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Introduction (1)

Scenario: MIMO FIR model (assuming number Q of sources ≤ number P of sensors)

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

sensor 1

sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

mixing system H demixing system W

yQ



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 2
May 19, 2004

Introduction (1)

Scenario: MIMO FIR model (assuming number Q of sources ≤ number P of sensors)

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

sensor 1

sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

mixing system H demixing system W

yQ

We consider here two general classes of problems:



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 2
May 19, 2004

Introduction (1)

Scenario: MIMO FIR model (assuming number Q of sources ≤ number P of sensors)

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

sensor 1

sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

mixing system H demixing system W

yQ

We consider here two general classes of problems:

• Blind source separation (BSS) for convolutive mixtures
Separate signals by forcing the outputs to be mutually independent
(output signals may be still filtered and channel-wise permuted)



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 2
May 19, 2004

Introduction (1)

Scenario: MIMO FIR model (assuming number Q of sources ≤ number P of sensors)

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

sensor 1

sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

mixing system H demixing system W

yQ

We consider here two general classes of problems:

• Blind source separation (BSS) for convolutive mixtures
Separate signals by forcing the outputs to be mutually independent
(output signals may be still filtered and channel-wise permuted)

• Multichannel blind deconvolution ⇒ dereverberation
In addition to BSS: recover original source signals up to scaling and permutation
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How to estimate the P · Q · L MIMO coefficients wpq(κ), κ = 0, . . . , L − 1 ?
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Introduction (2)

How to estimate the P · Q · L MIMO coefficients wpq(κ), κ = 0, . . . , L − 1 ?

Exploitation of

• Nonwhiteness

• Nonstationarity

• Nongaussianity

by using

• Second-order statistics (SOS) ⇒ simultaneous
output decorrelation for multiple time-lags

• SOS ⇒ simultaneous output decorrelation for
multiple time-intervals

• Higher-order statistics (HOS)

In practice: Combined use of properties may lead to improved performance and more
general applicability.
Here: First rigorous derivation of a generic broadband adaptation algorithm

- exploiting all properties and
- avoiding problems of narrowband approaches (permutations, circularity, ...)
⇒ TRINICON (‘Triple-N ICA for Convolutive Mixtures’)
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Optimization Criterion – Motivation (1)

Nongaussianity: higher-order statistics for Independent Component Analysis (ICA)
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Optimization Criterion – Motivation (1)

Nongaussianity: higher-order statistics for Independent Component Analysis (ICA)

Current ICA approaches for BSS of instantaneous mixtures
(or for independent application on individual frequency bins, i.e., narrowband
approaches)

• Maximum likelihood (ML)

• Minimum mutual information (MMI)

• Maximum Entropy (ME) / ‘Infomax’

It can be shown: MMI is the most general approach of these classes.

Mutual information [Shannon]:

I(Y1, Y2) =

∫ ∫

p(y1, y2)ld

(

p(y1, y2)

p(y1)p(y2)

)

dy1dy2
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Optimization Criterion – Motivation (2)

Nongaussianity (cont’d):
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Nongaussianity (cont’d):

BSS for convolutive mixtures:
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Nongaussianity (cont’d):
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...
...

...

...
...

...

... ... ...

s1

sP

x1

xP

y1

yP

sensor 1

sensor P

h11

hPP

hP1

h1P

w11

wPP

wP1

w1P

mixing system H demixing system W

Most of the current approaches:
make outputs spatially and temporally

independent
Problem for speech and audio:
i.i.d. assumption ⇒ whitening

Obvious generalization: factorization p(y1) · p(y2) ⇒ arbitrary ’target pdf’

⇒ Minimize Kullback-Leibler distance between a certain source model and output



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 6
May 19, 2004

Optimization Criterion

Nongaussianity: Kullback-Leibler distance between PDFs of source model and output.
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Nonstationarity: Ensemble average is replaced by averages over multiple blocks of
length N .



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 6
May 19, 2004

Optimization Criterion

Nongaussianity: Kullback-Leibler distance between PDFs of source model and output.
Nonstationarity: Ensemble average is replaced by averages over multiple blocks of
length N .
Nonwhiteness: We consider multivariate PDFs, i.e., ‘densities including D time-lags’



H. Buchner et al.: TRINICON
Multimedia Communications and Signal Processing

Page 6
May 19, 2004

Optimization Criterion

Nongaussianity: Kullback-Leibler distance between PDFs of source model and output.
Nonstationarity: Ensemble average is replaced by averages over multiple blocks of
length N .
Nonwhiteness: We consider multivariate PDFs, i.e., ‘densities including D time-lags’

General TRINICON cost function

J (m) = −
∞
∑

i=0

β(i, m)
1

N

N−1
∑

j=0

{log(p̂s,PD(y(i, j))) − log(p̂y,PD(y(i, j)))}

• β: window function for online, offline, and block-online algorithms

• p̂s,PD(·), p̂y,PD(·): assumed or estimated multivariate source model PDF and output
PDF, respectively.

• y(i, j): concatenated length-D output blocks of the P channels (i-th block, shifted
by j samples), yq(i, j) = [yq(iL+j), . . . , yq(iL−D + 1+j)]
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FIR model with multiple time lags – Matrix formulation

Nonwhiteness: simultaneously optimize MIMO coefficients for D time lags
Formulation of the linear convolution in matrix notation:

yq(m, j) = [yq(mL+j), . . . , yq(mL−D + 1+j)] =
P

∑

p=1

xp(m, j)Wpq(m)
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FIR model with multiple time lags – Matrix formulation

Nonwhiteness: simultaneously optimize MIMO coefficients for D time lags
Formulation of the linear convolution in matrix notation:

yq(m, j) = [yq(mL+j), . . . , yq(mL−D + 1+j)] =
P

∑

p=1

xp(m, j)Wpq(m)

with the 2L × D Sylvester matrices

Wpq(m) =
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General Coefficient Update

Natural gradient WWH∇WJ of the cost function as generic coefficient update:

∆W(m) =
2

N

∞
∑

i=0

β(i, m)

N−1
∑

j=0

W(i)yH(i, j) {Φs,PD(y(i, j)) − Φy,PD(y(i, j))}
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Natural gradient WWH∇WJ of the cost function as generic coefficient update:

∆W(m) =
2

N

∞
∑

i=0

β(i, m)

N−1
∑

j=0

W(i)yH(i, j) {Φs,PD(y(i, j)) − Φy,PD(y(i, j))}

To select a practical algorithm:
• ’desired’ score function (hypothesized)

Φs,PD(y(i, j)) = −
∂log p̂s,PD(y(i, j))

∂y(i, j)

where the model (i.e., desired) PDF is factorized among the channels (⇒ BSS)
and/or factorized among a certain number of time lags (⇒ full or partial MCBD)

• ’actual’ score function (observed)

Φy,PD(y(i, j)) = −
∂log p̂y,PD(y(i, j))

∂y(i, j)
.
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General Coefficient Update

Natural gradient WWH∇WJ of the cost function as generic coefficient update:

∆W(m) =
2

N

∞
∑

i=0

β(i, m)

N−1
∑

j=0

W(i)yH(i, j) {Φs,PD(y(i, j)) − Φy,PD(y(i, j))}

To select a practical algorithm:
• ’desired’ score function (hypothesized)

Φs,PD(y(i, j)) = −
∂log p̂s,PD(y(i, j))

∂y(i, j)

where the model (i.e., desired) PDF is factorized among the channels (⇒ BSS)
and/or factorized among a certain number of time lags (⇒ full or partial MCBD)

• ’actual’ score function (observed)

Φy,PD(y(i, j)) = −
∂log p̂y,PD(y(i, j))

∂y(i, j)
.

How to obtain these sequences of high-dimensional multivariate PDFs?
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Special Cases and Illustration – SOS case

SOS case exploiting only non-stationarity and non-whiteness
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Special Cases and Illustration – SOS case

SOS case exploiting only non-stationarity and non-whiteness
by assuming multivariate Gaussian PDFs in both score functions:

p̂D(yp(i, j)) =
1

√

(2π)Ddet(Rypyp(i))
e
−

1
2yp(i,j)R

−1
ypyp

(i)yH
p (i,j)

∆W(m) = 2
∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss
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SOS case exploiting only non-stationarity and non-whiteness
by assuming multivariate Gaussian PDFs in both score functions:

p̂D(yp(i, j)) =
1

√

(2π)Ddet(Rypyp(i))
e
−

1
2yp(i,j)R

−1
ypyp

(i)yH
p (i,j)

∆W(m) = 2
∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss

• Generic SOS-based BSS: R̂ss = bdiagD R̂yy

[

Ry1y1 Ry1y2

Ry2y1 Ry2y2

]

:
PSfrag replacements

D

D
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SOS case exploiting only non-stationarity and non-whiteness
by assuming multivariate Gaussian PDFs in both score functions:

p̂D(yp(i, j)) =
1

√

(2π)Ddet(Rypyp(i))
e
−

1
2yp(i,j)R

−1
ypyp

(i)yH
p (i,j)

∆W(m) = 2
∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss

• Generic SOS-based BSS: R̂ss = bdiagD R̂yy

[

Ry1y1 Ry1y2

Ry2y1 Ry2y2

]

:
PSfrag replacements

D

D

• Inherent RLS-like normalization ⇒ Robust adaptation
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Special Cases and Illustration – SOS case (2)

∆W(m) = 2

∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss

Desired correlation matrices R̂ss for BSS and dereverberation:

(a) BSS

R̂ss = bdiagD R̂yy

spectral content untouched
⇒ no dereverberation
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Special Cases and Illustration – SOS case (2)

∆W(m) = 2

∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss

Desired correlation matrices R̂ss for BSS and dereverberation:

(a) BSS

R̂ss = bdiagD R̂yy

spectral content untouched
⇒ no dereverberation

(b) MCBD

R̂ss = diagD R̂yy

output de-cross-correlated
and de-auto-correlated
⇒ undesirable for speech
and audio
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Special Cases and Illustration – SOS case (2)

∆W(m) = 2

∞
∑

i=0

β(i, m)W
{

R̂yy − R̂ss

}

R̂−1
ss

Desired correlation matrices R̂ss for BSS and dereverberation:

(a) BSS

R̂ss = bdiagD R̂yy

spectral content untouched
⇒ no dereverberation

(b) MCBD

R̂ss = diagD R̂yy

output de-cross-correlated
and de-auto-correlated
⇒ undesirable for speech
and audio

(c) MCBPD

remove only the influence
of the room
⇒ vocal tract untouched

PSfrag replacements
room

vocal tract
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Models for Spherically Invariant Processes (SIRPs) in TRINICON

SIRPs are described by multivariate PDFs
of the form (with suitable function fD):

p̂D(yp) =
1

√

πDdet(R̂pp)
fD

(

ypR̂
−1
pp yH

p

)

Several attractive properties:

• Good model for speech signals

• Closed-form representation −1
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• Reduced number of parameters to estimate for BSS or Dereverberation
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of the form (with suitable function fD):

p̂D(yp) =
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√
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(
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• Reduced number of parameters to estimate for BSS or Dereverberation

• Multivariate PDFs can be derived analytically from corresponding univariate PDFs

• Incorporation into TRINICON leads to inherent stepsize normalization of the update
equation
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Incorporation of SIRPs into Generic BSS

BSS: coefficient update for 2 sources with SIRPs reads

∆W(m) =
m

∑

i=0

β(i, m)W(i)

[

0 R̃y1y2R
−1
y2y2

R̃y2y1R
−1
y1y1

0

]
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Incorporation of SIRPs into Generic BSS

BSS: coefficient update for 2 sources with SIRPs reads

∆W(m) =
m

∑

i=0

β(i, m)W(i)

[

0 R̃y1y2R
−1
y2y2

R̃y2y1R
−1
y1y1

0

]

• RLS-like normalization (by lagged auto-correlation matrices Ryqyq)

• Matrices R̃ypyq of cross-relations include nonlinear terms derived from multivariate
PDFs:

R̃ypyq(i) =
1

N

N−1
∑

j=0

φD

(

yq(i, j)R
−1
yqyq

(i)yH
q (i, j)

)

yH
p (i, j)yq(i, j),

φD(s) = −
f ′

D(s)

fD(s)

• HOS-SIRP realizations: φD(s) may be derived analytically from the univariate PDF
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Examples

• BSS performance:
Conditions: Reverberation time T60 ≈ 200ms, 2× 2 case, speech signals, microphone
spacing 16cm, sampling rate 16kHz, estimation of Ryy by correlation method

SOS Algorithms (L = 1024)
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Examples (2)

• SOS-dereverberation performance:
Conditions: Reverberation time T60 ≈ 200ms, 2× 2 case, speech signals, microphone
spacing 16cm, unmixing filter length 1024 taps, sampling rate 16kHz, estimation of
Ryy by correlation method
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Summary and Outlook

• Versatile framework for blind MIMO signal processing exploiting
nongaussianity, nonwhiteness, and nonstationarity in a rigorous
way

• Various novel algorithms can be derived from it (time-domain and
frequency-domain)

• Examples show: separation gain more than 20dB,
dereverberation gain more than 7dB

• This broadband approach has led to efficient realtime BSS on a
laptop PC

• More sophisticated source models (e.g., HMM-based) may be
incorporated in the framework


