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Major challenge: adaptive signal processing for massive multichannel systems

We propose:
framework for efficient spatio-temporal transform-domain adaptive filtering

exploiting foundations of wave physics:
Wave-Domain Adaptive Filtering
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Motivation (2): Wave-Field Synthesis and Wave-Field Analysis

Huygens (1690): e B Eﬂg
Any point on a propagating wavefront can be taken as ‘a3 J
a point source for the production of spherical secondary 7 { cq%
waves. primary a

source

H. Buchner et al.: Wave-Domain Adaptive Filtering Page 3
Multimedia Communications and Signal Processing September 9, 2004



Motivation (2): Wave-Field Synthesis and Wave-Field Analysis

Huygens (1690):

Any point on a propagating wavefront can be taken as
a point source for the production of spherical secondary
waves.

Mathematical formulation by the Kirchhoff-

Helmholtz integrals: c
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waves.

Mathematical formulation by the Kirchhoff-

Helmholtz integrals: c
At any listening point within the source-free listening area | >

S, the sound pressure field p(r,t) can be calculated if Va

both, the sound pressure and its gradient are known on
the contour C enclosing this area.
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Practical realization:
WES and WFA by spatial sampling using loudspeaker arrays and microphone arrays,
resp. = large number of loudspeaker and microphone channels
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Background: Point-to-Point Adaptive Multichannel Processing (1)

Prominent example: multichannel acoustic echo cancellation (AEC)
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= adaptive system identification

H. Buchner et al.: Wave-Domain Adaptive Filtering Page 4
LMS Multimedia Communications and Signal Processing September 9, 2004



Background: Point-to-Point Adaptive Multichannel Processing (1)

Prominent example: multichannel acoustic echo cancellation (AEC)
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= adaptive system identification
Generalization: adaptive FIR MIMO filter with P inputs and () outputs
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Background: Point-to-Point Adaptive Multichannel Processing (2)

Adaptive Filtering Constellations (multichannel version of [Haykin]):
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Background: Point-to-Point Adaptive Multichannel Processing (2)

Adaptive Filtering Constellations (multichannel version of [Haykin]):

e System identification
(e.g., acoustic echo cancellation)
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= Least-Squares problems, adaptive solutions with continuous updates for tracking
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Multichannel Adaptive Filtering for Solving the LS Problem

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for
highly correlated input signals.
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Multichannel Adaptive Filtering for Solving the LS Problem

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for
highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

- with input correlation matrix
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e all correlations taken into account by (large) matrix Rzl (n) = rapid convergence

e computationally very expensive

e in practice often numerical problems
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Multichannel Adaptive Filtering for Solving the LS Problem

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for
highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

with input correlation matrix
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Multichannel Frequency-Domain Adaptive Filtering (MC FDAF)
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Multichannel Adaptive Filtering for Solving the LS Problem

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for
highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

- with input correlation matrix
e(n) =y(n) —H"(n —1)x(n) Ry, () -+ Ryp(n)

i RXPX1<”) RXPXP(n)

Multichannel Frequency-Domain Adaptive Filtering (MC FDAF)
MC RLS MC FDAF

k‘l‘ temporal mn
diag. m

e approximate diagonalization of the correlation
matrices Ryx by DFT

e very efficient use of the FFT R«
= gains for both, adaptation and filtering decomglo. into
temporal freq. bin
e there are algorithms fully taking into account é
all cross-correlations using Sg() V)
SXX
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Massive Multichannel Systems

For massive WFS-based multichannel applications:

e High complexity
Example (Echo cancellation for typical 48-channel WFS-based system):
P-Q-L=48-48-1024 = 2304 - 1024 = 2359296 filter taps to optimize

e Even bin-wise matrices S}(&) become large and ill-conditioned

= Current algorithms cannot be used

= Is there a more " global” point of view?
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Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

Basic concept:

e give up point-to-point model
(— ordinary difference equation) in
favour of a more detailed spatial
consideration exploiting wave-physics
foundations
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Basic concept: MC RLS MC FDAF

e give up point-to-point model NN femPerd NN\
(— ordinary difference equation) in I _’dwg. N\
favour of a more detailed spatial R, S«
consideration exploiting wave-physics decom},, into.

foundations temporal freq. bin

H
e extend conventional MC FDAF s
approach by a suitable spatio-
temporal transform domain for
efficiency
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Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

Basic concept:

_ _ _ MC RLS MC FDAF WDAF
e give up point-to-point model temporal
(— ordinary difference equation) in W
faVOI_Jr of_ a more .detalled spat.lal R., S, T,
consideration exploiting wave-physics decomzl). into decomg'o. into
foundations temporal freq. bins temporal freq. bins
l spatial l
: H 4 i
e extend conventional MC FDAF g diag. )
. . XX
approach by a suitable spatio- v
: ~ decomp. into
temporal transform domain for spatzo—tempolml freq. bins
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T
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Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

Basic concept:

_ _ _ MC RLS MC FDAF WDAF
e give up point-to-point model temporal
(— ordinary difference equation) in g W
faVOI_Jr of_ a more .detailed spat.ial R., S, T,
consideration exploiting wave-physics decomzl). into decomg'o. into
foundations temporal freq. bins temporal freq. bins
} - |
spatial
: H —a> i
e extend conventional MC FDAF g diag. )
approach by a suitable spatio- v
: decomp. into
temporal transform domain for spatio—tempolml freq. bins
efficiency =
T
Desirable:
e orthogonal basis functions
e approximate decomposition among temporal frequencies as in MC FDAF
e approximate spatial decomposition
e spatio-temporal basis functions must fulfill (acoustic) wave equation
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Wave-Domain Adaptive Filtering (2)

Decoupling due to spatio-temporal transformation - Advantages

e improved convergence and very stable adaptation

e significant complexity reduction
Example: P = () = 48 = only, e.g., 70 filters instead of 48 - 48 = 2304
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Wave-Domain Adaptive Filtering (2)

Decoupling due to spatio-temporal transformation - Advantages

e improved convergence and very stable adaptation

e significant complexity reduction
Example: P = () = 48 = only, e.g., 70 filters instead of 48 - 48 = 2304

Example: acoustic echo cancellation

representation : . .
from far end room e all microphone signals simul-
YT loudspeaker arrhy taneously taken into account
for adaptive processing
— adaptive
" sub-filter§ y
represenf- ' / 0 e most cross-channels in the
to far end /1 A / ]
IS microphone array transform domain completely
N . .
negligible
T3 T glg
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Wave-Domain Adaptive Filtering (3)

Transformations 71, 75, 73 for real implementations

First approach: straightforward spatial Fourier transform (— plane waves)
= Problem: transducers at each point of the listening room would be needed!
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Wave-Domain Adaptive Filtering (3)

Transformations 77, 75, 75 for real implementations

First approach: straightforward spatial Fourier transform (— plane waves)
= Problem: transducers at each point of the listening room would be needed!

Decomposition taking into account the Kirchhoff-Helmholtz Integrals

e transformations depend on array geometries

e circular arrays known to perform well in wave field analysis [Hulsebos 2001] and lead
to efficient WDAF solution in cylindrical coordinates:

Example: Transformation 75

1—kg

- (1) __J (2)’ . @) o
i (kew) = s Ly (RR)B, (k) = HY) (kR)jpet o(ko,0) |
7(2) — ) s Wy

(ko) = o { Y R, (o) = H(ER)joct, o (Ko, 0) |

(For AEC: recording signals using pressure and pressure gradient microphone elements)
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Evaluation of WDAF for Acoustic Echo Cancellation (1)

Example setup:

e Measured data, 159 =~ 500 ms

e Two concentric circular arrays

e 48 loudsp., Ripudsp = 142 cm, spacing 19 cm
e 48 mics, R,,;c = 75 cm, spacing 9.8 cm

e Adaptation: wave-number selective FDAFs,
L = 1024, overlap factor 256
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Evaluation of WDAF for Acoustic Echo Cancellation (1)

Example setup:

e Measured data, 159 =~ 500 ms

e Two concentric circular arrays

e 48 loudsp., Ripudsp = 142 cm, spacing 19 cm
e 48 mics, R,,;c = 75 cm, spacing 9.8 cm

e Adaptation: wave-number selective FDAFs,
L = 1024, overlap factor 256

Loudspeaker-enclosure-microphone system in the transform domain:

0 o8
2 -2 B
15| -4 B
10 5 B
5 8 B
B 1048
- 1248
1408
10
168
45
188
20
20 0B
20 15 10 5 0 5 -0 -5 20
n
ot

spatial domain (angles) angular wave number domain

= 70 (ideally 48) filters instead of 48 - 48 = 2304 filters sufficient
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Evaluation of WDAF for Acoustic Echo Cancellation (2)

Example setup:

e Measured data, 159 =~ 500 ms

e Two concentric circular arrays

e 48 loudsp, Rioudsp = 142 cm, spacing 19 cm
e 48 mics, R,,;c = 75 cm, spacing 9.8 cm

e Adaptation: wave-number selective FDAFs,
L = 1024, overlap factor 256

Echo attenuation for music:
40

ERLE [dB]
N w
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Summary and Outlook

Wave-Domain Adaptive Filtering: a novel concept for efficient adaptive
multichannel systems

e Spatio-temporal orthogonalization of large MIMO systems

e Very robust and fast convergence

e Low computational complexity

e Verified here for acoustic echo cancellation in a WFS-based system

e Allows integrated solutions for human-machine interfaces with wave
field synthesis

H. Buchner et al.: Wave-Domain Adaptive Filtering Page 15
LMS Multimedia Communications and Signal Processing September 9, 2004



