

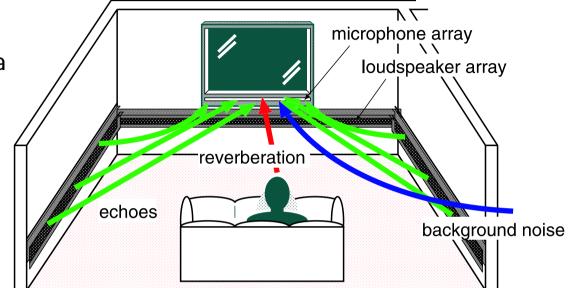
Wave-Domain Adaptive Filtering for Acoustic Human-Machine Interfaces based on Wavefield Analysis and Synthesis

Herbert Buchner, Sascha Spors, Wolfgang Herbordt, Walter Kellermann {buchner,spors,herbordt,wk}@LNT.de

September 9, 2004

Multimedia Communications and Signal Processing University of Erlangen-Nuremberg

Contents


- Motivation: Hands-free full-duplex communication with 3D audio
- Background: Conventional point-to-point adaptive multichannel processing
- Novel approach: Wave-Domain Adaptive Filtering (WDAF)
- Evaluation of WDAF for acoustic echo cancellation
- Summary and outlook

• Multichannel reproduction:

 \Rightarrow wave field synthesis using a loudspeaker array

- Multichannel recording:
 - \Rightarrow microphone array processing

Multichannel reproduction:

 ⇒ wave field synthesis using a loudspeaker array

 Multichannel recording:

 ⇒ microphone array processing

Major challenge: adaptive signal processing for massive multichannel systems

Multichannel reproduction:

 ⇒ wave field synthesis using a loudspeaker array

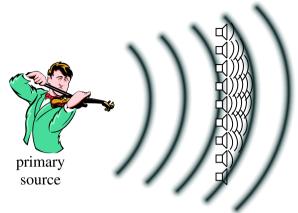
 Multichannel recording:

 ⇒ microphone array processing

Major challenge: adaptive signal processing for massive multichannel systems

We propose:

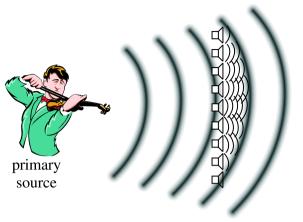
framework for efficient spatio-temporal transform-domain adaptive filtering exploiting foundations of wave physics:


Wave-Domain Adaptive Filtering

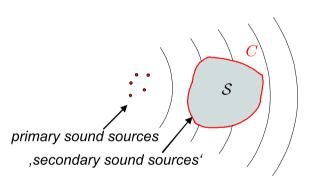
Motivation (2): Wave-Field Synthesis and Wave-Field Analysis

Huygens (1690):

Any point on a propagating wavefront can be taken as a point source for the production of spherical secondary waves.

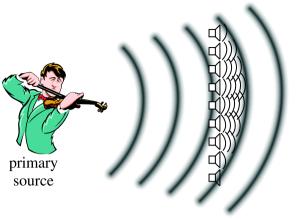


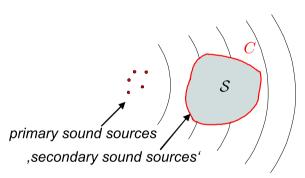
Motivation (2): Wave-Field Synthesis and Wave-Field Analysis


Huygens (1690):

Any point on a propagating wavefront can be taken as a point source for the production of spherical secondary waves.

Mathematical formulation by the Kirchhoff-Helmholtz integrals:

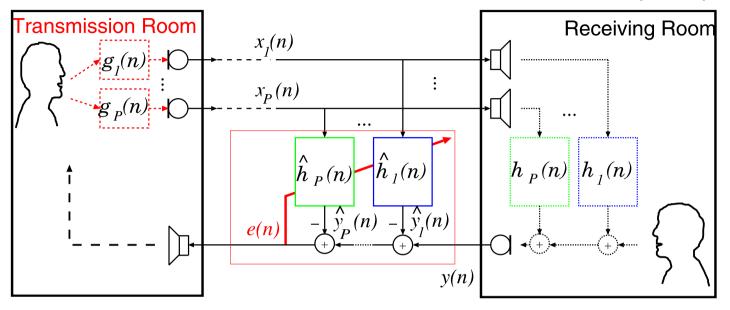

At any listening point within the source-free listening area S, the sound pressure field $p(\mathbf{r},t)$ can be calculated if both, the sound pressure and its gradient are known on the contour C enclosing this area.


Huygens (1690):

Any point on a propagating wavefront can be taken as a point source for the production of spherical secondary waves.

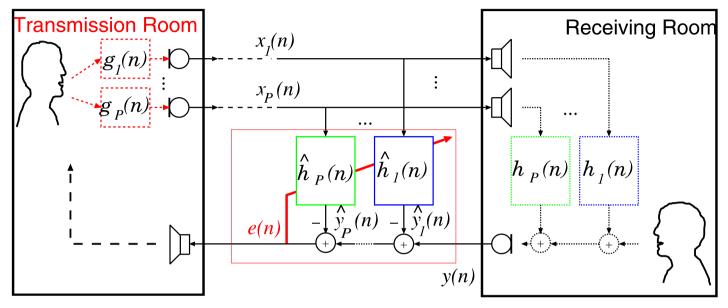
Mathematical formulation by the Kirchhoff-Helmholtz integrals:

At any listening point within the source-free listening area S, the sound pressure field $p(\mathbf{r},t)$ can be calculated if both, the sound pressure and its gradient are known on the contour C enclosing this area.

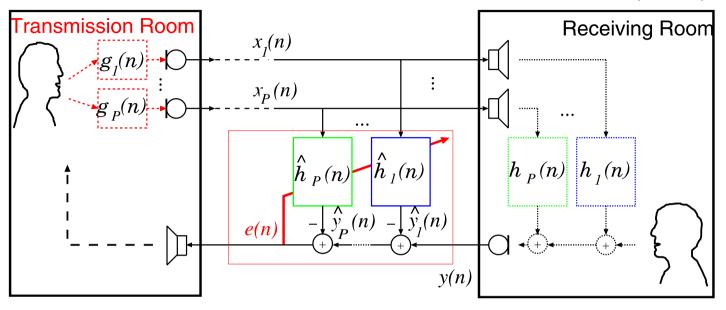


Practical realization:

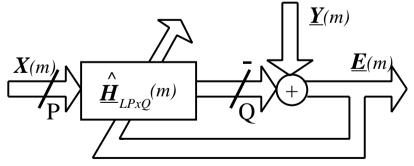
WFS and WFA by spatial sampling using loudspeaker arrays and microphone arrays, resp. \Rightarrow large number of loudspeaker and microphone channels



Prominent example: multichannel acoustic echo cancellation (AEC)


Prominent example: multichannel acoustic echo cancellation (AEC)

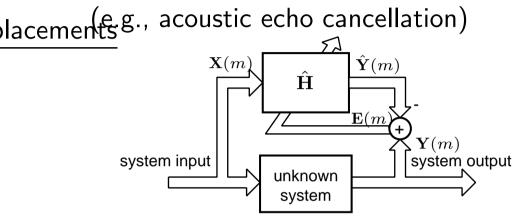
 \Rightarrow adaptive system identification



Prominent example: multichannel acoustic echo cancellation (AEC)

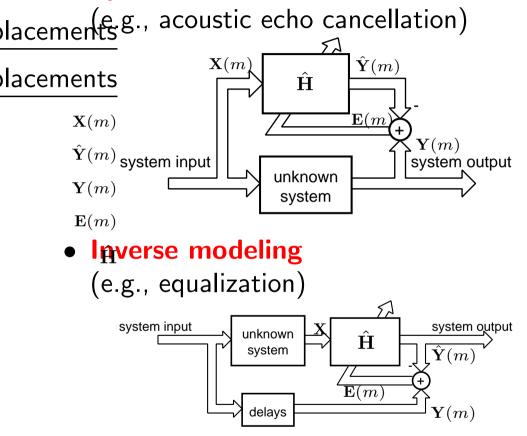
 \Rightarrow adaptive system identification

Generalization: adaptive FIR MIMO filter with *P* inputs and *Q* outputs


H. Buchner et al.: Wave-Domain Adaptive Filtering Multimedia Communications and Signal Processing Page 4 September 9, 2004

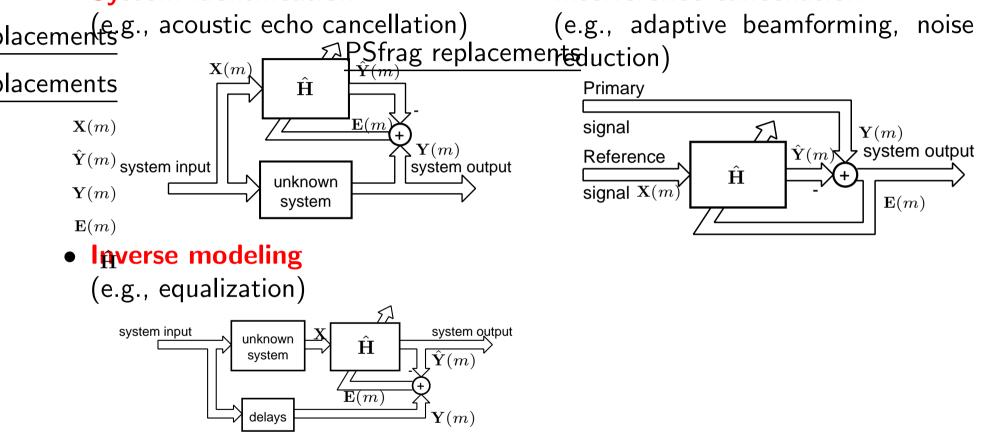
Adaptive Filtering Constellations (multichannel version of [Haykin]):

Adaptive Filtering Constellations (multichannel version of [Haykin]):


• System identification

Adaptive Filtering Constellations (multichannel version of [Haykin]):

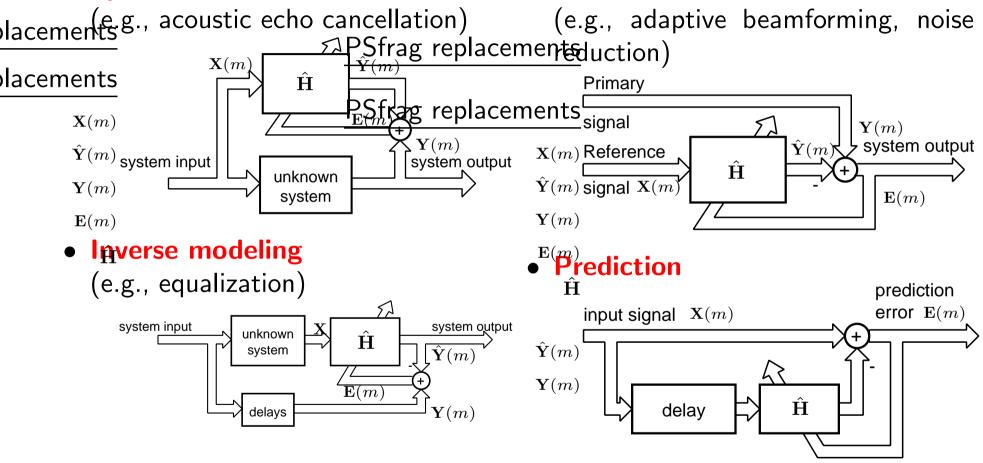
• System identification



Adaptive Filtering Constellations (multichannel version of [Haykin]):

• System identification

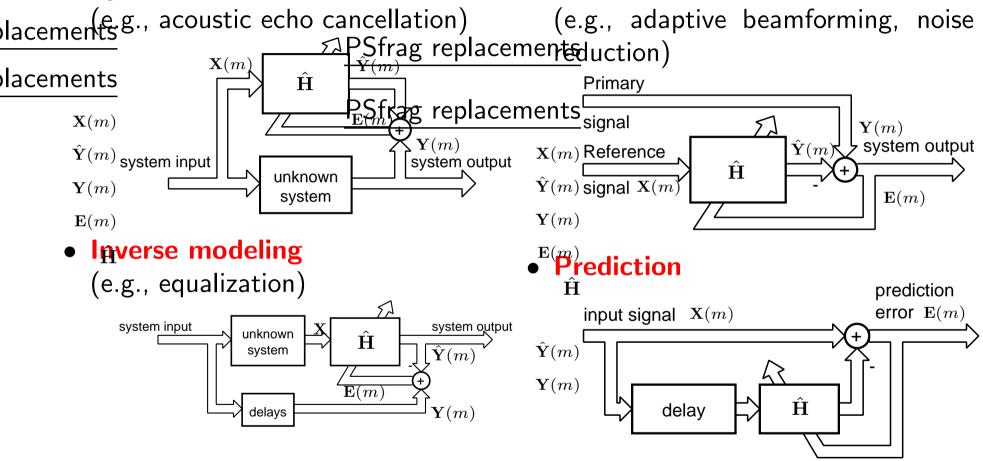
• Interference cancellation



Adaptive Filtering Constellations (multichannel version of [Haykin]):

• System identification

• Interference cancellation



H. Buchner et al.: Wave-Domain Adaptive Filtering Multimedia Communications and Signal Processing

Adaptive Filtering Constellations (multichannel version of [Haykin]):

• System identification

• Interference cancellation

 \Rightarrow Least-Squares problems, adaptive solutions with continuous updates for tracking

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for highly correlated input signals.

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

$$\mathbf{e}(n) = \mathbf{y}(n) - \hat{\mathbf{H}}^{T}(n-1)\mathbf{x}(n) \\ \hat{\mathbf{H}}(n) = \hat{\mathbf{H}}(n-1) + \mathbf{R}_{\mathbf{xx}}^{-1}(n)\mathbf{x}(n)\mathbf{e}^{T}(n)$$
 with input correlation matrix
$$\mathbf{R}_{\mathbf{x}_{1}\mathbf{x}_{1}}(n) \cdots \mathbf{R}_{\mathbf{x}_{1}\mathbf{x}_{P}}(n) \\ \vdots \cdots \vdots \\ \mathbf{R}_{\mathbf{x}_{P}\mathbf{x}_{1}}(n) \cdots \mathbf{R}_{\mathbf{x}_{P}\mathbf{x}_{P}}(n) \end{bmatrix}$$

- all correlations taken into account by (large) matrix $\mathbf{R}_{\mathbf{xx}}^{-1}(n) \Rightarrow$ rapid convergence
- computationally very expensive
- in practice often numerical problems

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

$$\begin{split} \mathbf{e}(n) &= \mathbf{y}(n) - \hat{\mathbf{H}}^T(n-1)\mathbf{x}(n) \\ \hat{\mathbf{H}}(n) &= \hat{\mathbf{H}}(n-1) + \mathbf{R}_{\mathbf{xx}}^{-1}(n)\mathbf{x}(n)\mathbf{e}^T(n) \end{split} \quad \text{with input correlation matrix} \\ \mathbf{R}_{\mathbf{x}_1\mathbf{x}_1}(n) & \cdots & \mathbf{R}_{\mathbf{x}_1\mathbf{x}_P}(n) \\ &\vdots & \ddots & \vdots \\ \mathbf{R}_{\mathbf{x}_P\mathbf{x}_1}(n) & \cdots & \mathbf{R}_{\mathbf{x}_P\mathbf{x}_P}(n) \end{aligned}$$

Multichannel Frequency-Domain Adaptive Filtering (MC FDAF)

Most known adaptation algorithms (e.g., LMS/NLMS) exhibit slow convergence for highly correlated input signals.

Theoretically Optimum Solution: Multichannel Recursive Least-Squares (MC RLS)

$$\begin{split} \mathbf{e}(n) &= \mathbf{y}(n) - \hat{\mathbf{H}}^T(n-1)\mathbf{x}(n) \\ \hat{\mathbf{H}}(n) &= \hat{\mathbf{H}}(n-1) + \mathbf{R}_{\mathbf{xx}}^{-1}(n)\mathbf{x}(n)\mathbf{e}^T(n) \end{split} \quad \text{with input correlation matrix} \\ \mathbf{R}_{\mathbf{x}_1\mathbf{x}_1}(n) & \cdots & \mathbf{R}_{\mathbf{x}_1\mathbf{x}_P}(n) \\ &\vdots & \ddots & \vdots \\ \mathbf{R}_{\mathbf{x}_P\mathbf{x}_1}(n) & \cdots & \mathbf{R}_{\mathbf{x}_P\mathbf{x}_P}(n) \end{aligned}$$

Multichannel Frequency-Domain Adaptive Filtering (MC FDAF)

- approximate diagonalization of the correlation matrices $\mathbf{R}_{\mathbf{x}\mathbf{x}}$ by DFT
- very efficient use of the FFT
 ⇒ gains for both, adaptation and filtering
- there are algorithms fully taking into account all cross-correlations using ${\bf S}_{{\bf x}{\bf x}}^{(\nu)}$

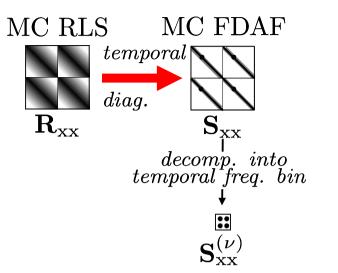
For massive WFS-based multichannel applications:

- High complexity Example (Echo cancellation for typical 48-channel WFS-based system): $P \cdot Q \cdot L = 48 \cdot 48 \cdot 1024 = 2304 \cdot 1024 = 2359296$ filter taps to optimize
- Even bin-wise matrices $\mathbf{S}_{\mathbf{xx}}^{(\nu)}$ become large and ill-conditioned
- \Rightarrow Current algorithms cannot be used
- ⇒ Is there a more "global" point of view?

Basic concept:

• give up point-to-point model

 $(\rightarrow$ ordinary difference equation) in favour of a more detailed spatial consideration exploiting wave-physics foundations

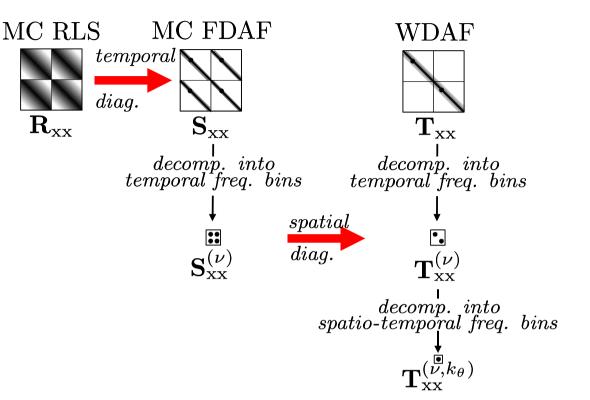

Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

Basic concept:

• give up point-to-point model

 $(\rightarrow$ ordinary difference equation) in favour of a more detailed spatial consideration exploiting wave-physics foundations

 extend conventional MC FDAF approach by a suitable spatiotemporal transform domain for efficiency


Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

Basic concept:

• give up point-to-point model

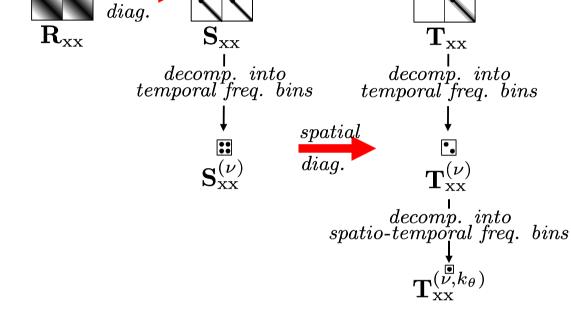
 $(\rightarrow$ ordinary difference equation) in favour of a more detailed spatial consideration exploiting wave-physics foundations

 extend conventional MC FDAF approach by a suitable spatiotemporal transform domain for efficiency

Novel Approach: Wave-Domain Adaptive Filtering (WDAF)

MC RLS

Basic concept:


• give up point-to-point model

 $(\rightarrow$ ordinary difference equation) in favour of a more detailed spatial consideration exploiting wave-physics foundations

 extend conventional MC FDAF approach by a suitable spatiotemporal transform domain for efficiency

Desirable:

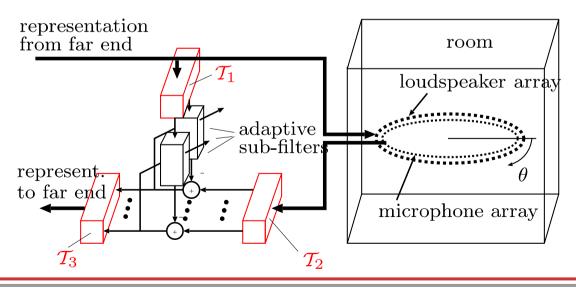
- orthogonal basis functions
- approximate decomposition among temporal frequencies as in MC FDAF
- approximate spatial decomposition
- spatio-temporal basis functions must fulfill (acoustic) wave equation

MC FDAF

temporal

WDAF

Decoupling due to spatio-temporal transformation - Advantages


- improved convergence and very stable adaptation
- significant complexity reduction
 Example: P = Q = 48 ⇒ only, e.g., 70 filters instead of 48 · 48 = 2304

Decoupling due to spatio-temporal transformation - Advantages

- improved convergence and very stable adaptation
- significant complexity reduction Example: $P = Q = 48 \Rightarrow$ only, e.g., 70 filters instead of $48 \cdot 48 = 2304$

Example: acoustic echo cancellation

- all microphone signals simultaneously taken into account for adaptive processing
- most cross-channels in the transform domain completely negligible

H. Buchner et al.: Wave-Domain Adaptive Filtering Multimedia Communications and Signal Processing Transformations \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 for real implementations

First approach: straightforward spatial Fourier transform (\rightarrow plane waves) \Rightarrow Problem: transducers at each point of the listening room would be needed!

Transformations \mathcal{T}_1 , \mathcal{T}_2 , \mathcal{T}_3 for real implementations

First approach: straightforward spatial Fourier transform (\rightarrow plane waves) \Rightarrow Problem: transducers at each point of the listening room would be needed!

Decomposition taking into account the Kirchhoff-Helmholtz Integrals

- transformations depend on array geometries
- circular arrays known to perform well in wave field analysis [Hulsebos 2001] and lead to efficient WDAF solution in cylindrical coordinates:

Example: Transformation T_2

$$\underbrace{\tilde{y}^{(1)}(k_{\theta},\omega)}_{\underline{\tilde{y}}^{(2)}(k_{\theta},\omega)} = \frac{j^{1-k_{\theta}}}{D_{R}(k_{\theta},\omega)} \left\{ H_{k_{\theta}}^{(2)'}(kR)\underline{\tilde{p}}_{y}(k_{\theta},\omega) - H_{k_{\theta}}^{(2)}(kR)j\rho c\underline{\tilde{v}}_{y,n}(k_{\theta},\omega) \right\},$$

$$\underbrace{\tilde{y}^{(2)}(k_{\theta},\omega)}_{\underline{\tilde{y}}^{(2)}(k_{\theta},\omega)} = \frac{-j^{1+k_{\theta}}}{D_{R}(k_{\theta},\omega)} \left\{ H_{k_{\theta}}^{(1)'}(kR)\underline{\tilde{p}}_{y}(k_{\theta},\omega) - H_{k_{\theta}}^{(1)}(kR)j\rho c\underline{\tilde{v}}_{y,n}(k_{\theta},\omega) \right\},$$

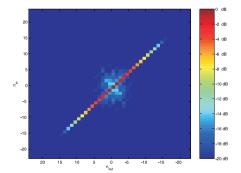
(For AEC: recording signals using pressure and pressure gradient microphone elements)

Example setup:

- Measured data, $T_{60} \approx 500~{\rm ms}$
- Two concentric circular arrays
- 48 loudsp., $R_{loudsp} = 142$ cm, spacing 19 cm
- 48 mics, $R_{mic} = 75$ cm, spacing 9.8 cm
- Adaptation: wave-number selective FDAFs, L = 1024, overlap factor 256



Example setup:

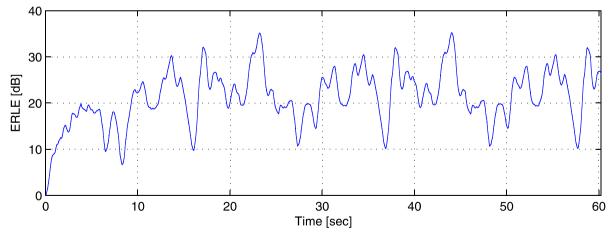

- Measured data, $T_{60} \approx 500~{\rm ms}$
- Two concentric circular arrays
- 48 loudsp., $R_{loudsp} = 142$ cm, spacing 19 cm
- 48 mics, $R_{mic} = 75$ cm, spacing 9.8 cm
- Adaptation: wave-number selective FDAFs, L = 1024, overlap factor 256

Loudspeaker-enclosure-microphone system in the transform domain:

spatial domain (angles)

angular wave number domain

 \Rightarrow 70 (ideally 48) filters instead of $48 \cdot 48 = 2304$ filters sufficient


H. Buchner et al.: Wave-Domain Adaptive Filtering Multimedia Communications and Signal Processing Page 13 September 9, 2004

Example setup:

- Measured data, $T_{60} \approx 500~{\rm ms}$
- Two concentric circular arrays
- 48 loudsp, $R_{loudsp} = 142$ cm, spacing 19 cm
- 48 mics, $R_{mic} = 75$ cm, spacing 9.8 cm
- Adaptation: wave-number selective FDAFs, L = 1024, overlap factor 256

Echo attenuation for music:

H. Buchner et al.: Wave-Domain Adaptive Filtering Multimedia Communications and Signal Processing Wave-Domain Adaptive Filtering: a novel concept for efficient adaptive multichannel systems

- Spatio-temporal orthogonalization of large MIMO systems
- Very robust and fast convergence
- Low computational complexity
- Verified here for acoustic echo cancellation in a WFS-based system
- Allows integrated solutions for human-machine interfaces with wave field synthesis

