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ABSTRACT

In many teleconferencing applications using modern laptop and net-

book devices it is common to encounter annoying keyboard typ-

ing noise. In this paper we propose an acoustic keystroke transient

canceler for speech communication terminals as a novel broadband

adaptive filter application in such a hands-free scenario. We present

this approach in the context of the Google Chromebook Pixel de-

vice which is equipped with a special audio reference channel pro-

viding various new signal processing possibilities. Our novel semi-

blind/semi-supervised approach exploiting this new degree of free-

dom, combined with the system-based broadband estimation and a

novel adaptation control yields a high-quality speech enhancement

even under challenging acoustic conditions.

Index Terms— Acoustic keystroke transients, noise reduction,

impulsive noise, hands-free speech communication.

1. INTRODUCTION

The rapid increase in availability of high speed internet connections

has made personal computing devices a very popular basis for tele-

conferencing applications. While the embedded microphones, loud-

speakers and webcams in laptop or tablet computers make setting up

conference calls very easy, the resulting acoustic hands-free com-

munication scenario generally brings with it the need for a number

of challenging signal processing problems, such as acoustic echo

control, signal separation/extraction from background noise or other

competing sources, and, ideally, dereverberation [1, 2].

A special type of acoustic noise which can be a particularly per-

sistent problem, and which we deal with in the present paper, is the

impulsive noise caused by keystroke transients, especially when us-

ing the embedded keyboard of a laptop computer during teleconfer-

encing applications (e.g., in order to make notes or to write emails).

In such a setup, this impulsive noise in the microphone signals can

be a significant nuisance due to the spatial proximity between the

microphones and the keyboard, and partly due to possible vibration

effects and solid-borne sound conduction within the device casing.

Most of the well-known single-channel speech enhancement al-

gorithms are typically based on noise power estimation and spectral

amplitude modification in the short-time Fourier transform (STFT)

domain, e.g., [3]. However, reducing highly nonstationary noise

such as keystroke transients remains a challenging problem for many

algorithms of this type and a still very active field of research, e.g.,

[4],[5]. In a recent study, the application of separation methods like

non-negative matrix factorization (NMF) in the spectral domain has

shown promising results for impulsive noise [6]. While this can be

effective where long signal samples are available, particularly for

batch estimation, unfortunately, in practice there is very little adap-

tation time available due to the short activity of the key stroke tran-

sients and the variations of the acoustic click events. Note also that

the keyboard noise is broadband with its dominant frequency com-

ponents typically in the same range as that of the speech signal. Due

to these challenging conditions, this signal processing problem has

been tackled so far mainly by missing feature approaches, e.g., [7]

based on [8]. Similar approaches are also known from image and

video processing, e.g. [9]. Similarly to the speech enhancement al-

gorithms mentioned above, the missing feature-type algorithms typ-

ically require very accurate detections of the keystroke transients.

Moreover, in the case of keystroke noise, this detection problem

is exacerbated by both the reverberation effects and the fact that

each keystroke actually leads to two audible clicks with unknown

and varying distance, whereby the peak of the second click is often

buried entirely in the overlapping speech signal. Note that simply us-

ing the typing information from the operating system of the device

is usually not accurate enough as the temporal deviation between the

typing information registered by the OS and the actual acoustic event

can vary widely and is not deterministic. Recent papers addressing

the detection problem for suppression of transients (but otherwise

still based on a conventional (signal-based) noise suppression algo-

rithm or a modification thereof) are, e.g., [10, 11, 12, 13].

The purpose of this paper is twofold. First, we will clarify and

analyze the signal processing problem in somewhat more detail and

we will focus on the specific class of approaches characterised by

the use of broadband adaptive FIR filters. In this context we specif-

ically turn our attention to the Chromebook Pixel which is one of

the first commercial of-the-shelf products featuring an additional

reference sensor underneath the keyboard. As we will see, in this

context, the related semi-supervised / semi-blind signal processing

problem can be regarded as a new class of adaptive filtering prob-

lems in the hands-free context in addition to the already more exten-

sively studied classes of problems in this field [1, 2]. Since the op-

erating system of the Chromebook is based on the well-documented

open-source project Chromium OS [14], it provides new opportu-

nities for the development of further improved signal enhancement

algorithms. Secondly, based on this available platform, we discuss

and evaluate in this paper a novel candidate algorithm specifically

for semi-supervised acoustic keystroke transient cancellation.

2. KEYBOARD REFERENCE PICKUP

Signal reconstruction generally becomes more and more challenging

with increasing typing speed and/or increasing room reverberation

causing the effects of the keystrokes to overlap. In reverberant en-

vironments, the click noise may well extend over multiple analysis

blocks. Note that each character consists of two keystroke transients

(downward and upward movements of the keys.) A statistical analy-

sis of typical typing speeds can be found, e.g., in [15].

Two ways to tackle the above problems are (1) to take into

account some less defective signal as side information on the



keystrokes and (2) to take into account the acoustic signal prop-

agation including the reverberation effects using dynamical models.

Hence, the novel approach in this paper takes advantage of an

additional microphone underneath the keyboard and, as shown in

the next sections, it uses an adaptive filtering approach exploiting

the knowledge of this keyboard microphone signal. The Google

Chromebook Pixel exhibits such a reference microphone as well as

two voice microphones on top of the display, as shown in Fig. 1. This

setup allows for the development of more powerful, semi-supervised

algorithms.
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Fig. 1. Keyboard reference pickup in Google’s chromebook pixel.

With the available reference signal and the application of adap-

tive filtering, the problem appears to be similar to a conventional

acoustic echo cancellation (AEC) problem [16, 17, 18] or an in-

terference cancellation problem [19]. However, there are notable

differences between conventional AEC and this keystroke transient

suppression which are reflected by the following requirements:

(i) The ”echo path” to be identified is rapidly time varying.

(ii) The excitation (keystroke transients) of the ”echo path” is typ-

ically very short, i.e., limited data for the estimation process.

(iii) We have cross-talk of low (but noticeable) power from the

speech source into the keybed microphone.

(iv) Double-talk control (or double-talk detection in particular),

as in conventional AEC is not straightforward here (mainly

due to (iii) and (v)).

(v) Highly nonlinear systems. Our experiments have shown that

the acoustic paths from the keyboard to the microphones con-

tain significant nonlinear contributions due to the solid-borne

sound conduction within the casing. The nonlinear contribu-

tions (rattling) also exhibit a significant memory [20].

(vi) The algorithm should have low complexity despite the chal-

lenging requirements (i)-(v).

In the next Sections, we develop and evaluate an efficient semi-

supervised algorithm which is designed to meet the above require-

ments (i)-(vi) for keystroke transient cancellation.

3. KEYSTROKE TRANSIENT CANCELLATION BASED

ON BROADBAND ADAPTIVE MIMO FILTERING

Our setup can be regarded as an acoustic mixing system with multi-

ple input channels and multiple output channels (MIMO) consisting

of impulse responses hqp, q = 1, 2, p = 1, 2, 3, see Fig. 2. Anal-

ogously, the signal processing for extracting the desired speech sig-

nal can be considered as a corresponding MIMO demixing system.

The coefficients of the MIMO system are then regarded as latent

variables which are assumed to have less variability over multiple

time frames of the observed data. As they allow for a global opti-

mization over longer data sequences, latent variable models have the

well-known advantage of reducing the dimensions of data, making

it easier to understand and, thus, in our application, reduce or avoid

distortions in the output signals. In the reminder of this paper we

will refer to this approach as system-based optimization in contrast

to the existing signal-based approaches mentioned in Sect. 1. Note

that in practice we can expect synergies by combining system-based

and signal-based approaches for signal enhancement as in AEC [18].
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Fig. 2. Block diagram of the proposed simplified system using adap-

tive filters in the foreground and in the background for adaptation

control (according to Sect. 4).

Based on the framework of broadband adaptive MIMO signal

processing there are several conceivable specialized adaptive filter

configurations to efficiently solve the problem. These specialized

approaches, such as the already mentioned AEC approach can often

be obtained as ’pruned’ versions of the full blind source separation

(BSS) approach, e.g., [21, 22, 23, 24]. In this paper, we focus on one

particularly simple approach that falls into this category but due to

the above list of requirements (i)-(vi), it differs from the AEC setup

in order to largely circumvent the nonlinearity issues.

We can observe that the relation between x1, x2 is closer to lin-

earity than the relation between x3, x1 and the relation between x3,

x2, respectively. This would motivate a blind spatial signal process-

ing using the two array microphones x1, x2.

On the other hand, x3 still contains significantly less crosstalk

and less reverberation due to the proximity between the keyboard

and the keyboard microphone. Therefore, the keyboard microphone

is best suited for guiding the adaptation. In other words, while the

core algorithm is adapted blindly, the overall system can be consid-

ered as a semi-blind system. The guidance of the adaptation using

the keyboard microphone addresses both the double-talk problem

and the resolution of the inherent permutation ambiguity concerning

the desired source in the output of blind adaptive filtering algorithms.

Interestingly, the resulting structure can be interpreted either as

a subspace approach/blind signal extraction (BSE) approach [25] or

as a method for blind system identification (BSI) for single-input

and multiple-output (SIMO) systems [23, 24] (In the second-order-

statistics case this pruned case coincides rigorously with the blind

SIMO system identification approach in, e.g., [26, 27]). As we will

see, both interpretations are utilized in our practical implementation

of the overall system; the BSE for extracting the desired speech sig-

nal, and the BSI for the novel double-talk control proposed in Sect. 4.

In this paper, we further simplify the demixing system by keep-

ing the subfilter w11 fixed as a pure delay, as shown in Fig. 2. In this

way we avoid any further linear distortions of the desired speech sig-

nal. The adaptive subfilter w21 is then simply modified to w′

21. Note

that this approach can be considered as the above SIMO-based BSE

approach with an additional equalizer. To ensure causality of the

adaptive filter w′

21 for arbitary speaker positions, the delay is chosen

as D = ⌈L/2⌉, where L denotes the demixing filter length.



4. AN EFFICIENT REALIZATION AND CONTROL OF

THE ADAPTATION

Having identified a promising candidate for an optimal system-based

approach according to the above requirements (i)-(vi), we are now

going to develop the ingredients for an efficient practical realization.

Special emphasis will be placed on the novel semi-blind double-

talk detection specifically taking into account requirements (iii)-(v).

Later, in Table 1, we will summarize a pseudocode based on these

building blocks and the semi-blind structure according to Fig. 2.

4.1. Broadband block-online frequency-domain adaptation

As a first step, we apply a computationally efficient frequency-

domain formulation of the above filter structure following [28]. An

important feature of this frequency-domain framework is that it

increases the efficiency of both the adaptatation processes (approx-

imate diagonalization of the Hessian) and the filtering process (fast

convolution by exploiting the efficiency of the FFT) [28].

In this paper we will work with partitioned blocks, i.e., the (in-

teger) block length N = L/K can be a fraction of the filter length

L. This decoupling of L and N is especially desirable for handling

highly non-stationary signals such as the keystroke transients in our

application [29, 28, 30].

Let us consider the input-output relationship for one individual

demixing subfilter wpq . The output signal of this subfilter at time

n reads yqp(n) =
∑L−1

ℓ=0
xp(n − ℓ)wpq,ℓ, where wpq,ℓ are the co-

efficients of the filter impulse response wpq . By partitioning the

impulse response wpq of length L into K segments of integer length

N = L/K as in [29], yqp(n) can be written as

yqp(n) =
K−1∑

k=0

x
T

p,k(n)wpq,k, (1)

where vector xp,k(n) consists of xp(n−Nk), ..., xp(n−Nk−N+
1). Superscript T denotes transposition of a vector or a matrix. The

length-N vectors wpq,k, k = 0, . . . ,K − 1 represent subfilters of

the partitioned tap-weight vector wpq = [wT

pq,0, . . . ,w
T

pq,K−1]
T.

Since our algorithm is based on block processing, we consider

blocks of output samples. A length-N block of output samples

yqp(m) = [yqp(mN), . . . , yqp(mN +N − 1)]T (2)

can, analogously to (1), be formulated as a sum of K matrix-vector

products (instead of the inner products in (1)). A key insight in

broadband frequency-domain adaptive filtering is that each of the

K matrices can be diagonalized very efficiently and without any ap-

proximation using DFT matrices (implemented by FFTs) after ap-

plying certain window matrices, as shown in detail, e.g., in [28].

These window matrices and the resulting closed-form expressions

(such as, e.g., the block error signal e(m), with m being the block

time index) are summarized in Table 1.

Having expressed the error signal in a compact partitioned-

block frequency-domain notation, similarly compact formulations

of frequency-domain adaptive filter (FDAF) algorithms, based

on a block-based optimization criterion, such as J(m,w) =
(1 − λ)

∑m

i=0
λm−ieT(m)e(m), where λ is a forgetting factor

0 < λ < 1, can be derived [28]. By exploiting the efficiency of

the FFT, the resulting FDAF algorithms exhibit both a very low

complexity (O(log L) per sample), and a fast RLS-like convergence

speed as necessary in our application.

Table 1 shows the pseudocode of an overall algorithm based

on the system configuration according to Fig. 2, and the multide-

lay formulation mentioned above. As indicated in Fig. 2, the overall

system consists of a foreground filter (i.e., the main adaptive filter

producing the enhanced output signal y1 as described above) and

a separate background filter (dashed part, used for controlling the

adaptation of the foreground filter). These two components are also

reflected by the two lowermost (main) sections in the pseudocode.

The foreground filter corresponds to the steps (3s)-(3w), i.e., the

last section in the pseudocode, including the necessary Kalman gain

(3e),(3f) [which is used for computational efficiency for both the

foreground filter and background filter due to their common input

signal X2(m)], and the required input signals (3a)-(3c). The back-

ground filter for adaptation control will be discussed in more detail

below in Sect. 4.2.

An important feature of the implementation according to Table 1

in order to further speed up the convergence are the additional offline

iterations (index ℓ) in each block. This method also follows from the

relation between supervised and blind adaptive filtering [21], where

it is probably more common. Moreover, to avoid the undesirable

’overlearning’ phenomenon (from the viewpoint of system-based es-

timation) for a high number of offline iterations with this method, yet

allow to a certain degree for the exploitation of its rapid tracking ca-

pability of local signal statistics, the total number ℓmax of offline

iterations is subdivided into two steps.

4.2. Semi-blind multidelay double-talk detection

We now focus on the important aspect of controlling the adaptation,

i.e., the double-talk detector (first main part in Table 1). Here, the

goal is to develop a reliable decision mechanism so that the adapta-

tion of the keystroke transient canceller is performed only during the

exclusive activity of the keystroke transients.

Despite of the availability of the keyboard reference microphone

(signal x3), it turns out that in our scenario a reliable adaptation con-

trol is a more challenging task than the adaptation control problem

for the well-known supervised adaptive filtering case, e.g., for acous-

tic echo cancellation. This is mainly due to the cross-talk of the de-

sired speech signal into the keyboard reference microphone, as well

as the very significant nonlinear components in the propagation paths

of the keystroke transients (requirements (iii)-(v) in Sect. 2).

Hence, in addition to a power-based or correlation-based deci-

sion statistic (as for AEC; see, e.g., [30] and references therein), we

propose in Table 1 a novel adaptation control based on multiple de-

cision criteria which also exploit the spatial selectivity by the multi-

ple microphone channels. Indeed, the resulting algorithm can be re-

garded as an according semi-blind generalization of the multidelay-

based detection mechanism proposed earlier in [30].

In addition to the short-time signal power σ2

x3
(m) as a first de-

tection variable, the detection variable ξ1 describes the ratio of a lin-

ear approximation to the nonlinear contribution in x3. Note that this

detection statistic formally resembles the one in [30] but the mecha-

nism here is slightly different.

Probably the most important criterion is described by the de-

tection variable ξ2. This criterion can be seen as a spatio-temporal

source signal activity detector. Note that both, the detection vari-

ables ξ1 and ξ2 are based on the adaptive background filter (similar

to the foreground filter, but with slightly larger stepsize and smaller

forgetting factor for quick reaction of the detection mechanism).

The detection variable ξ2 exploits the microphone array geome-

try and the fact that the background filter performs an approx. BSI

of h13 and/or h23 (see Sect. 3). According to the physical setup, we

can safely assume that the direct path of h23 is always significantly

shorter than the direct path of h13. Due to the relation of the max-

ima of the background filter coefficients and the time difference of

arrival (e.g., [23]), an approximate decision on the activity of both

sources s1 and s2 can be made (1 ≤ a < b < c ≤ L in (3p)). To

further improve the detection accuracy, a regularization for sparse



learning of the background filter coefficients is applied ((3m)-(3o),

where Φ(·, a) denotes a center clipper, also called shrinkage opera-

tor, of width a) [31, 32].
5. EXPERIMENTAL EVALUATION

The signal extraction has been evaluated using recorded signals from

the Chromebook in a regular office room (T60 ≈ 300ms) by both ob-

jective and subjective performance measures. Figure 3 illustrates a

typical use case. The first subplot shows one of the recorded voice

mic signals. During the first 6sec. only the speech signal was ac-

tive (male speaker), and thereafter the typing activity sets in (various

keys across the whole keyboard were used). The simulation cov-

ers single-talk and double-talk (6..10sec and 14..16.5sec) conditions.

The second and third subplots show the processed output signal and

the acoustic click suppression (dB), respectively. We see that both,

with and without simultaneous speech activity, a significant suppres-

sion of the click noise can be achieved and maintained.
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Fig. 3. Signal extraction result.

Figure 4 shows a summary of the results of a standardized sub-

jective listening test (MUSHRA, ’MUlti Stimulus test with Hidden

Reference and Anchor’ [33]) carried out with 10 listeners. The

sound quality was quantified on a scale from 0 to 100 for 4 different

use cases with two different speech signals and two different typing

speeds. They all contained single-talk and double-talk situations as

illustrated above.

hidden reference

’detect & mute’

original recordings

sig.-based ([13])

sys.-based (proposed)

0 20 40 60 80 100
bad poor fair good excellent

Fig. 4. Results of the MUSHRA listening test (average and 95%

confidence intervals).

Besides taking into account various use cases in this evaluation, our

main objective here was to compare a recently presented state-of-

the-art signal-based approach [13] with the novel system-based ap-

proach presented in this paper. It is visible from the graph that the

system-based approach is able to outperform the quality of the previ-

ous algorithm due to the built-in system model. Moreover, due to the

different estimation mechanisms of the two approaches, a synergistic

combinability for even further improvement is to be expected.

6. CONCLUSIONS

In this paper we have presented a novel and efficient semi-blind

system-based approach for keystroke transient cancellation. The ap-

proach is highly efficient, yields a high suppression performance,

and minimal signal distortion. A possible extension to the approach

is, e.g., the use of robust statistics [30, 34, 35].

Table 1: Robust semi-blind EMDF and semi-blind EMD DTD

Definition of window matrices:

W01
N×2N = [ 0N×N IN×N ]

W10
2N×N = [ IN×N 0N×N ]T

W01
2N×2N =

[

0N×N 0N×N

0N×N IN×N

]

G01
2N×2N = F2NW01

2N×2NF
−1
2N

W10
2N×2N =

[

IN×N 0N×N

0N×N 0N×N

]

G̃10
2N×2N = F2NW10

2N×2NF
−1
2N

G10
2L×2L = diag{G̃10

2N×2N , . . . , G̃10
2N×2N}

Input signals:

x1(m) = [x1(mN − D), . . .
. . . , x1(mN − D + N − 1)]T (3a)

X2,k(m) = diag{F2N [x2(mN − Ni − N), . . .

. . . , x2(mN − Ni + N − 1)]T},
k = 0, . . . ,K − 1 (3b)

X2(m) = [X2,0(m),X2,1(m), . . . ,X2,K−1(m)] (3c)
x3(m) = F2N [01×N , x3(mN − D), . . .

. . . , x3(mN − D + N − 1)]T (3d)

Kalman gain:

S′(m) = λS′(m − 1) + (1 − λ)XH
2 (m)X2(m) (3e)

K(m) = S′−1(m)X2
H(m) (3f)

Double-talk detector (background filter):

w0
b(m) := wb(m − 1)

for ℓ = 1, . . . , ℓmax,sys,back:

eℓ
b(m) = x3(m) − G01

2N×2NX2(m)ŵℓ−1
b (m) (3g)

wℓ
b(m) = w

ℓ−1
b (m)+

+µb2(1 − λb)G
10
2L×2LK(m)eℓ

b(m) (3h)
end for

w′
b(m) := w

ℓmax,sys,back
b (m)

σ2
x3

(m) = λbσ
2
x3

(m − 1) + (1 − λb)x
H
3 (m)x3(m) (3i)

sk(m) = λbsk(m − 1) + (1 − λb)X
∗
2,k(m)x3(m),

k = 0, . . . ,K − 1 (3j)

ξ1(m) =

∑K−1
k=0

w
′
b,k

H(m)sk(m)

σ2
x3

(m)
(3k)

w′
b(m) = diag{W01

N×2NF
−1
2N , . . . ,W01

N×2NF
−1
2N}×

×w′
b(m) (3l)

wb(m) = (1 − 2λrµb)w
′
b(m)−

−2λrµb (br(m − 1) − dr(m − 1)) (3m)

[dr(m)]n = Φ
(

[wb(m) + br(m − 1)]n ,
ρr
2λr

)

,

n = 1, . . . , N (3n)
br(m) = br(m − 1) + wb(m) − dr(m) (3o)

ξ2(m) =
maxa≤i≤b |wb,i(m)|

maxb<i≤c |wb,i(m)|
(3p)

wb(m) = diag{F2NW10
2N×N , . . . ,F2NW10

2N×N}×
×wb(m) (3q)

if ξ1 ≥ T1 & ξ2 < T2 & σ2
x3

(m) > T3

µ′ = µ(1 − λ) (’single-talk’ ⇒ adapt foreground) (3r)
else

µ′ = 0 (’double-talk’ ⇒ don’t adapt foregr.)
end if

Keystroke transient canceller (foreground filter):

w0(m) := w(m − 1)
for ℓ = 1, . . . , ℓmax,sys:

eℓ(m) = x1(m) − W01
N×2NF

−1
2NX2(m)wℓ−1(m) (3s)

wℓ(m) = wℓ−1(m) + µ′G10
2L×2LK(m)×

×F2NW01
2N×Neℓ(m) (3t)

end for

w(m) := wℓmax,sys(m) (3u)
for ℓ = ℓmax,sys + 1, . . . , ℓmax:

eℓ(m) = x1(m) − W01
N×2NF

−1
2NX2(m)wℓ−1(m) (3v)

wℓ(m) = wℓ−1(m) + µ′K(m)F2NW01
2N×Neℓ(m) (3w)

end for

y1(m) := eℓmax (m)
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[16] C. Breining, P. Dreiseitel, E. Hänsler, A. Mader, B. Nitsch, H. Puder, T. Schertler,
G. Schmidt, and J. Tilp, “Acoustic echo control - an application of very-high-order
adaptive filters,” IEEE Signal Processing Magazine, pp. 42–69, Jul. 1999.
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