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ABSTRACT

In this paper we introduce a novel class of efficient multichannel
adaptive filtering algorithms for sparse FIR systems. By suitably in-
tegrating ideas from compressed sensing and adaptive filtertheory,
this class of algorithms allows to significantly reduce the actual num-
ber of adaptive coefficients in an efficient way. These algorithms,
termed compressive-domain adaptive filters, can be interpreted as a
novel type of transform-domain techniques. They can also beseen
as adaptive approach in an efficiently self-learning manifold based
on the prior knowledge of sparseness of the system. An important
property of this concept is that it does not place additionalrestric-
tions on the input signal characteristics. Based on the well-known
RLS algorithm as a reference, the simulation results confirmthat the
proposed algorithm converges at acceptable rates, even forstrongly
colored signals such as speech and audio.

Index Terms— Compressive domains, Adaptive filtering, Sys-
tem identification.

1. INTRODUCTION

Linear adaptive filters have found applications in diverse fields in-
cluding communications, control, robotics, sonar, radar,seismics
and biomedical engineering, to name a few [1]. The main classes of
tackled problems (inverse modelling, prediction, linear prediction,
and system identification) share a structure in which a cost function
is minimized iteratively. In this paper, we mainly focus on the sys-
tem identification problem, although the results will also carry over
to the other classes of problems. Adaptive system identification has
several application areas, such as acoustic echo cancellation (AEC),
layered earth modelling (LEM), propagation channel estimation and
others [1].
The complexity of the utilised adaptive filter typically depends on
the length -dimensions of the target system impulse response, which
can be excessively high. Nevertheless, in several application areas,
such as network AEC, LEM and time domain reflectometry [2], the
system impulse response can be sparse (i.e., only a small percentage
of its coefficients has significant magnitudes) or compressible (mag-
nitudes of the ordered coefficients are fast decaying). In this paper,
we propose a novel multichannel adaptive filtering approach, which
achieves a substantial reduction of the computational complexity of
the system identification and improves convergence by effectively
leveraging the underlying sparse nature of the sought system im-
pulse response. Whilst the locations of the significant or non-zero
coefficients of the impulse response are unknowna priori, the intro-
duced method delivers the savings on complexity by transforming
the adaptation problem into a lower dimensional system-dependent
manifold.

+

-

+

.
.
.

.
.
. +

x1(n)

xP(n)

h1

hP

y(n)

ĥ1
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Fig. 1. Basic multichannel adaptive system identification setup.

1.1. Problem Formulation

We consider the multichannel problem depicted in Figure 1. Let
P be the number of input channels over which the unknown sys-
tem is excited;xp(n) is the input signal in thepth channel at the
discrete-time instanttn. The sought system impulse response of

the overall lengthN = PL, is denoted byh =
[
hT

1 ,h
T
2 , ...,h

T
P

]T

such thathp = [hp,0,hp,1, ..., ,hp,L−1]
T pertains to thepth sub-

system in the multiple-input single-output (MISO) overallsystem
model. Subsequently, the output attn is given byy(n) = xT(n)h
with x(n) = [xT

1(n),x
T
2(n), · · · ,x

T
P(n)]

T and xp(n) = [xp(n),xp(n−
1), ...,xp(n− L+ 1)]T. The objective in this paper is to adaptively
estimate the system impulse responseh, which is assumed to be
sparse/compressible, i.e.|supp(h)|= ‖h‖0 6 K andK ≪ PL.

1.2. Related Work and Outline

Most of the popular adaptive filtering algorithms are based on the
least-squares error minimization, where the cost functionis com-
monly defined by

J
(

ĥ(n)
)

:= Ê{e2(n)}= Ê

{(
y(n)−xT(n)ĥ(n)

)2
}
, (1)

such thatÊ{.} is an estimation of the expectation (usually a weighted
sum over time) [1]. The impulse response estimate attn is denoted
by ĥ(n). It comprisesPL MISO coefficient vector composed of the
P subfiltersĥp(n) = [ĥp,0(n), ĥp,1(n), · · · , ĥp,L−1(n)]T. Unlike mini-
mizing (1), in this paper we capitalise on the premise that the system
impulse responseh (not the input signal) is sparse/compressible to
develop an efficient adaptive filtering technique.



Several studies consider regularized versions of (1) by incorpo-
rating known signal priors, perhaps the simplest and most popular
example being the energy-based Tikhonov regularization [3]. An-
other very important class of priors are sparsity-promoting priors,
e.g., [3, 4, 5, 6, 7]. For multichannel adaptive signal processing,
structured hybrid norm regularizers have also been shown tobe very
effective [6]. In general, such approaches (regardless of the particu-
lar type of regularization) perform adaptation at each timestep for all
the components of̂h(n), including the zero components of the sparse
vector. This can lead to a high computational cost and unnecessarily
slow convergence. Conversely, the formulation introducedhere ad-
dresses this issue by aiming to adapt only the non-zero coefficients
of the impulse response vector (whose locations are not known).

On the other hand, the Compressed Sensing (CS) paradigm en-
ables the concurrent sensing and compression of signals, which are
sparse in an appropriate transform domain [8, 9, 10]. In CS, we have
y = ΦΦΦθθθ, wherey ∈ CM are linear measurements of a target vector
θθθ ∈ CN, ‖θθθ‖0 6 K andK < N. The sensing matrixΦΦΦ ∈ CM×N is
typically dictated by the physical constraints of collecting the sam-
ples iny. This matrix has to satisfy certain condition(s), e.g., Re-
stricted Isometry Property (RIP), to guarantee the accurate recovery
of θθθ from M < N observations via computationally tractable algo-
rithms, e.g., convex relaxation and greedy methods [9, 10].In some
previous works, compressed sensing results were directly applied to
the sparse channel estimation problem in communication systems
by concatenating the measured system output (i.e. receivedsignal)
of the exciting signal (e.g. transmitted pilots) at multiple time in-
stants as pery = X̃h wherey = [y(n0),y(n0+1), ...,y(n0+M)]T and
X̃ = [x(n0),x(n0 + 1), ...,x(n0 +M)]T is anM ×N Toeplitz matrix
[11, 10, 12]. Hence, the propagation channel(s) impulse responseh
can be estimated by employing one of the CS recovery techniques.
However, this is subject tõX, which is composed of the exciting
signal, satisfying certain conditions such as RIP. Whilst in commu-
nication systems a wide range of signals can be transmitted during
a training period (e.g. spread spectrum or OFDM signalling), in the
majority of other applications (e.g. AEC or LEM) guaranteeing that
the input signal meets stringent requirements, such as the RIP con-
dition, can be impractical, overly restrictive and costly.

In this paper, we propose a novel compressive-domain adaptive
filtering approach where the compression matrix can be chosen of-
fline, without imposing any constraints on the nature or character-
istics of ΦΦΦ. Thus, the utilized compression matrixΦΦΦ can be cho-
sen such that it satisfies particular conditions related to performance
guarantees, e.g., a RIP condition. Most importantly, this choice is
independent of the input signal statistics. We recall that the objec-
tive here is to adaptively estimate the system impulse responseh,
rather than recovering a sparse signal vector from its compressed
measurements. Building upon our previous work [13, 14], we will
also introduce in this paper a computationally efficient algorithm ex-
ploiting efficiently the lower dimensional manifold of the (initially
unknown) sparse system, i.e., we compress the system impulse re-
sponse to reduce its dimensionality based on the sparsity prior. In
[14] it was demonstrated that this class of algorithms can indeed be
considered as an adaptive manifold learning algorithm, which simul-
taneously identifies the sparse system and the corresponding lower-
dimensional manifold. Additionally, the algorithm introduced below
can be interpreted as a novel transform-domain adaptive algorithm in
which the transformation is learned from the data. Due to thenovel
efficient formulation of this type of manifold learning/recovery algo-
rithm here, the resulting realization has a substantially lower compu-
tational complexity compared with other benchmark adaptive tech-
niques.

2. COMPRESSIVE DOMAINS FOR SPARSE SYSTEMS

Recent studies on compressive sensing state that a sparse signal, e.g.,
ĥ, can be perfectly reconstructed from its undersampled version

ĥ := ΦΦΦĥ (2)

with ΦΦΦ a random observation matrix [15]. The originality of the
theory of compressed sensing bases on its implicit statement that a
subspace spanned by

M = O(K log2(PL/K)) (3)

uncorrelated white vectors is dense in the space ofK-sparse signals
of lengthPL [16]. This motivates exploring the possibility of for-
mulating an adaptive filtering solution for sparse systems in com-
pressive domains with random compression matrices and without an
explicit knowledge about the relevant support of the sparsesystems.
Since the compression matrix is not given by an explicit eigenspace
of the sparse system, we will formulate the adaptive algorithm via
the reconstruction approach from compressed sensing. An optimal
reconstruction by a transformation matrix can be obtained from a
typical compressed sensing cost function which is based on exploit-
ing the sparsity of the system, given by

J′
(

ĥ(n)
)
= λ

∥∥∥ĥ(n)
∥∥∥

1
+
∥∥∥ĥ(n)−ΦΦΦĥ(n)

∥∥∥
2

2
, (4)

whereλ denotes the Lagrange-multiplier. A minimum of the cost
function can be found by setting its gradient w.r.tĥ to zero.

With
∥∥∥ĥ

∥∥∥
1
= sgn

{
ĥ
}T

ĥ,

hereby, sgn{·} stands for the sign function. Hence, the gradient reads

∇ĥJ′ = 2λsgn
{

ĥ(n)
}
−2ΦΦΦT

[
ĥ(n)−ΦΦΦĥ(n)

]
= 0,

i.e., the reconstruction of the coefficient vectorĥ is given as the so-
lution of the (nonlinear) system of equations

λsgn
{

ĥ(n)
}
+ΦΦΦTΦΦΦĥ(n) = ΦΦΦTĥ(n). (5)

3. COMPRESSIVE-DOMAIN ADAPTIVE FILTERING AS
SELF-LEARNING TRANSFORM-DOMAIN ADAPTIVE

FILTERING

The sign function in (5) can be approximated by

sgn
{

ĥ
}
= E−1ĥ, with E := diag

{∣∣∣ĥ
∣∣∣+ ε

}
, (6)

whereε is a parameter that prevents a division by zero. By substitut-
ing this approximation into (5), we obtain

ĥ(n) =
(

λE−1(n)+ΦΦΦTΦΦΦ
)−1

ΦΦΦTĥ. (7)

Hence, we can now write the reconstruction process by a multiplica-
tion of ĥ with a reconstruction matrix that we define as

ΦΦΦ+(n) :=
(

λE−1(n)+ΦΦΦTΦΦΦ
)−1

ΦΦΦT. (8)



Sinceĥ is a priori unknown, an iterative computation for the regu-
larization matrixE−1 is performed, i.e.,

E(n) = diag
{∣∣∣ĥ(n−1)

∣∣∣+ ε
}
, (9)

whereE(0) is set to the unity matrix. Thereby, the reconstruction
matrix can be understood as an adaptive backtransformationmatrix
from the domain where the system has a compressed dense repre-
sentation to the domain where it is sparsely represented. This back-
transformation matrix is adaptively adjusted to the sparsestructure
of the system.

Having defined the reconstruction matrixΦΦΦ+(n) according to
(8), i.e.,ĥ(n) =ΦΦΦ+(n)ĥ(n), we can now express the (uncompressed)
output signal of the adaptive filter as follows:

ŷ(n) = ĥT(n)x(n) =
[
ΦΦΦ+(n)ĥ(n)

]T
x(n) = ĥ

T
(n)ΦΦΦ+T(n)x(n).

By introducing the transformed input vector

x(n) := ΦΦΦ+T(n)x(n), (10)

we can finally express the output signal ˆy(n) as

ŷ(n) = ĥ
T
(n)x(n). (11)

The actual adaptive filter optimization can then be expressed/per-
formed completely in the corresponding transform domain. We can
write the original cost function (1) of the adaptive filter equivalently
as

J
(

ĥ(n)
)
= Ê

{
(y(n)− ŷ(n))2

}
, (12)

with the new definition ˆy(n) = ĥ
T
(n)x(n). Note, however, that in

each adaptation step, the reconstruction matrixΦΦΦ+(n) depends on
the previous coefficient vector̂h(n) via E(n). In other words, the
optimization is performed in each stepn for a givenΦΦΦ+(n) in a lo-
cal Euclidean space. This mechanism is precisely in line with the
manifold learning framework [17], as illustrated in [14].

The least-squares solution in the compressed domain, i.e.,in the
local Euclidean space, is given as

ĥopt(n) = R−1
xx (n)rxy(n). (13)

Typically, the correlation matrix is estimated iteratively using the
formula

Rxx(n) = α Rxx(n−1)+x(n)xT(n), (14)

whereα denotes a forgetting factor. This leads to the well-known re-
cursive least-squares (RLS) algorithm [1], applied here inthe lower-
dimensional compressed domain. The uncompressed estimated filter
coefficient vector at stepn is then given by

ĥ(n) = ΦΦΦ+(n)ĥ(n). (15)

It should be mentioned that instead of the RLS algorithm, we can
essentially apply any adaptive filtering algorithm in the compressive

domain. This is due to the fact that through ˆy(n) = ĥ
T
(n)x(n) the

cost functionJ can always be expressed exclusively by the com-
pressed parameter vectorĥ(n). In general, the zeros of∇ĥJ can be
determined iteratively with the Newton algorithm. The mainadvan-
tage of Newton-type adaptation algorithms is its quadraticconver-

gence rate compared to the linear convergence rate of the gradient-
based algorithms [1].

4. EXACT REDUCED-COMPLEXITY ALGORITHM FOR
COMPRESSIVE-DOMAIN ADAPTIVE FILTERING

Using the matrix inversion lemma in the form

(
A+BBT

)−1
= A−1−A−1B

(
I +BTA−1B

)−1
BTA−1, (16)

we can reformulate (8) as

ΦΦΦ+ =
1
λ

EΦΦΦT −
1
λ

EΦΦΦT
(

I +
1
λ

ΦΦΦEΦΦΦT
)−1

ΦΦΦ
1
λ

EΦΦΦT. (17)

Note that instead of the inversion of aPL×PL matrix in (8), this
equation only requires an inversion of aK×K matrix, whereK ≪PL
in sparse systems. By introducing the two intermediate quantities

D :=
1
λ

EΦΦΦT =
1
λ

diag
{∣∣ĥ(n−1)

∣∣+ εεε
}

ΦΦΦT (18)

and
C := ΦΦΦD, (19)

we obtain
ΦΦΦ+ = D−D(I +C)−1C. (20)

The resulting algorithm for adaptive system identificationin com-
pressive domains is summarized in Table 1. Figure 2 illustrates this
scheme. In the next section, it is demonstrated that the proposed
class of algorithms can significantly reduce the complexityof the
coefficient estimation compared with other benchmark techniques,
namely the RLS.
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Fig. 2. Multichannel adaptive system identification in compressive
domain.

5. EXPERIMENTS

As a proof of concept for the novel compressive domain adaptive
filtering method we simulate a 2-channel MISO system identifica-
tion scenario. Here a notably sparse system environment wassimu-
lated by onlyK = 8 randomly weighted pulses, i.e., 4 pulses in each
channel, and the overall filter length was set toL = 1000 for each
channel. The pulses were randomly distributed over the entire filter
lengthL. The channels were excited by an audio signal at a sampling
rate 44.1kHz (as an example for colored system excitation).Addi-
tive white noise was added to the captured signal to obtain anSNR
of 60dB iny(n).



Table 1: Novel Compressive-Domain Adaptive Filter Algorithm

Initialization:

h = 0
ΦΦΦ = randn(M,PL), whereM ≪ PL

Reconstruction matrix and input compression:

D(n) =

{ 1
λ ΦΦΦT for n= 0
diag

{∣∣ĥ(n−1)
∣∣+ εεε

}
D(0) for n= 1,2, . . .

C(n) = ΦΦΦD(n)
ΦΦΦ+(n) = D(n)−D(n)(I +C(n))−1 C(n)

x(n) = ΦΦΦ+T
(n)x(n)

Any adaptive filtering algorithm (e.g., RLS)
(in the compressed-input domain i.e., h, x, y, e):

e(n) = y(n)− ĥ
T
(n−1)x(n)

Rxx(n) = αRxx(n−1)+x(n)xT(n)
ĥ(n) = ĥ(n−1)+R−1

xx (n)x(n)e(n)

Reconstruction of sparse coefficient vector:

ĥ(n) = ΦΦΦ+(n)ĥ(n)

Figure 3 shows a comparison between coefficient misalignment
convergence curves, i.e., the normalizedℓ2 norm of the coefficient
error in dB. As a reference, the blue (dashed) curve shows theper-
formance achieved by the original two-channel RLS algorithm with
L = 1000 coefficients for each channel (i.e., non-compressive adap-
tation). The green (solid) curve shows the convergence of the adap-
tation of the RLS algorithm in the compressed domain according
to Table 1. In contrast to the noncompressed case, the numberof
adaptive filter parameters was reduced significantly fromPL= 2000
to M = 50, i.e, in the compressive domain we used only 25 coef-
ficients for each channel. Despite this reduction of the coeficients
(and the associated complexity reduction fromO(P2L2) to O(M2) in
this case), we were able to maintain the low final misalignment level
of approximately−60dB. Note that in order to take into account the
possible variability of the results by the different initializations ofΦΦΦ,
the green curve was averaged over the results of 20 simulation runs.
The width of the 95% confidence interval was±4.7dB over the sim-
ulated time span. The numberM = 50 of required coefficients for
our scenario was found experimentally, and it lies roughly at the or-
der of the predicted valueM = ⌈K log2(PL/K)⌉ = 64 according to
(3).

6. CONCLUSION

In this paper we introduced a novel class of efficient multichannel
adaptive filtering algorithms in compressive domains. Thisapproach
can be interpreted as a novel type of transform-domain algorithms
or, more generally, as an adaptive technique in an efficiently self-
learning manifold. For sparse systems, it was demonstratedthat
the number of adaptive coefficients can be reduced significantly in
this way, while the original convergence characteristics can be main-

Fig. 3. Comparison of identification performance for the proposed
algorithm and the RLS method.

tained (or in some cases even be improved due to the reduced num-
ber of coefficients to be learned). The presented simulationresults
show that the concept of compressive domain adaptive filtering is
efficiently realizable and at acceptable convergence rateseven for
colored signals such as speech and audio.
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