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ABSTRACT

In this paper we focus on Bayesian blind and semi-blind adaptive

signal processing based on a broadband MIMO FIR model (e.g., for

blind source separation (BSS) and blind system identification (BSI)).

Specifically, we study in this paper a framework allowing us to sys-

tematically incorporate various types of prior knowledge: (1) source

signal statistics, (2) deterministic knowledge on the mixing system,

and (3) stochastic knowledge on the mixing system. In order to ex-

ploit all possible types of source signal statistics (1), our consid-

erations are based on TRINICON, a previously introduced generic

framework for broadband blind (and semi-blind) adaptive MIMO

signal processing. The motivation for this paper is threefold: (a)

the extension of TRINICON to Bayesian point estimation to address

(3) in addition to (1), and (b) more specifically to unify system-

based blind adaptive MIMO signal processing with the tracking of

time-varying scenarios, and finally (c) to show how the Bayesian

TRINICON-based tracking can be formulated as a sequence estima-

tion approach on arbitrary partly smooth manifolds. As we will see

in this paper, the Bayesian approach to incorporate stochastic priors

and the manifold learning approach to exploit deterministic system

knowledge (2) complement one another very efficiently in the con-

text of TRINICON.

Index Terms— Bayesian learning, tracking, manifolds, convo-

lutive BSS, blind system identification

1. INTRODUCTION

The analysis of scenes using sensor arrays (e.g., based on multiple

channels of acoustic signals, sonar signals, or radar signals) is a fun-

damental problem in signal processing with many potential applica-

tions and use cases, e.g., for localization/object tracking, source sep-

aration/extraction, characterization of the environment, and signal

enhancement/dereverberation. In general, the received sensor sig-

nals may consist of a mixture of components from multiple simul-

taneously active sources or objects of interest and various interfer-

ing signals located at different spatial positions. Additionally, there

can be multipath and/or dispersive propagation of the various wave

components and hence we often have to deal with convolutive signal

mixtures, e.g., acoustic signals in reverberant indoor environments.

In other words, assuming the propagation medium is linear, we have

a matrix of convolutive propagation paths from the multiple sources

to the multiple employed sensors. Since typically neither the origi-

nal source signals nor the convolutive propagation paths are known a

priori, we generally treat in this paper this overall array-based scene

analysis problem as a blind estimation problem.

∗ Work done while K.H. was with Huawei European Research Center,
Munich, Germany. We thank Huawei ERC for the support.

The special focus of this paper is on (1) solving the above-

mentioned array signal processing problems using blind broadband

adaptive MIMO (Multiple-Input and Multiple-Output) systems with

explicit FIR models, and (2) to consider specifically the case of

time-varying MIMO mixing systems within a Bayesian framework.

In practice, time-varying mixing systems are very common, as they

describe

• moving sources,

• moving reflectors/scattering objects,

• moving sensor array,

or a combination thereof. Accordingly, from an algorithmic point

of view, this paper will bring together elements from Bayesian

tracking (e.g., [1, 2]) and elements from blind adaptive signal pro-

cessing (e.g., [3, 4, 5, 6]). Apart from the high-dimensionality of

this tracking problem (on the order of the filter length L) compared

to common 2D or 3D tracking problems, another important chal-

lenge from the signal-processing point of view is the blindness (well

known tracking algorithms, such as Kalman filters or particle filters,

are generally to be regarded as supervised algorithms). Moreover,

an important objective in this paper is to make use of TRINICON

(’TRIple-N ICA for CONvolutive mixtures’), a previously intro-

duced generic concept for broadband adaptive MIMO filtering, e.g.,

[4, 5, 6], using the technique of independent component analysis

(ICA), e.g., [3], and in the Bayesian TRINICON framework, as

presented in this paper, all the essential structures and degrees of

freedom (see the references for more details) should be maintained.

The main three properties of TRINICON, making it an attrac-

tive vehicle for the present paper are: Its rigorous broadband for-

malism, its configurability to all the above tasks (blind, semi-blind,

and also supervised [7, 8]), and its inherent exploitation of all pos-

sible statistical properties of the source signals (’TRIple-N’). Due

to these properties, we can make use of the various relationships to

most of the known blind, semi-blind, and supervised adaptive sig-

nal processing algorithms via the well defined degrees of freedom,

and the fact that it has already led to various efficient time-domain

and frequency-domain realizations, such as the blind unconstrained

frequency-domain adaptive filter (now widely popular as Indepen-

dent Vector Analysis) [6, 4].

Finally, an additional focus (3) of this paper is to formulate the

(TRINICON-based) estimation and tracking on an arbitrary partly

smooth manifold M in a way as shown previously in [9] for the non-

Bayesian case. As shown in [9], being able to choose arbitrary partly

smooth manifolds (a manifold is a topological space that is locally

Euclidean [10, 11]) is a powerful approach to constrain the search

space according to requirements of the desired application, or to fur-

ther increase the convergence speed, or to reduce the computational

complexity, or a combination thereof. Hence, it also allows us to



extend the framework to the various semi-blind algorithms (includ-

ing supervised algorithms as a special case), such as adaptive beam-

forming. Moreover, for blind adaptive filtering the natural manifold

is of special importance (e.g., natural gradient descent [12]), and the

general manifold-based approach in this paper will show how to in-

corporate this concept into the Bayesian tracking algorithms.

Generally, one of the main advantages of working with broad-

band MIMO FIR models is that we can, in principle, avoid any signal

distortions in the source separation and signal enhancement tasks.

Moreover, once we have obtained a robust estimate of the MIMO

demixing system, we can infer most of the other relevant informa-

tion for scene analysis, as mentioned above. A prominent example

is acoustic source localization which is typically based on certain in-

termediate quantities, such as direction(s) of arrival (DOA) or time

difference(s) of arrival (TDOA) in the classical approaches. It can be

shown that these classical approaches can be related directly as spe-

cial cases to the more ’holistic’ approach outlined above (see Fig. 1),

which explicitly takes into account the reverberant environment and

the multiple, possibly simultaneously active sources (e.g., [4] and

references therein). Similar relationships as in the forward adaptive
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Fig. 1. Using blind source separation(BSS)/blind system identifica-

tion (BSI) for source localization in convolutive environments.

filter problems (separation/interference cancellation, system identi-

fication) can also be established for inverse adaptive filter problems,

such as blind dereverberation, e.g., [13].

Among the various known classes of Bayesian estimation and

tracking algorithms (e.g., [1, 2]), we focus in this paper on Bayesian

point estimators. This can be motivated by robustness and complex-

ity considerations due to the typically very high dimensionality of

the state space in our application, which is given by the filter length.

Probably the best known and most popular classical tracking algo-

rithm is the Kalman filter (KF) [14, 15], and its variants, such as

the Extended Kalman filter (EKF) and the Unscented Kalman filter

(UKF) [1, 2]. This class of algorithms can either be derived from a

full Bayesian approach (under Gaussian assumptions, specified by

mean and covariance) or equivalently as a point estimator of the

mean vector (where the covariance estimate is obtained in the al-

gorithm as a by-product). Coming from the field of adaptive array

processing, and for the purpose of unifying these ideas with TRINI-

CON, the latter approach is probably the more illustrative one in this

paper. Indeed, the original paper by Thiele [14], refering directly

to the earlier work by Gauss on the least-squares (LS) estimator,

already describes this algorithm as a dynamical model-based regu-

larized LS problem (directly reflected by the title of [14]), where the

additive regularization term to the LS cost function is the log prior

according to Bayes’ rule. For adaptive signal processing in the spe-

cial case of supervised adaptation, the (nonregularized) TRINICON-

based adaptation was first contrasted with the Kalman-based (i.e.,

dynamically regularized RLS) adaptation in [16].

In this paper, we will confirm experimentally, that this additive

regularization formulation also holds for the TRINICON optimiza-

tion criterion, so that this idea of model-based regularization also

carries over to the general blind and semi-blind broadband adaptive

MIMO signal processing. A more detailed theoretical derivation of

the Bayesian TRINICON optimization criterion can be found in [17].

Some early regularized ICA algorithms (not convolutive, not dynam-

ically regularized, ICA only based on nongaussianity, not the full

empirical risk minimization) can be found, e.g., in [18, 19]. Based

on the Bayesian TRINICON optimization criterion, i.e., a suitably

regularized version of the TRINICON criterion, and the manifold-

based framework [9], the derivation of the generic algorithm in this

paper follows from a sequence estimation in a similar way as shown

in [20], by optimizing w.r.t. a state vector which collects the history

(concatenation) of all sets of previous demixing filters.

2. GENERAL MIMO SETUP AND NOTATION

In this paper, we denote the original source signals by sq(n), q =
1, . . . , Q and the captured sensor signals by xp(n), p = 1, . . . , P .

We describe the MIMO mixing system by length-M FIR filters,

where hqp,κ, κ = 0, . . . ,M−1 denote the coefficients of the FIR fil-

ter model from the q-th source signal sq(n) to the p-th sensor signal

xp(n). We assume throughout this paper that Q ≤ P . According to

the optimization criterion, we are interested in finding a correspond-

ing length-L FIR demixing system with coefficients wpq,κ. This

yields the output signals yq(n). As a compact formulation of the set

of demixing filter coefficients and mixing filter coefficients we form

the PL×Q demixing coefficient matrix

W̌ =







w11 · · · w1Q

...
. . .

...

wP1 · · · wPQ






(1)

and the corresponding QM × P mixing coefficient matrix Ȟ, re-

spectively, where

hqp = [hqp,0, . . . , hqp,M−1]
T
, (2)

wpq = [wpq,0, . . . , wpq,L−1]
T

(3)

denote the coefficient vectors of the FIR subfilters of the MIMO sys-

tems, and superscript T denotes transposition of a vector or a ma-

trix. The downwards pointing hat symbol on top of W in (1) serves

to distinguish this condensed matrix from the corresponding larger

matrix structure W as introduced below. The rigorous distinction

between these different matrix structures is also an essential aspect

of the general TRINICON framework, as shown later.

To model the time-varying nature of W̌, we consider in this pa-

per the following class of state-space models with block time-index

m and a vector-valued function g(·, ·):

vecW̌(m+ 1) = g
(

vecW̌(m),u(m)
)

+ z(m), (4)

where u(m) denotes some possible innovation term, and z(m) de-

notes the process noise. As an important special case, this model

includes the linear Gauss-Markov model with a (possibly time-

varying) transition matrix A(m),

vecW̌(m+ 1) = A(m) vecW̌(m) + u(m) + z(m), (5)

where the process noise z(m) is assumed to be gaussian, described

by a covariance matrix Q(m) = E{z(m)zT(m)}.



3. TRINICON AS A GENERAL FRAMEWORK FOR

BROADBAND SIGNAL PROCESSING ON CONVOLUTIVE

MIXTURES AND EXTENSION TO THE BAYESIAN CASE

3.1. Optimization Criterion

In the following, to simplify the derivation, we work with an ex-

panded state vector vec θ̌(m) of size (m+ 1)P 2L× 1 which cap-

tures the whole state evolution, i.e., the sequence of coefficient vec-

tors vecW̌(i) from block time index i = 0 up to and including the

current block time index i = m:

vec θ̌(m) :=
[

vecT W̌(0), . . . , vecT W̌(m)
]T

=

[

vec θ̌(m− 1)
vecW̌(m)

]

. (6)

Taking into account the whole sequence θ̌(m) for the optimization

process rather than only the current coefficient matrix W̌(m), and

using the dynamical model (4) in this way as a prior on θ̌(m) are

essentially the keys for obtaining the filter equations with tracking

capability. Based on this state vector, we now formulate a criterion

that is minimized with respect to the sequence of filter coefficient

vectors up to block m, i.e., w.r.t. the expanded state vector vecθ̌(m):

J (m,θ(m)) =
m
∑

i=0

β(i,m)J̃ (i,θ)

=
m
∑

i=0

β(i,m)
[

J̃0(i,θ) + J̃R(i, θ)
]

,

where β(i,m) is a weighting function defining different classes of

algorithms [8] and allowing for online, offline, or block-online algo-

rithms [6]. In this paper we choose

β(i,m) = α · λm−i
(7)

with 0 < λ ≤ 1 and an arbitrary real constant α > 0.

The two terms J̃0 and J̃R in

J̃ (m,θ(m)) = J̃0(m,θ(m)) + J̃R(m,θ(m)) (8a)

denote the current data-based term and the regularization term, re-

spectively, as discussed in the following subsections.

An important feature of the choice (7) for β(i,m) is that it al-

lows a recursive computation as

J (m,θ(m)) = λJ (m− 1, θ(m− 1)) + αJ̃ (m,θ(m)). (8b)

3.1.1. Regularization Term

We first consider the regularization term J̃R(m,θ(m)). As it can

be interpreted as a logarithmized prior on the convolutive demixing

system using the state-space model, we write

J̃R(m,θ(m)) =

= f
(

vecW̌(m)− g
(

vecW̌(m− 1),u(m− 1)
))

= f
(

vecW̌(m)− g
(

W
01
P2L×mP2Lvec θ̌(m− 1),u(m− 1)

))

(9)

with a potential function f(·) and the window matrix W01
P2L×mP2L :=

[0, . . . ,0, I]. The special case of the Gauss-Markov regularizer fol-

lows for

g(•, •) = A(m− 1) • + • , (10a)

f(·) = ‖ • ‖2Q−1(m−1) = •T Q
−1(m− 1) • . (10b)

For the recursive calculation of J we assume A(−1) = 0 and

u(−1) =: u0 as initial values for i = 0.

3.1.2. Data Term

Various approaches exist to estimate the demixing matrix W̌ by

utilizing the fundamental source signal properties nongaussianity,

nonwhiteness, and nonstationarity [3] which were all combined in

TRINICON using the following data term [5]:

J̃0(m,W(m)) =

−
1

N

mNL+N−1
∑

j=mNL

{log(p̂s,PD(y(j)))− log(p̂y,PD(y(j)))} ,(11)

where p̂s,PD(·) and p̂y,PD(·) are assumed or estimated PD-variate

source model (i.e., desired) pdf and output pdf, respectively. The in-

dex m denotes the block time index for a block of N output samples

shifted by L samples relatively to the previous block.

To introduce an algorithm for broadband processing of convo-

lutive mixtures, we formulate the convolution of the FIR demixing

system of length L and with D time lags for each demixing filter

output channel in the following matrix form [5]:

y(n) = W
T
x(n), (12)

where n denotes the time index, and

x(n) = [xT
1 (n), . . . ,x

T
P (n)]

T
, (13)

y(n) = [yT
1 (n), . . . ,y

T
P (n)]

T
, (14)

xp(n) = [xp(n), . . . , xp(n− 2L+ 1)]T, (15)

yq(n) = [yq(n), . . . , yq(n−D + 1)]T. (16)

The parameter D in (16), 1 ≤ D < L, denotes the number of

time lags taken into account to exploit the nonwhiteness of the

source signals. Wpq , p = 1, . . . , P , q = 1, . . . , P denote 2L ×D

Sylvester matrices that contain all coefficients of the respective fil-

ters in each column by successive shifting, i.e., the first column reads
[

wT
pq, 0, . . . , 0

]T
, the second column

[

0,wT
pq, 0, . . . , 0

]T
, etc. Fi-

nally, the 2PL × PD matrix W combines all Sylvester matrices

Wpq .

The rigorous distinction between the different matrix structures

W̌ and W due to the nonwhiteness for D > 1 is also an essential

aspect of the general TRINICON framework and leads to an impor-

tant building block whose actual implementation is fundamental to

the properties of the resulting algorithm, the so-called Sylvester con-

straint (SC) on the coefficient update, formally introduced in [6].

The Euclidean gradient of the data term can then be written as

∇W̌J̃0(m,W) = SC
{

∇WJ̃0(m,W)
}

, (17)

or using a fixed matrix KSC (e.g., [9]),

∇vecW̌J̃0(m,W) = KSC∇vecWJ̃0(m,W), (18)

where

∇WJ̃0(m,W) =

iNL+N−1
∑

j=iNL

[

x(j)ΦT
s,PD(y(j))−

(

W
T
)+

]

,

(19)

with ·+ denoting the pseudoinverse of a matrix, and with the general-

ized score function Φs,PD(y(j)) according to [13]. As an example,

for convolutive blind source separation, the desired pdf is factorized

w.r.t. the output channels. This leads to a concatenation of P indi-

vidual score functions Φq,D of dimension D each, and for the spe-

cial case of second-order statistics, i.e., multivariate Gaussian source

models [6], they read Φq,D(yq(j)) = R−1
yqyq

(i)yq(j).



3.2. Generic Newton-type algorithm for sequence estimation on

arbitrary partly smooth manifolds for time-varying convolutive

mixing systems

In [9] we presented a generic TRINICON-based Newton-type algo-

rithm on arbitrary partly smooth manifolds, with multiple possible

iterations per block. Since a manifold M is defined as a topologi-

cal space that is locally Euclidean, local parameterizations in a Eu-

clidean tangent space always exist. Hence, the idea in [9] was to

perform each update step ∆T(m) in the current tangent space, fol-

lowed by the application of the local map Wℓ = ϕWℓ−1(∆T) back

to the coefficient space.

In this paper, we apply this strategy for the more general case

of sequence estimation by formulating the algorithm in terms of the

corresponding state vectors for the coefficient matrices and the tan-

gent space updates ∆T(m) analogously to (6). This resulting algo-

rithm can be simplified significantly in a number of steps (see [17]

for detailed derivations), the most important steps resulting from

picking only the last subvector of the new state vector, and by split-

ing the algorithm into a model-based prediction part and a data-

based correction part. It turns out that this prediction-correction

formulation is indeed made possible for arbitrary partly smooth man-

ifolds by the chosen state-space model (4).

In the following pseudocode we summarize the generic Bayesian

TRINICON algorithm on arbitrary partly smooth manifolds, based

on the nonlinear state space model (4) with multiple iterations in

Prediction-Correction formulation. It should be noted that this

algorithm can be further developed into a Prediction-Innovation-

Gain-Correction formulation analogously to the known classical

Kalman-type tracking algorithms (see [17] for details).

Definitions:

F(m − 1) = ∇z∇
T
z f(z)

∣

∣

∣

z=vec W̌(m)−g(vec W̌(m−1),u(m−1))

G(m − 1) = ∇zg
T
(z,u(m − 1))

∣

∣

∣

z=vec W̌(m−1)

Ξ
′ = Ξ (m − 1,W(m− 1)) =

∂vecT
(

ϕW(m−1)

)

∂vec (∆T(m − 1))

∣

∣

∣

∣

∣

∣

∆T=0

Predictions:

vecW̌0(m) = g
(

vecW̌(m − 1),u(m − 1)
)

P̃∆Ť (m |W(m − 1)) =

=
1

α
F

−1(m − 1) +
1

λ
G(m − 1)KSC Ξ

′T

P̃∆T (m − 1 |W(m − 1)) Ξ
′
K

T
SC

G
T(m − 1)

Corrections:

For ℓ = 1, . . . , ℓmax:

Ξ = Ξ
(

m,W
ℓ−1

(m)
)

=
∂vecT

(

ϕ
Wℓ−1(m)

)

∂vec (∆T(m))

∣

∣

∣

∣

∣

∣

∆T(m)=0

P̃
−1
∆T

(

m |W
ℓ−1

(m)
)

= ΞK
T
SC

P̃
−1

∆Ť
(m |W(m − 1))KSC Ξ

T

+ αΞ∇vec W∇T
vec WJ̃0

(

m,W
ℓ−1(m)

)

Ξ
T

vec∆T
ℓ
(m) = −µP̃∆T

(

m |W
ℓ−1

(m)
)

∞
∑

i=0

β(i, m) Ξ

· vec
{

∇W(m)J̃0(m,W(m))
}
∣

∣

∣

W=Wℓ−1(m)

W̌
ℓ(m) = SC

{

ϕ
Wℓ−1(m)

(

∆T
ℓ(m)

)}

endfor

W̌(m) = W̌
ℓmax (m)

P̃∆T (m |W(m)) = P̃∆T

(

m |Wℓmax−1(m)
)

4. APPLICATION TO BROADBAND BSS FOR

TIME-VARYING CONVOLUTIVE MIXING SYSTEMS

To evaluate the effectiveness of the Bayesian TRINICON approach

with state-space model, we consider blind source separation of

speech signals in a time-varying reverberant environment. Our

measurements were performed in a real office environment (with

curtains and carpet). The reverberation time T60 was approximately

300ms and the sampling rate was 16kHz. We placed two (spatially

fixed) speech sources (using loudspeakers) and two (spatially fixed)

microphones in this room. To simulate the time-variance of the 2×2
acoustic mixing system in a reproducible way, we placed a rotating

panel (≈ 2m2) on a stepper motor nearby the microphones. Using

the stepper motor, this panel was rotated in 0.20-steps so that in

total, we obtained a set of 900 measured 2 × 2 MIMO systems for

the entire rotation by 1800.

We evaluate the BSS separation performance in terms of the

signal-to-interference ratio (SIR) improvements on the outputs of the

demixing system, or, more precisely, the arithmetic average between

the SIR improvements in the two output signals y1(n) and y2(n).
Note that the precise SIR improvements can be calculated only in

simulations when the measured mixing systems are available as a

reference. Hence, in the case of time-varying mixing systems we

used our entire set of 900 measured MIMO systems as described

above in order to calculate the SIR improvements, i.e., to show the

tracking performance during the online BSS operation.

Figure 2 shows the SIR improvements obtained by two differ-

ent algorithms in the time-varying environment after reaching their

steady-state performance (i.e., after their initial convergence). The
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Fig. 2. Simulation results for blind source separation in a continu-

ously time-varying environment.

lower (blue) SIR improvement curve shows the performance of the

natural gradient-based broadband BSS algorithm (with a fixed Gaus-

sian prior for the demixing system). We regard this as a state-of-

the-art baseline algorithm (e.g., [4, 5, 6]). The upper (green) SIR

improvement curve was obtained using a corresponding broadband

BSS algorithm with a Gauss-Markov state-space model leading to

the novel blind Kalman-like BSS algorithm (also on the natural man-

ifold, ϕWℓ−1 (∆T) = Wℓ−1 +Wℓ−1∆T, see [9]). In this case,

the Kalman gain computation (including the inverse Hessian) was

performed in the frequency domain for computational efficiency.

5. CONCLUSIONS

In this paper we have presented a unified Bayesian adaptive signal

processing and tracking framework. The resulting SIR performance

for the BSS example in time-varying environments shows a clear

improvement over the baseline algorithm.
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