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Abstract
In this paper, we present a class of novel algorithms for blind
dereverberation of speech signals based on TRINICON, a gen-
eral framework for broadband adaptive MIMO signal processing.
In order to exploit all fundamental stochastic signal properties
of speech for the dereverberation/deconvolution process and to
avoid any whitening artifacts known from previous approaches,
we propose the incorporation of a specially designed signal
model based on an expansion using multivariate Chebyshev-
Hermite polynomials. The multivariate model also inherently
includes linear prediction which is known to be related directly
to the human vocal tract model. The framework is applicable to
both single-speaker scenarios and also to multiple simultaneously
active speakers. In the latter case it also includes blind source
separation in addition to the dereverberation.

1 Introduction
In broadband signal acquisition by sensor arrays, such as in
hands-free speech communication systems, the original source
signals sq(n), q = 1, . . . ,Q are filtered by a linear multiple input
and multiple output (MIMO) system, e.g., the reverberant room,
before they are captured as sensor signals xp(n), p = 1, . . . ,P. In
this paper, we describe this MIMO mixing system by FIR filter
models, where hqp,κ , κ = 0, . . . ,M− 1 denote the coefficients of
the model from the q-th source signal sq(n) to the p-th sensor sig-
nal xp(n) according to Fig. 1. Moreover, we assume throughout
this paper that Q ≤ P which are known as the overdetermined and
determined cases, respectively. Note that in general, the sources
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Figure 1: Setup for blind MIMO signal processing.

sq(n) may or may not be all simultaneously active at a particular
instant of time. We are interested in finding an optimum length-L
FIR “demixing” system with coefficients wpq,κ by adaptive sig-
nal processing to yield the output signals yq(n). Since in practical
acoustic scenarios, neither the original source signals sq(n) nor
the mixing system are directly accessible, the adaptation of the
demixing system has to be performed blindly.

Based on this MIMO structure, we may identify the follow-
ing blind signal processing problems for enhancing the output
signals yq(n):
(a) Signal separation (noise/interferers): Cancel out all cross-
channels of the cascaded mixing-demixing system.
(b) Deconvolution/Dereverberation: In addition to the separa-
tion, acquire “dry” sources up to a delay and a scaling factor.

In contrast to the separation problem (a), which is closely
related to blind system identification [2], the by far more diffi-
cult problem (b) also requires an inversion of the mixing sys-
tem (which typically contains nonminimum-phase impulse re-
sponses). It can be shown that an ideal signal-independent broad-

band separation solution exists for Q ≤ P [2], while for the
ideal solution of the inverse problem (b) the overdetermined case
Q < P is required [4]. This paper focuses on the dereverbera-
tion of speech signals (b) using TRINICON (’TRIple-N ICA for
CONvolutive mixtures’), a generic concept for broadband adap-
tive MIMO filtering [7, 5] based on the technique of independent
component analysis (ICA), e.g., [1].

2 Adaptive MIMO Signal Processing

based on TRINICON
In this section we first give a brief overview of the essential ele-
ments of TRINICON for the coefficient adaptation. Thereby, we
restrict the presentation here to simple gradient-based coefficient
updates in the time domain.

2.1 Optimization Criterion

Various approaches exist to estimate the demixing matrix W by
utilizing the following fundamental source signal properties [1]
which were all combined in TRINICON:
(i) Nongaussianity is exploited by using higher-order statistics
for ICA. The minimization of the mutual information (MMI)
among the output channels can be regarded as the most general
approach to separation problems [1]. To obtain an estimator that
is also suitable for the inverse problem, we use the Kullback-
Leibler divergence (KLD) [9] between a certain desired joint pdf
(essentially representing a hypothesized stochastic source model
as shown below) and the joint pdf of the actually estimated output
signals.
(ii) Nonwhiteness is exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore con-
sider multivariate pdfs, i.e., ‘densities covering D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization
of output cross-relations at different time-instants. We assume
ergodicity within blocks of length N so that the ensemble average
is replaced by time averages over these blocks.

Throughout this section, we formulate the framework for Q =
P without loss of generality. In practice, the current number of
simultaneously active sources is allowed to vary throughout the
application and only the conditions Q ≤ P (for separation only)
and Q < P (for deconvolution), respectively, have to be fulfilled.

To introduce an algorithm for broadband processing of con-
volutive mixtures, we first formulate the convolution of the FIR
demixing system of length L in the following matrix form [5]:

y(n) = W
T
x(n), (1)

where n denotes the time index, and

x(n) = [xT
1 (n), . . . ,xT

P(n)]T, (2)

y(n) = [yT
1 (n), . . . ,yT

P(n)]T, (3)

xp(n) = [xp(n), . . . ,xp(n− 2L +1)]T, (4)

yq(n) = [yq(n), . . . ,yq(n−D +1)]T. (5)

The parameter D in (5), 1 ≤ D < L, denotes the number of
time lags taken into account to exploit the nonwhiteness of the
source signals as shown below. Wpq, p = 1, . . . ,P, q = 1, . . . ,P
denote 2L × D Sylvester matrices that contain all coefficients



of the respective filters in each column by successive shifting,

i.e., the first column reads
[

wT
pq,0, . . . ,0

]T
, the second column

[

0,wT
pq,0, . . .,0

]T
, etc. Finally, the 2PL×PD matrix W com-

bines all Sylvester matrices Wpq.

Based on the KLD, the following cost function was intro-
duced in [5] taking into account all three fundamental signal
properties (i)-(iii):

J (m,W) = −
∞

∑
i=0

β (i,m)
1

N

·
iNL+N−1

∑
j=iNL

{

log( p̂s,PD(y( j)))− log( p̂y,PD(y( j)))
}

, (6)

where p̂s,PD(·) and p̂y,PD(·) are assumed or estimated PD-variate
source model (i.e., desired) pdf and output pdf, respectively. The
index m denotes the block time index for a block of N output
samples shifted by L samples relatively to the previous block.
Furthermore, β is a window function allowing for online, offline,
or block-online algorithms [7].

2.2 Gradient-Based Coefficient Update

For brevity and simplicity we concentrate in this subsection on it-
erative Euclidean gradient-based block-online coefficient updates
which can be written in the general form

W̌
0(m) := W̌(m− 1), (7a)

W̌
ℓ(m) = W̌

ℓ−1(m)− µ∆W̌
ℓ(m), ℓ = 1, . . . , ℓmax, (7b)

W̌(m) := W̌
ℓmax (m), (7c)

where µ is a stepsize parameter, and the superscript index ℓ
denotes an iteration parameter to allow for multiple iterations
(ℓ = 1, . . . , ℓmax) within each block m. The downwards point-
ing hat symbol on top of W in (7) serves to distinguish the con-

densed PL×Q demixing coefficient matrix W̌ to be optimized,
from the corresponding larger Sylvester matrix W in the cost

function. The matrix W̌ consists of the first column of each sub-
matrix Wpq without the L zeros.

Obviously, when calculating the gradient of J (m,W) w.r.t.

W̌ explicitly, we are confronted with the problem of the different

matrix formulations W and W̌. The larger dimensions of W
are a direct consequence of taking into account the nonwhiteness
signal property by choosing D > 1. The rigorous distinction be-
tween these different matrix structures is also an essential aspect
of the general TRINICON framework and leads to an important
building block whose actual implementation is fundamental to
the properties of the resulting algorithm, the so-called Sylvester
constraint (SC) on the coefficient update, formally introduced in
[7]. Using the Sylvester constraint operator the gradient descent
update can be written as

∆W̌
ℓ(m) = SC {∇WJ (m,W)}|W=Wℓ(m) . (8)

Depending on the particular realization of (SC), we are able to
select both, well known and also novel improved adaptation algo-
rithms [10]. In [2] an explicit formulation of a generic Sylvester
constraint was derived to further formalize and clarify this con-
cept.

It can be shown [3] that by taking the gradient of J (m) with

respect to the demixing filter matrix W̌(m) according to (8), we
obtain the following generic gradient descent-based TRINICON
update rule:

∆W̌
ℓ(m) =

1

N

∞

∑
i=0

β (i,m)SC

{

iNL+N−1

∑
j=iNL

[

x( j)ΦT
s,PD(y( j))

−

(

(

W
ℓ−1(m)

)T
)+
]}

, (9a)

with ·+ denoting the pseudoinverse of a matrix, and with the gen-
eralized score function

Φs,PD(y( j)) = −
∂ log p̂s,PD(y( j))

∂y( j)

−
1

N
∑
r

∑
i1,i2,...

∂G
(r)
s,i1,i2,...

∂y

iNL+N−1

∑
j=iNL

∂ p̂s,PD

∂Q
(r)
s,i1,i2,...

(9b)

resulting from the hypothesized source model p̂s,PD =

p̂s,PD(y,Q
(1)
s ,Q

(2)
s , . . .) with certain stochastic model parame-

ters Q
(r)
s , r = 1,2, . . . (the calligraphic symbols denote multidi-

mensional arrays) given by their elements Q
(r)
s,i1,i2,...

in the generic

form Q
(r)
s,i1,i2,...

(i) = 1
N ∑

iNL+N−1
j=iNL

{

G
(r)
s,i1,i2,...

(y( j))
}

with certain

nonlinear functions G
(r)
s,i1,i2,...

(y), r = 1,2, . . .. A well known spe-

cial case of such a parameterization is the estimate of the cor-

relation matrix Ryy(i) = 1
N ∑

iNL+N−1
j=iNL

{

y( j)yT( j)
}

. The filter

coefficients and the stochastic model parameters are estimated in
an alternating way.

3 Application of TRINICON to Blind

Dereverberation
The hypothesized source model p̂s,PD(·) in (9b) is chosen accord-
ing to the class of signal processing problem to be solved. For in-
stance, a factorization of p̂s,PD(·) among the sources yields BSS
[7, 5], i.e.,

p̂s,PD(y( j))
(BSS)
=

P

∏
q=1

p̂yq,D(yq( j)), (10)

while a complete factorization w.r.t. the PD dimensions of the
multivariate pdf p̂s,PD(y( j)) leads to the traditional so-called
multichannel blind deconvolution (MCBD) approach, i.e., tradi-
tionally, ICA-based MCBD algorithms assume i.i.d. source mod-
els, e.g., [6]. In other words, in addition to the separation of sta-
tistically independent sources, MCBD algorithms also temporally
whiten the output signals, so that this approach is not directly suit-
able for speech and audio signals.

Signal sources which are non i.i.d. should not become i.i.d.
at the output of the blind adaptive filtering stage. Therefore, their
statistical dependencies should be preserved. In other words,
the adaptation algorithm has to distinguish between the statis-
tical dependencies within the source signals, and the statistical

dependencies introduced by the mixing system Ȟ, i.e., the rever-
berant room, so that only the influence of the room acoustics is
minimized. We denote the corresponding generalization of the
traditional MCBD technique as MultiChannel Blind Partial De-
convolution (MCBPD) [5, 3]. Equations (9) inherently contain
a statistical source model (signal properties (i)-(iii) in Sect. 2),
expressed by the multivariate densities, and thus provide all nec-
essary requirements for the MCBPD approach.

For the distinction between the production system of the
source signals and the room acoustics we can again exploit all
three fundamental signal properties already mentioned in Sect. 2:

(i) Nonwhiteness. The auto-correlation structure of the speech
signals can be taken into account. While the room acoustics
influences all off-diagonals of the PD× PD output correla-
tion matrix Ryy, the effect of the vocal tract is concentrated
in the first few off-diagonals around the main diagonal. In the
simplest case, these first off-diagonals of Ryy are now taken
over into the banded desired correlation matrix as suggested
in [5]. Note that there is a close link to linear prediction tech-
niques which gives guidelines for the number of lags to be
preserved [3].

(ii) Nonstationarity. The speech production system and the
room acoustics also differ in their time-variance after [5].
While the room acoustics is assumed to be constant during the
adaptation process, the speech signal is only short-time sta-
tionary [12], modeled by the time-varying speech production



model. Typically, the duration of the stationarity intervals is
assumed to be approximately 20ms [12]. We therefore adjust
the block length N and in practice preferably also the block
shift NL in the criterion (6) with the model parameter esti-

mates Q
(r)
s (i) and in the corresponding coefficient updates

(9) to the assumed duration of the stationarity interval.

(iii) Nongaussianity. Speech is a well-known example for su-
pergaussian signals. Due to a convolutive sum – describing
in our application the filtering by the room acoustics – the
pdfs of the recorded microphone signals tend to be some-
what closer to Gaussians. Hence, another strategy is to max-
imize the nongaussianity of the output signals of the demix-
ing system (as far as possible by the MIMO FIR filters), e.g.,
[13, 14, 15]. This strategy is addressed, e.g., using the kurto-

sis κ̂4,yq
= Ê

{

y4
q

}

− 3σ̂4
yq

as a widely-used distance measure

of nongaussianity (κ̂4,yq
> 0 indicates a supergaussian pdf and

κ̂4,yq
< 0 a subgaussian pdf).

The multivariate stochastic speech signal model proposed in the
following section precisely takes into account all of these proper-
ties.

4 A Multivariate Signal Model for

TRINICON-Based Dereverberation
Two different expansions are commonly used to obtain a parame-
terized representation of probability density functions which only
slightly deviate from the Gaussian density (often called nearly
Gaussian densities): the Edgeworth and the Gram-Charlier ex-
pansions, e.g., [1]. They lead to very similar approximations,
so we only consider here the Gram-Charlier expansion. These
expansions are based on the so-called Chebyshev-Hermite poly-
nomials PH,n(·). An advantage of this representation is that the
corresponding expansion coefficients can be related directly to
known stochastic quantities based on higher-order cumulants,
such as the kurtosis mentioned in the previous section.

To obtain general coefficient update rules based on this repre-
sentation, we consider a multivariate generalization of the Gram-
Charlier expansion. As detailed in [3], it can be expressed as

p̂yq,D(yq( j)) =
1

√

(2π)DdetRyqyq(i)
e
−

1
2
yT

q ( j)R−1
yqyq

(i)yq( j)

·
∞

∑
n1=0

· · ·
∞

∑
nD=0

an1···nD,p

D

∏
d=1

PH,nd

([

L
−1
q (i)yq( j)

]

d

)

with the expansion coefficients

an1···nD,q = Ê

{

D

∏
d=1

1

nd !
PH,nd

([

L
−1
q (i)yq( j)

]

d

)

}

,

where Lq is obtained by the Cholesky decomposition Ryqyq =

LT
qLq (note that

√

yT
qR

−1
yqyq

yq = ‖L−1
q yq‖2).

In this paper, we further consider an important special case
of this general multivariate model, which is particularly useful
for speech processing. In this case, the inverse covariance matrix

R−1
yqyq

= (LT
qLq)

−1 is first factorized as [11]

R
−1
yqyq

(i) = Aq(i)Σ
−1
ỹqỹq

(i)AT
q (i), (12)

where Aq(i) and Σỹqỹq
(i) denote a D×D unit lower triangular

matrix (i.e., its elements on the main diagonal are equal to 1) and
a diagonal matrix, respectively [11]. The D×D unit lower trian-
gular matrix Aq(i) can be interpreted as a (time-varying) convo-
lution matrix of a whitening filter. It is therefore convenient for
computational reasons to model the signal yq as an autoregres-
sive (AR) process with time-varying AR coefficients aq,k(n), and

residual signal ỹq(n). Formally, the above-mentioned exploita-
tion of the nonwhiteness to distinguish between the coloration of
the sources and the mixing system is achieved by decoupling the

order of the AR process, i.e., the prediction order 0≤ nA ≤ D−1,
from the dimension D of the correlation matrix Ryqyq , i.e.,

yq(n) = −
nA

∑
k=1

aq,k(n)yq(n− k)+ ỹq(n). (13)

The matrices Aq and Σỹqỹq
are then obtained by the

D column vectors
[

1,aq,1(n),aq,2(n), · · · ,aq,nA(n),0, · · · ,0
]T

,
[

0,1,aq,1(n− 1), · · · ,aq,nA−1(n− 1),aq,nA(n− 1), · · · ,0
]T

, etc.,
and

Σỹqỹq
= Diag

{

σ̂2
ỹq

(n), . . . , σ̂2
ỹq

(n−D +1)
}

. (14)

Now, the multivariate stochastic signal model can be rewritten by
shifting the prefiltering matrix Aq into the data terms, i.e.,

ỹq := A
T
qyq = [ỹq(n), ỹq(n− 1), . . ., ỹq(n−D +1)]T . (15)

Moreover, by assuming the whitened elements of vector ỹq to be
i.i.d. (which in practice is a widely used assumption in AR mod-
eling), so that the expansion coefficients an1···nD,q are factorized,

we obtain with Lq(i) = Diag
{

1
σ̂ỹq ( j) , . . . ,

1
σ̂ỹq ( j−D+1)

}

AT
q (i) and

(15) a more compact model representation. The corresponding
fourth-order approximation of a zero-mean and nearly Gaussian
pdf directly contains the known quantities skewness and kurto-
sis, the latter one being the most important higher-order statis-
tical quantity in our context, as mentioned above. Generally,
speech signals exhibit supergaussian densities whose third-order
cumulants are negligible compared to its fourth-order cumulants.
Hence, by considering only the fourth-order term in addition to
SOS, we obtain

p̂yq,D(yq( j)) =
D

∏
d=1

1
√

2π σ̂2
ỹq

( j− d +1)
e
−

ỹ2
q( j−d+1)

2σ̂2
ỹq

( j−d+1)

·

(

1+
κ̂4,ỹq

4!σ4
ỹq

( j− d +1)
PH,nd

(

ỹq( j− d +1)

σ̂ỹq
( j− d +1)

)

)

.

By exploiting the near-gaussianity using the approximation
log(1+ ε) ≈ ε in the logarithmized respresentation of this pdf in

(9b), and noting that PH,4

(

ỹq

σ̂ỹq

)

=
(

ỹq

σ̂ỹq

)4

−6
(

ỹq

σ̂ỹq

)2

+3, we ob-

tain after a straightforward calculation the corresponding TRINI-
CON coefficient update rule based on (9). An efficient realiza-
tion which still exploits all three fundamental signal properties
(i)-(iii), as discussed above, is obtained using the so-called cor-
relation method, i.e., by assuming a global nonstationarity of the
source signals but short-time stationarity in each block as known
from linear prediction [12]. Using the explicit formulation of the
generic Sylvester constraint after [2], these steps finally lead to
the MIMO coefficient update rule [3]

w̌
ℓ
pq(m) = w̌

ℓ−1
pq (m)−

µ

N

∞

∑
i=0

β ′(i,m)





∑
iN′

L+N−1

j=iN′

L

ˇ̃x
(q)
p ( j)ỹq( j)

2σ̂2
ỹq,i

−





∑
iN′

L+N−1

j=iN′

L
ỹ4

q( j)

3σ̂4
ỹq,i

− 1



 ·





∑
iN′

L+N−1

j=iN′

L

ˇ̃x
(q)
p ( j)ỹ3

q( j)

σ̂4
ỹq,i

−
∑

iN′

L+N−1

j=iN′

L

ˇ̃x
(q)
p ( j)ỹq( j)∑

iNL+N−1
j=iNL

ỹ4
q( j)

σ̂6
ỹq,i









+µ
∞

∑
i=0

β (i,m)

[

SC

{

(

(

W
ℓ−1(m)

)T
)+
}]

pq

, (16)

p = 1, . . . ,P, q = 1, . . . ,P. Analogously to the definition (15), the

symbol ˇ̃x
(q)
p denotes a column vector of filtered sensor signals xp

according to the prefiltering matrix Aq introduced above.
In other words, this update rule can be interpreted as a so-

called filtered-x-type algorithm since both the input (i.e., micro-
phone) signal vector and the output signals appear as filtered ver-
sions in the update. As a consequence, we immediately obtain



Fig. 2. While W ideally inverts the room acoustic mixing system
H, the (set of) linear prediction filter(s) A from the stochastic
source model ideally inverts the (set of) speech production sys-
tem(s) of the source(s). The coefficients W and A are estimated
in an alternating fashion like the estimation of the other stochastic
model parameters, as mentioned above. Note that (in accordance

with the known filtered-x concept) the filtered input vector ˇ̃x
(q)
p

is obtained using the filter coefficients from the linear prediction
(LP) analysis of the output signals yp, i.e., the coefficients of the
output LP analysis filters are copied to the input transformation
filters.

x̌
WH

y

ỹs̃

s

vocal tract(s)

speech production model(s)

blind signal processing

A

Figure 2: Inversion of the speech production models within the

blind signal processing and filtered-x-type interpretation.

5 Experiments
The experiments have been conducted using Q = 2 speech signals
(one male speaker and one female speaker) convolved with mea-
sured impulse responses of a real room with a reverberation time
T60 ≈ 700ms and a sampling frequency of 16kHz. A linear four-
element microphone array (P = 4) with an inter-element spacing
of 16cm was used. The speech signals arrived from ±24o relative
to the normal plane of the array axis and the distance between the
speakers and the center of the microphone array was 165cm.

As a performance measure for the evaluation of the dere-
verberation performance, the signal-to-reverberation ratio (SRR)
measures the power ratio between the direct sound and the con-
tribution by the reverberation. For speech signals, the first 50ms
after the main peak of the impulse responses are also added to
the contribution of the direct path (critical delay time n50, which
is known to contribute to the speech intelligibility). For a higher
correlation to the quality perceived by auditory measurements,
we study in our experiments the improvement of the so-called
segmental SRR. In the case of multiple source signals, the per-
formance of the additional source separation ability of MCBPD
is evaluated by the improvement of the so-called (segmental)
signal-to-interference ratio (SIR) at the output analogously to the
(segmental) SRR.

Our simulations are based on the coefficient update (16) us-
ing the correlation method. We chose L = 3000, the block length
N = N′

L = 320 corresponding to a stationarity interval of 20ms,
and nA = 32. Figure 3 shows both the SIR improvement (i.e.,
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Figure 3: SIR and SRR performance of MIMO-based MCBPD.

source separation at the ouputs) and the SRR improvement for
offline (batch) adaptation, i.e., β (i,m) = β (i) in (6) (and thus

β ′(i,m) = β ′(i) in (16)) corresponds to a rectangular window
function over the entire available signal length, and the outer
sum in (6) and (16) turns into a summation of the contributions
from all blocks with equal weights. The SIR and SRR curves
were averaged between the contributions from the two sources.
We see that the optimization based purely on second-order statis-
tics (SOS, only the first term in the brackets in (16) was used)

exhibits a rapid initial convergence. Further considerations [3]
show that the approach purely based on the kurtosis (only the
second term in the brackets in (16)) finally achieves a higher
level of SRR improvement at the cost of a slower initial conver-
gence. By exploiting all the available statistical signal properties
(SOS+HOS, both terms in the brackets in (16) were used), the
TRINICON framework combines the advantages of the former
two approaches. These synergies can be seen in both the sepa-
ration and the dereverberation performances. As reference, we
also included the SIR convergence curve of the popular narrow-
band BSS algorithm after Fancourt and Parra [8] which is based
on SOS. The reference curve for a pure separation algorithm [7]
based on SOS (as a special case of (16) with nA = L− 1, N = L,
and using only the first term in the brackets) in the SRR plot, and
the comparison with a conventional delay-and-sum beamformer
confirms the high efficiency of the MCBPD extension presented
in this paper.

6 Conclusions
Based on the TRINICON framework for broadband adaptive
MIMO filtering we developed in this paper a class of novel al-
gorithms for the problem of blind dereverberation. Due to the
design of the stochastic source model specifically for speech sig-
nals, we effectively exploit the nonwhiteness, the nonstationarity,
and the nongaussianity leading to a high separation and derever-
beration performance without whitening artifacts.
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