furthermore, it be-
comes obvious that extending this approach to the general MIMO case raises
the problem of estimating the relative positions of multiple simultaneously
active sound sources.

7 Experiments

In this section, we evaluate the dereverberation performance for both the
SIMO case (i.e., one source) and the MIMO case (two sources) using mea-
sured data. In the first set of experiments in the SIMO case, we compare the
convergence properties based on the exploitation of the different stochastic
signal properties (SOS, HOS) for the ideal demixing filter length. We then
compare the DI approach with the II approach and investigate the sensitivity
of both approaches w.r.t. the overestimation of the filter lengths. Finally, by
extending the scenario to the MIMO case, we consider both the separation
performance and the dereverberation performance. For illustration, we also
compare the results in the MIMO case with the corresponding results of pure
separation algorithms.

7.1 SIMO case

The experiments have been conducted using speech data convolved with im-
pulse responses of length M = 9000 of a real room with a reverberation time
T60 ≈ 700ms and a sampling frequency of 16kHz. To begin with, we consider
an acoustic SIMO scenario, i.e., there is only Q = 1 active sound source in
the room. A linear four-element microphone array (P = 4) with an inter-
element spacing of 16cm was used. Preliminary experiments using MINT (see
Sect. 2) applied to the measured impulse responses have shown that for the
choice P = 4 the ideal inversion solution indeed exists for the given acoustic
scenario, i.e., the mixing system is invertible according to Sect. 2. The speech
signal arrived from 24o relative to the normal plane of the array axis and
the distance between the speaker and the center of the microphone array was
165cm.

As already mentioned, according to MINT the overdetermined scenario
P > Q is required for dereverberation. From a practical point of view it is
thus interesting to consider the required degrees of freedom depending on
the number of sensors. The total number of filter coefficients is C := LP .
According to (18), we obtain as the optimal number of filter coefficients in
the SIMO case

C = P · M − 1

P − 1
=

P

P − 1
· (M − 1). (117)
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We see that for the minimum number P = 2 of sensors we require C =
2 · (M − 1) coefficients. For P → ∞ it follows C → M − 1. It turns out
that the total number of required filter coefficients decreases with increasing
number of microphones. Hence, the framework is well suitable and efficient
for the overdetermined case.

To evaluate our simulation results there are various possible quality mea-
sures for dereverberation of speech and audio signals (e.g., [82, 83, 84, 85]),
such as the reverberation time (T60), the definition (D50), the clarity index
(C80), the (rapid) speech transmission index (STI/RASTI), or the spectral
distortion (SD). While the first three quantities are system-based and are de-
fined in the context of room acoustics, the latter two are signal-dependent
distortion measures. Another signal-dependent quantity which is commonly
used in the signal processing literature for the evaluation of dereverberation
approaches is the signal-to-reverberation ratio (SRR, see, e.g., [86]). Similarly
to the quantities D50 and C80 it measures the power ratio between the direct
sound and the contribution by the reverberation. However, since the SRR is
signal-based, it also takes into account the excitation of the adaptation algo-
rithm. It is measured in decibel (dB) and is defined for a signal sq at a sensor
with signal xp as

SRRp,sq = 10 log

∑

n (
∑n∆

κ=0 hqp,κsq(n − κ))
2

∑

n

(
∑M−1

κ=n∆
hqp,κsq(n − κ)

)2 dB, (118)

where n∆ is a discrete-time index defining the boundary between the direct
signal path and the contribution by the reverberation. Note that usually, in
the case of speech signals, the first 50ms after the main peak of the impulse
responses are also added to the contribution of the direct path, i.e., n∆ is
replaced by the so-called critical delay time n50, which is known to contribute
to the speech intelligibility [82]. In the following simulation results this per-
ceptual effect is taken into account. The SRR after (118) also forms the basis
for the definition of the so-called segmental SRR (e.g., [86]), which is usually
preferred in practice due to the nonstationarity of speech and audio signals
and the higher correlation to the quality perceived by auditory measurements.
The segmental SRR is based on time-varying local SRR estimates which are
obtained by decomposing the signals into KS segments of length NS, i.e., the
averaging in (118) is performed only over these short intervals. The segmen-
tal SRR is then defined as the average of the local SRR estimates over the
KS segments. In our simulations, we use NS = 320. This corresponds to the
typical stationarity interval for speech (20ms for a sampling rate of 16kHz).

Furthermore, in the context of adaptive signal processing, another interest-
ing aspect of the SRR is that formally, it corresponds directly to the definition
of the so-called signal-to-interference ratio (SIR) which is usually used in the
literature for the evaluation of signal separation approaches, such as BSS. If
we consider the MCBPD optimization criterion, which can also be regarded
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as a contrast function for signal separation and dereverberation, we may hy-
pothesize that in practice, the potential SRR improvement will generally be
upper-bounded by the potential SIR improvement in the MIMO case. The
same consideration also applies to the segmental SRR and the segmental SIR.

We first consider the Direct-Inverse approach to SIMO-based dereverber-
ation. Our simulations are based on the coefficient update (106) (without
the last term in the SIMO case) using the correlation method. We chose
L = 3000 according to (18), the block length N = N ′

L = 320 corresponding
to a stationarity interval of 20ms, and nA = 32. Figure 16 shows the SRR im-
provement for offline (batch) adaptation, i.e., β(i, m) = β(i) in (39) (and thus
β′(i, m) = β′(i) in (106)) corresponds to a rectangular window function over
the entire available signal length, and the outer sum in (39) and (106) turns
into a summation of the contributions from all blocks with equal weights.
The left subplot illustrates the convergence over the number of iterations.
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Fig. 16. SRR performance of SIMO-based MCBPD for (a) increasing number of
offline-iterations, (b) different overall signal lengths.

We see that the optimization based purely on second-order statistics (SOS,
dash-dot line, only the first term in the brackets in (106) was used) exhibits
a rapid initial convergence, while the kurtosis-based approach (HOS, dashed
line, only the second term in the brackets in (106) was used) finally achieves
a higher level of SRR improvement at the cost of a slower initial convergence.
By exploiting all the available statistical signal properties (SOS+HOS, solid
line, both terms in the brackets in (106) were used), the TRINICON frame-
work combines the advantages of the former two approaches. The higher data
requirement for HOS-based estimation is also reflected in the right subplot.
Here, we performed the offline adaptation for various overall signal lengths.
It can be seen that the SOS-based contribution of the optimization already
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provides reasonable performance for relatively short signal lengths. Hence, in
practice, where online adaptation is required due to potential changes of the
room impulse responses, the synergy effects provided by TRINICON appear
to be attractive.

Figure 17 shows the first 5000 taps of one of the room impulse responses
of the measured mixing system and of the overall system (i.e., between the
source and the MCBPD output) after dereverberation, based on the combined
(SOS+HOS) TRINICON approach and 180 iterations with a signal length of
30s (see Fig. 16). The same parameters were used for the spectrograms for
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Fig. 17. First 5000 taps of (a) one of the measured room impulse responses of the
mixing system H and (b) impulse response of the overall system C after convergence.

the first three seconds of the signals in Fig. 18. Both representations illustrate
a significant enhancement of the speech signals. The spectrograms were com-
puted as sequences of DFTs of windowed data segments. In this example, the
Hamming window length was chosen to be 20 ms, as it is typical in speech
analysis. This is short enough so that any single 20 ms frame will typically
contain data from only one phoneme, yet long enough that it will include at
least two periods of the fundamental frequency during voiced speech assuming
the lowest voiced pitch to be around 100 Hz.

As mentioned in Sections 2 and 3, the correct choice of the filter length
is an important issue in blind dereverberation, especially in the application
of the identification-and-inversion approach. Hence, we now compare the DI
and II approaches with respect to the sensitivity of overestimation of the fil-
ter lengths. Note that formally, according to Sect. 5.2, the TRINICON-based
adaptation algorithm for blind system identification differs only slightly from
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Fig. 18. Spectrograms for 0 . . . 4kHz of the first three seconds of (a) original source
signal s(n) (b) received signal x1(n) at microphone 1 and (c) output signal y(n)
after convergence.

the corresponding MCBPD algorithm (e.g., (105)): The sign of the update
term is changed and the relation between the filter coefficients and the esti-
mates of the mixing system, i.e., (79), has to be taken into account. Moreover,
in the II approach to dereverberation, additionally, the application of MINT
(17) is required to calculate the demixing system based on the estimated mix-
ing system. These modifications were made in (106) for our next experiment
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comparing the II approach with the DI approach (using (106) without modi-
fications).

To allow for a fair comparison between the two different approaches, we
assumed the same mixing system with only two sensor channels in both cases.
For this experiment, the mixing system was composed of two very simple
artificially created impulse responses in order to guarantee the avoidance of
common zeros (or even near common zeros), as shown in Fig. 19. Hence, as
long as the optimal filter length is chosen, this SIMO system is guaranteed
to be invertible, which we also confirmed by applying MINT in a supervised
manner. Table 2 shows the results of the blind estimation in terms of SRR
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Fig. 19. Poles and zeros in the z-domain of subfilters h1 (left) and h2 (right) of a
simple SIMO mixing system without common zeros.

improvement for both the DI and II approaches for different demixing filter
lengths, and without any additional repair measures mentioned in Sect. 3.5.
Note that in this experiment we chose n∆ in the above SRR definition equal to
the delay of the main peaks of the impulse responses due to their short lengths.
Obviously, the numerical results confirm that with both approaches the best
performance is obtained by choosing the optimal filter length according to
Sections 2 and 3. Moreover, the results clearly show that the direct-inverse
approach is significantly more robust to overestimation of the filter length.
On the other hand, however, we have to note that the potential applicability
of the identification-and-inversion approach is more general as the distinction
between the speech production system and the room acoustics is not required
in this case.
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L ≈ 80%Lopt L = Lopt L ≈ 120%Lopt L ≈ 140%Lopt L ≈ 150%Lopt

DI 29.8dB 31.2dB 27.3dB 24.1dB 22.4dB

II 22.0dB 25.4dB 9.6dB 4.5dB 0.2dB

Table 2. Comparison of the Direct-Inverse (DI) approach to blind dereverberation
with the Identification-and-Inversion (II) approach with respect to the sensitivity of
overestimation of the filter length for the simple example M = 10, P = 2, LDI,opt =
9, LII,opt = 10.

7.2 MIMO case

Finally, we extend the investigation of MCBPD for the direct-inverse ap-
proach to the MIMO case. We again consider the same acoustic scenario with
T60 ≈ 700ms, as described above for the SIMO case. In the following experi-
ment there are two active speakers (one male speaker and one female speaker).
The configuration is symmetric w.r.t. to the linear microphone array. We again
apply the coefficient update (106) using the correlation method and the same
parameter settings as described for the SIMO case. Figure 20 shows both
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Fig. 20. SIR and SRR performance of MIMO-based MCBPD.

the improvement of the signal-to-interference ratio (i.e., source separation at
the ouputs) and the improvement of the signal-to-reverberation ratio. The
SIR and SRR curves were averaged between the contributions from the two
sources. Similar to the SIMO case, TRINICON provides synergies between
the SOS-based adaptation and the HOS-based adaptation. This advantage
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can be seen in both the separation and the dereverberation performances. We
also confirm that the SRR improvement is generally upper bounded by the
SIR improvement. It is remarkable that the SRR improvements in the MIMO
case are only slightly lower than those in the SIMO case. As reference, we also
included the SIR convergence curve of the popular narrowband BSS algorithm
after Fancourt and Parra [35] which is based on SOS (see also Sect. 5.3). We
see that the initial convergence of the rigorously derived broadband approach
is well comparable with that of the narrowband algorithm, while the final SIR
performance is significantly higher. The reference curve for a pure separation
algorithm based on SOS ([20] as a special case of (106) with nA = L − 1
according to Fig. 14, N = L, and using only the first term in the brackets) in
the SRR plot, and the comparison with a conventional delay-and-sum beam-
former confirms the high efficiency of the MCBPD extension presented in this
chapter.

8 Conclusions

Based on the TRINICON framework for broadband adaptive MIMO filtering,
we developed in this chapter a strictly analytical top-down approach to the
problem of blind dereverberation of speech and audio signals. It was shown
that this provides both a common framework for various existing and novel
powerful blind dereverberation algorithms and allows for a direct comparison
between the various algorithms and the different existing approaches to blind
dereverberation.

Comparing the two fundamental approaches to blind dereverberation, i.e.,
the identification-and-inversion approach and the direct-inverse approach, we
can summarize that in principle the II approach is suitable for arbitrary audio
signals, however, on the downside, this flexibility w.r.t. the source signals
implies a high sensitivity to overestimation of the optimum filter length and
common zeros in z-domain representation of the mixing system paths, so that
additional repair mechanisms are necessary. Moreover, the explicit MINT-
based inversion of the estimated mixing matrix in the II approach increases
the computational complexity. On the other hand, the direct-inverse approach
avoids the two-step procedure and the related problems of the II approach,
but requires more stringent stochastic model assumptions on the source signals
in order to avoid whitening effects. Fortunately, the TRINICON framework
inherently allows the incorporation of powerful source models leading to a high
separation and dereverberation performance without distortions for signals
like speech.
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A Compact Derivation of the Gradient-Based Coefficient
Update

For the following compact derivation, we formulate the TRINICON coefficient
optimization criterion (39) in the following way:

J = Êlong

{

Êblock

{

f
(

y, Q(1), Q(2), . . .
)}}

(119)

with
f = − (log p̂s,PD(y) − log p̂y,PD(y)) (120)

and the operators Êblock {a} = 1
N

∑iNL+N−1
j=iNL

a(j) for averaging within each

block, and Êlong {b} =
∑∞

i=0 β(i, m) · b(i) over multiple blocks depending on
the choice of the function β. The set of quantities

Q
(r) = Êblock

{

G
(r)(y)

}

, r = 1, 2, . . . , (121)

(where G
(r) are suitable functions of the observation vectors y) contains all

stochastic model parameters Q
(·)
s and Q

(·)
y according to (41) determining

p̂s,PD(·) and p̂y,PD(·), respectively.
The gradient of (119) w.r.t. W̌ reads according to (43) (omitting the iter-

ation index here for simplicity):

∆W̌ = Êlong

{

SC
{

Êblock

{
∂

∂W
f
(

y, Q(1), Q(2), . . .
)}}}

. (122)

We now apply the general multivariate chain rule:

∂

∂W
f
(

y, Q(1), Q(2), . . .
)

=
∑

i

∂ [y]i
∂W

∂f

∂ [y]i
+
∑

r

∑

i1,i2,...

∂Q(r)
i1,i2,...

∂W

∂f

∂Q(r)
i1,i2,...

,

(123)

where Q(r)
i1,i2,... denote the elements of Q

(r). Analogously G(r)
i1,i2,... denote the

elements of G
(r). The derivatives in the second term w.r.t. W can be expressed

as

∂Q(r)
i1,i2,...

∂W
= Êblock

{
∂

∂W
G(r)

i1,i2,... (y)

}

= Êblock

{
∑

i

∂G(r)
i1,i2,...

∂ [y]i

∂ [y]i
∂W

}

.

(124)
With the MIMO relation y = WTx and with (124) we obtain10 from (123)

10 Since in element-wise formulation, [y]
i

=
P

ℓ
[x]

ℓ
[W]

ℓi
, we obtain

∂[y]i
∂[W]jk

=
P

ℓ
[x]

ℓ
δjℓδki = [x]

j
δki, and thus

h

P

i

∂[y]i
∂[W]jk

∂f

∂[y]i

i

=
h

P

i
[x]

j
δki

∂f

∂[y]i

i

=
h

[x]
j

∂f

∂[y]k

i

= x ∂f

∂yT .
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∂

∂W
f
(

y, Q(1), Q(2), . . .
)

= x
∂f

∂yT
+
∑

r

∑

i1,i2,...

Êblock

{

x
∂G(r)

i1,i2,...

∂yT

}

∂f

∂Q(r)
i1,i2,...

.

(125)
By introducing this equation into (122), we obtain

∆W̌ = Êlong

{

SC
{

Êblock
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x
∂f

∂yT

}

+
∑

r

∑

i1,i2,...

Êblock
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x
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i1,i2,...

∂yT

}

Êblock
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∂f

∂Q(r)
i1,i2,...

}
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Êblock
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+
∑
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i1,i2,...

∂G(r)
i1,i2,...

∂yT
Êblock

{

∂f

∂Q(r)
i1,i2,...

}




















. (126)

With (120) the last expression finally leads to the gradient-based update (44).

B Transformation of the Multivariate Output Signal
PDF in (39) by Blockwise Sylvester Matrix

Due to the linear MIMO relation

yT(n) = xT(n)W(n) (127)

after (31) we express the PD-variate output log-likelihood log(p̂y,PD(y(n)))
in (39) in terms of the 2PL × PD MIMO coefficient matrix W and the cor-
responding multivariate input pdf.

Since in general, W is not quadratic (D ≤ L), we cannot immediately
apply the well-known relation between the pdfs of two linearly related vec-
tors via the determinant of a quadratic mapping matrix [87]. However, in
our case 2PL > PD, i.e., for ‘tall’ matrices W we can form a joint pdf
p̂yx̃,2LP (y(n), x̃(n)) of the output vector y and certain elements x̃ of the in-
put vector x so that this joint pdf exhibits the same dimensionality as the
input pdf p̂x,2LP (x(n)). Then, after the transformation

p̂yx̃,2LP (y(n), x̃(n)) =
p̂x,2LP (x(n))
∣
∣
∣detW̃

∣
∣
∣

(128)

with a quadratic 2LP × 2LP matrix W̃, the desired multivariate output pdf
p̂y,PD(y(n)) is obtained without loss of generality as a marginal density by
integration for x̃(n) [87].
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In our application a channel-wise extension of matrix W is desirable so
that the MIMO relation (127)

[
yT

1 , . . . ,yT
P

]
=
[
xT

1 , . . . ,xT
P

]






W11 · · · W1P

...
. . .

...
WP1 · · · WPP






may be extended to
[
yT

1 , x̃T
1 , . . . ,yT

P , x̃T
P

]
=
[
xT

1 , . . . ,xT
P

]
W̃, (129)

where x̃p, p = 1, . . . , P denote vectors containing the 2L−D last elements of
xp and

W̃ =










W11

[
0D×2L−D

I2L−D×2L−D

]

· · · W1P 02L×2L−D

...
...

. . .
...

...

WP1 02L×2L−D · · · WPP

[
0D×2L−D

I2L−D×2L−D

]










. (130)

With (128) we obtain

p̂y,PD(y(n)) =
1

∣
∣
∣detW̃

∣
∣
∣

∫ ∞

−∞
· · ·
∫ ∞

−∞
p̂x,2LP (x(n))dx̃1 · . . . · dx̃P

=
1

∣
∣
∣detW̃

∣
∣
∣

p̂xPD,PD(xPD(n)), (131)

which leads to the following simple expression for the desired log-likelihood:

log p̂y,PD(y(n)) = log p̂xPD ,PD(xPD(n)) − log
∣
∣
∣detW̃

∣
∣
∣ . (132)

Since the first term on the right hand side of (132) does not depend on the
filter coefficients, it does not need to be considered further for the gradient
of the optimization criterion (39). To simplify the important second term in
(132) together with W̃ from (130) we exploit the fact that we can exchange
colums or rows of W̃ without changing the value of |detW̃|. Application of
the general matrix relation

det

[
A1 0
A2 I

]

= detA1 (133)

immediately leads then to the compact formulation

log p̂y,PD(y(n)) = log p̂xPD ,PD(xPD(n)) − log
∣
∣det

{
VTW

}∣
∣ (134)

with the window matrix V defined in (46). Note that VTW is only of dimen-
sion DP × DP .
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C Polynomial Expansions for Nearly Gaussian
Probability Densities

C.1 Orthogonal Polynomials

Let I be a finite or infinite interval and r(x) be a continuous and positive
function (which we call here weighting function) on the interval such that
∫

I
f(x)r(x)dx exists for every polynomial f(x). Then there is a unique set of

polynomials Pn(x), n = 0, 1, ... of order n such that
∫

I

Pk(x)Pn(x)r(x)dx := 〈Pk, Pn〉r = cn δkn (135)

with a predefined constant cn. These polynomials Pn(x) are called orthogonal
polynomials. The operation 〈·, ·〉r denotes the inner product in the vector space
of the polynomials.

An important class of orthogonal polynomials in our context are the so-
called Chebyshev-Hermite polynomials PH,n(x) which are specified by I =

(−∞,∞), the weighting function r(x) = 1√
2π

e−x2/2, and cn = n!, e.g., [41].

For the orthogonal polynomials considered here there is an important
proposition stating that they even form a basis in a Hilbert space so that
any quadratically integrable function f(x) w.r.t. r(x) on I can be expressed
by the expansion, e.g., [41]

f(x) =

∞∑

n=0

1

cn
〈f, Pn〉r Pn(x). (136)

C.2 Polynomial Expansion for Univariate Densities

The two different expansions that are usually used to obtain a parameterized
representation of nearly Gaussian probability density functions are the Edge-
worth and the Gram-Charlier expansions, e.g., [2]. They lead to very similar
approximations, so we only consider in this chapter the Gram-Charlier expan-
sion. These expansions are based on the above-mentioned Chebyshev-Hermite
polynomials PH,n(x).

Let p(x) = 1√
2πσ

e−
x2

2σ2 p̃
(

x
σ

)
represent an arbitrary univariate probability

density, where p̃(·) contains the higher-order contributions. According to (136)
the higher-order statistics contribution p̃ can readily be expanded as

p̃(x) =

∞∑

n=0

anPH,n(x), (137a)

an =
1

n!

∫ ∞

−∞
p̃(x′)PH,n(x′)

1√
2π

e−x′2/2dx′. (137b)

Hence, the complete density function p(x) is finally expressed as
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p(x) =
1√
2πσ

e−
x2

2σ2

∞∑

n=0

anPH,n

(x

σ

)

. (138a)

The coefficients an after (137b) can be compactly written using the expecta-
tion operator:

an =
1

n!
E
{

PH,n

(x

σ

)}

. (138b)

Example: Fourth-order approximation for a zero-mean process.

To obtain explicit expressions for the coefficients (138b), the Chebyshev-
Hermite can be calculated using the derivatives of the standardized Gaussian
probability density function (corresponding to the weighting function r(x)):

PH,n(x) = (−1)n 1

r(x)

∂nr(x)

∂xn
(139)

so that PH,0(x) = 1, PH,1(x) = x, PH,2(x) = x2 − 1, PH,3(x) = x3 − 3x,
PH,4(x) = x4 − 6x2 + 3. The resulting expansion coefficients for zero-mean

processes are a0 = 1, a1 = a2 = 0, a3 =
E{x3}
3!σ3 , a4 = 1

4!

(
E{x4}

σ4 − 3

)

so that

p(x) ≈ 1√
2πσ

e−
x2

2σ2

(

1 +
κ3

3! σ3
PH,3

(x

σ

)

+
κ4

4! σ4
PH,4

(x

σ

))

(140)

with [88] the skewness κ3 = E
{
x3
}

and the kurtosis κ4 = E
{
x4
}
− 3σ4.

In the context of higher-order statistics-based estimation the kurtosis plays a
particularly prominent role since it indicates whether a pdf is supergaussian
(κ4 > 0) or subgaussian (κ4 < 0).

C.3 Multivariate Orthogonal Polynomials

Based on the previous subsection we may now generalize the Gram-Charlier
expansion to multivariate probability density functions for a vector x of length
D.

We formulate the orthogonality relation analogously to (135),

∫

ID

Pk(x)Pn(x)r(x)dx = cn δkn (141)

and the inner product

〈f, g〉r :=

∫

ID

f(x)g(x)r(x)dx. (142)

The D-variate Chebyshev-Hermite polynomials are specified by the D-variate
weighting function [89]
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r(x) =
1

√

(2π)D
e−‖x‖2

2/2 =

D∏

i=1

1√
2π

e−x2
i /2

=
D∏

i=1

r1(xi). (143)

As we can see, in this case we have a product weighting function. It can be
shown [89] that this has the very advantageous consequence that it also leads
to corresponding product polynomials

Pn(x) =
D∏

i=1

Pi,ni(xi). (144)

Note that n denotes a vector of indices ni, i = 1, . . . , D. The expansion of a
multivariate function f(x) is then given as

f(x) =

∞∑

n=0

1

cn
〈f, Pn〉r Pn(x). (145)

C.4 Polynomial Expansion for Multivariate Densities

Let p(x) = 1√
(2π)DdetRxx

e−
1
2xT Rxx

−1xp̃
(
L−1x

)
represent an arbitrary D-

variate probability density, where p̃(·) again contains the higher-order con-
tributions, and L is obtained by the Cholesky decomposition Rxx = LT L

(note that
√

xTRxx
−1x = ‖L−1x‖2).

In the same way as in the univariate case, we now obtain the following
representation of a multivariate probability density function p(x):

p(x) =
1

√

(2π)DdetRxx

e−
1
2xT Rxx

−1x

∞∑

n=0

anPH,n

(
L−1x

)
(146a)

with the coefficients

an =
1

∏D
i=1 ni!

E
{
PH,n(L−1x)

}
. (146b)

Note that PH,n(·) in (146a) and (146b) is given by (144).

D Expansion of the Sylvester Constraints in (83)

We consider here an expression with the Sylvester Constraint for one channel
of the form

aTSC
{
bcT

}
,
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where a, b, c denote column vectors of length L, 2L, and D, respectively. With
the explicit expression of the generic Sylvester Constraint for one channel after
Fig. 6 and [8],

[w]m =
2L∑

k=1

D∑

ℓ=1

[W]kℓ δk,(m+ℓ−1),

where δij denotes the Kronecker symbol, the above expression reads

L∑

m=1

am

2L∑

k=1

D∑

ℓ=1

bkcℓδk,(m+ℓ−1) =

D∑

ℓ=1

L∑

m=1

ambm+ℓ−1cℓ. (147)

From the linearity of the operations, we easily deduce

aT
1 SC

{
b1c

T
}

+ aT
2 SC

{
b2c

T
}

=
D∑

ℓ=1

(
L∑

m=1

a1,mb1,m+ℓ−1 +
L∑

m=1

a2,mb2,m+ℓ−1

)

cℓ. (148)

References

1. S. Haykin, Adaptive Filter Theory, 4th ed., Prentice-Hall, Englewood Cliffs, NJ,
2002.

2. A. Hyvärinen, J. Karhunen, and E. Oja, Independent Component Analysis, Wi-
ley & Sons, Inc., New York, 2001.

3. S.C. Douglas, “Blind separation of acoustic signals” in M. Brandstein and
D. Ward (eds.), Microphone Arrays: Signal Processing Techniques and Applica-
tions, pp. 355–380, Springer, Berlin, 2001.

4. J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non gaussian sig-
nals,” IEE Proceedings-F, vol. 140, no. 6, pp. 362-370, Dec. 1993.

5. S. Araki et al., “Equivalence between frequency-domain blind source separa-
tion and frequency-domain adaptive beamforming,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Processing (ICASSP), Orlando, FL, USA, pp. 1785-
1788, May 2002.

6. A. Lombard, T. Rosenkranz, H. Buchner, and W. Kellermann, “Multidimen-
sional localization of multiple sound sources using averaged directivity patterns
of blind source separation systems,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP), Taipei, Taiwan, April 2009.

7. H. Buchner, R. Aichner, J. Stenglein, H. Teutsch, and W. Kellermann, “Simul-
taneous localization of multiple sound sources using blind adaptive MIMO filter-
ing,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (ICASSP),
Philadelphia, PA, USA, Mar. 2005.

8. H. Buchner, R. Aichner, and W. Kellermann, “TRINICON-based blind system
identification with application to multiple-source localization and separation,” in
S. Makino, T.-W. Lee, and S. Sawada (eds.), Blind Speech Separation, Springer,
Berlin, pp. 101-147, Sept. 2007.

9. M. Miyoshi and Y. Kaneda, “Inverse filtering of room acoustics,” IEEE Trans.
Acoust., Speech, Signal Processing, vol 36, no. 2, pp. 145-152, Feb. 1988.



TRINICON for Dereverberation of Speech and Audio Signals 75
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