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Adaptive dynamical systems based on finite impulse response (FIR)

models constitute an important part in many signal processing ap-

plications [1]. In this contribution, we consider the case of sparse

systems for increasing the convergence speed and/or reducing the

computational complexity, i.e., in our scenarios only a small percent-

age of the system components has significant magnitude (temporal

coefficients and/or spatial components (in multichannel case)). Note

that this sparseness can also be emphasized by working in suitable

transform domains, e.g., [2], [3]. In any case, the exact knowledge

about the relevant dimensions is typically not available a priori. One

well known way of taking into account the sparseness of systems is

the use of certain regularization techniques (e.g., [4] and references

therein).

In contrast to these techniques, our aim here is to go one step

further and reduce the number of adaptive coefficients by performing

the adaptation in compressive domains based on insights from the

field of compressed sensing (CS), e.g., [5], [6], [7], and our recent

work [8]. We present a simple, yet efficient novel CS-based adaptation

scheme which allows us to express the resulting adaptation algorithm

for sparse dynamical systems as some kind of transform-domain

adaptive filtering operating in a lower-dimensional space by means

of a certain self-adapting transformation matrix.

Using this formulation, we further show how the adaptive filtering

in compressive domains can be expressed as a specific case of a very

general, previously introduced framework for adaptive filtering on

manifolds. This novel relation between CS and manifold learning has

a number of significant practical benefits. Besides a new illustrative

interpretation, it immediately shows us how to obtain novel practical

algorithms in compressive domains for essentially all possible classes

of adaptive filtering problems for supervised as well as for blind and

semi-blind adaptation.

I. ADAPTIVE FILTERING IN COMPRESSIVE DOMAINS

To begin with, we consider supervised single-channel system identifi-

cation as shown in Fig. 1, where h denotes the length-L vector of FIR

coefficients of the unknown system, ĥ is its estimate, and quantities

in the compressed domain are underlined. Following the theory of

compressed sensing, it should be possible to perfectly reconstruct

the sparse vector ĥ from its undersampled version ĥ := Φĥ with a

random K×L observation matrix Φ (K ≪ L). To perform a unique

and simultaneous estimation of ĥ and its sparse reconstruction, we

apply an iterative procedure alternating between an error minimiza-

tion of e(n) (typically in least-squares sense) to obtain ĥ, and the ℓ1-

constrained minimization of λ
∥∥∥ĥ(n)

∥∥∥
1
+
∥∥∥ĥ(n)−Φĥ(n)

∥∥∥
2

2
, where

λ is a Lagrange multiplier. Under the assumption of small iterative

changes of ĥ(n), it turns out that the reconstruction step can be

expressed using a matrix resembling the pseudoinverse of Φ but with

an additive ĥ(n)-dependent nonlinear modification term, as shown in

the algorithm summary in Table 1. In other words, the adaptation of

ĥ(n) is performed in a transform domain with a significantly reduced

number of dimensions K ≪ L (see also the illustration in Fig. 1).

Table 1: Adaptive system identification in compressive domains

Reconstruction matrix and input compression:

E(n) =

{

I for n = 0

diag
{
∣

∣

∣
ĥ(n− 1) + ǫ

∣

∣

∣

}

for n = 1, 2, . . .

Φ+(n) =
(

λE−1(n) + ΦTΦ
)

−1
ΦT

x(n) = Φ+T
(n)x(n)

Adaptive filtering algorithm (e.g., RLS) in the compressed-input

domain (i.e., expressed in terms of h, x, y, e):

e(n) = y(n) − ĥ
T
(n− 1)x(n)

Rxx(n) = αRxx(n− 1) + x(n)xT(n)

ĥ(n) = ĥ(n− 1) +R
−1
xx (n)x(n)e(n)

Reconstruction of sparse coefficient vector:

ĥ(n) = Φ+(n)ĥ(n)

II. ADAPTIVE FILTERING ON ARBITRARY PARTLY SMOOTH

MANIFOLDS AND RELATION TO COMPRESSIVE DOMAINS

Having expressed the algorithm in Table 1 essentially by means of

filter updates in a lower-dimensional local subspace (depending on

the previous ĥ(n− 1)), we now further formalise this approach and

generalise it to a manifold learning framework for arbitrary super-

vised, blind and semi-blind broadband adaptive filtering problems

with multiple inputs and multiple outputs (MIMO). This unification

is facilitated by utilising TRINICON (’TRIple-N Independent com-

ponent analysis for CONvolutive mixtures’), a previously introduced

general framework for broadband adaptive MIMO filtering, e.g., [9],

[10], [11], [12].

Most of the well known basic adaptation algorithms are expressed

in Euclidean space [1]. In contrast, a manifold is a topological space

that is locally Euclidean. For smooth (i.e., differentiable) manifolds

so-called maps relate smoothly to each other and are described

by certain mapping functions [13], [14]. Hence, we may expect

that the overall scheme in Tab. 1 can accurately be described as a

specific form of manifold learning. In [15] the general TRINICON

framework was introduced on arbitary partly smooth manifolds and

it was shown to be a very versatile tool for taking into account prior

information on the unknown system by simply plugging in a suitable

map ϕW′(∆T), where W
′ is the matrix of current MIMO filter

coefficients and ∆T denotes the update in the local tangent space.

Figures 3 and 4 outline the basic idea of the concept. Indeed, as we

can show, by plugging in the map

ϕW(n−1)(∆T) = Φ+(n)ΦW(n− 1) + Φ+(n)∆T,

we immediately obtain a generalisation of Table 1 to arbitrary MIMO

setups. Hence, in conclusion, the new manifold-based approach

provides a useful interpretation as an adaptation in the tangent space

where the compressed sensing theory shows us how to learn a suitable

manifold from the input data. Using TRINICON, it also provides a

very powerful generalisation for a wide area of applications.
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Fig. 1. Supervised single-channel adaptive system identification in compres-
sive domain.

...
...

...

...
...

...

... ... ...

s1

sQ

x1

xP

y1

yQ

sensor 1

sensor P

h11

hQP

hQ1

h1P

w11

wPQ

wP1

w1Q

mixing system H demixing system W

Fig. 2. General setup for MIMO signal processing.
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Fig. 3. Example for a two-dimensional manifold M.
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optimization criterion on M:

J (W)

Iterative optimization: W = W
ℓ

with local parameterization (’chart’, ’map’)

W
ℓ = ϕ

Wℓ−1(∆T)

where ϕ
Wℓ−1(0) = W

ℓ−1

local optimization criterion

at W = W
ℓ−1 in the

Euclidean tangent space:

J (ϕ
Wℓ−1(∆T))

local Newton (or gradient) step

in the Euclidean tangent space

at W = W
ℓ−1 (i.e., ∆T = 0)

⇒ ∆T = 0 → ∆T = ∆T
ℓ

Wℓ = ϕ
Wℓ−1

(
∆Tℓ

)

New coefficient
matrix on M:

W
ℓ

Fig. 4. Basic approach for TRINICON-based optimization on an arbitrary
partly smooth manifold M.
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