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Abstract. In unknown environments where we need to identify, model, or track
unknown and time-varying channels, adaptive filtering has been proven to be an
effective tool. In this chapter, we focus on multichannel algorithms in the frequency
domain that are especially well suited for input signals which are not only auto-
correlated but also highly cross-correlated among the channels. These properties are
particularly important for applications like multichannel acoustic echo cancellation.
Most frequency-domain algorithms, as they are well known from the single-channel
case, are derived from existing time-domain algorithms and are based on different
heuristic strategies. Here, we present a new rigorous derivation of a whole class
of multichannel adaptive filtering algorithms in the frequency domain based on a
recursive least-squares criterion. Then, from the so-called normal equation, we de-
rive a generic adaptive algorithm in the frequency domain that we formulate in
different ways. An analysis of this multichannel algorithm shows that the mean-
squared error convergence is independent of the input signal statistics. A useful
approximation provides interesting links between some well-known algorithms for
the single-channel case and the general framework. We also give design rules for
important parameters to optimize the performance in practice. Due to the rigor-
ous approach, the proposed framework inherently takes the coherence between all
input signal channels into account, while the computational complexity is kept low
by introducing several new techniques, such as a robust recursive Kalman gain
computation in the frequency domain and efficient fast Fourier transform (FFT)
computation tailored to overlapping data blocks. Simulation results and real-time
performance for multichannel acoustic echo cancellation show the high efficiency of
the approach.

4.1 Introduction

The ability of adaptive filters to operate satisfactorily in an unknown environ-
ment and to track time variations of input statistics make it a powerful tool
in such diverse fields as communications, acoustics, radar, sonar, seismology,
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and biomedical engineering. Despite of the large variety of applications, four
basic classes of adaptive filtering applications may be distinguished [1]: sys-
tem identification, inverse modeling, prediction, and interference cancelling.

In speech and acoustics, where all those basic types of adaptive filtering
can be found, we often have to deal with very long filters (sometimes several
thousand taps), unpredictably time-variant environments, and highly non-
stationary and auto-correlated signals.

In addition, the simultaneous processing of multiple input streams, i.e.,
multichannel adaptive filtering (MC-ADF) is becoming more and more de-
sirable for future products. Typical examples are multichannel acoustic echo
cancellation (system identification) or adaptive beamforming microphone ar-
rays (interference cancelling).

In this chapter, we investigate adaptive MIMO (multiple input and multi-
ple output) systems that are updated in the frequency domain. The resulting
generalized multichannel frequency-domain adaptive filtering has already led
to efficient real-time implementations of multichannel acoustic echo cancellers
on standard personal computers [2,3].

Generally, we distinguish two classes of adaptive algorithms. One class
includes filters that are updated in the time domain, usually on a sample-
by-sample basis, like the classical least-mean-square (LMS) [4] and recursive
least-squares (RLS) [5] algorithms. The other class may be defined as filters
that are updated in the discrete Fourier transform (DFT) domain (‘frequency
domain’), block-by-block in general, using the fast Fourier transform (FFT)
as a powerful vehicle. As a result of this block processing, the arithmetic
complexity of the latter category is significantly reduced compared to time-
domain adaptive algorithms. The possibility to exploit the efficiency of FFT
algorithms is due to the Toeplitz structure of the matrices involved, which
results from the transversal structure of the adaptive filters. The Toeplitz
matrices can be expressed by circulant matrices which are diagonalizable by
the DFT. Consequently, the key for deriving the frequency-domain adaptive
algorithms is to formulate the time-domain error criterion so that Toeplitz
and circulant matrices are explicitly shown.

In addition to the low complexity, another advantage resulting from this
diagonalization in frequency-domain adaptive filtering is that the adapta-
tion stepsize can be normalized independently for each frequency bin, which
results in a more uniform convergence over the entire frequency range.

Single-channel frequency-domain adaptive filtering was first introduced by
Dentino et al., based on the least-mean-squares (LMS) algorithm in the time-
domain [6]. Ferrara [7] was the first to present an efficient frequency-domain
adaptive filter algorithm (FLMS) that converges to the optimum (Wiener)
solution. Mansour and Gray [8] derived an even more efficient algorithm, the
unconstrained FLMS (UFLMS), using only three FFT operations per block
instead of five for the FLMS, with comparable performance [9]. However, in
some applications, a major handicap with these structures is the delay in-
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troduced between input and output. Indeed, for efficient implementations,
this delay is equal to the length L of the adaptive filter, which is consider-
able for applications like acoustic echo cancellation. A new structure called
multi-delay filter (MDF), using the classical overlap-save (OLS) method, was
proposed in [10,11] and generalized in [12] where the new block size N was
made independent of the filter length L; N can be chosen as small as de-
sired, with a delay equal to N . Although from a complexity point of view,
the optimum choice is N = L, using smaller block sizes (N < L) in order
to reduce the delay is still more efficient than time-domain algorithms. A
more general scheme based on weighted overlap and add (WOLA) methods,
the generalized multidelay filter (GMDFα) was proposed in [13,14], where α
is the overlap factor. The settings α > 1 appear to be very useful in the
context of adaptive filtering, since the filter coefficients can be adapted more
frequently (every N/α samples instead of every N samples in the conven-
tional OLS scheme) and the delay can be (further) reduced as well. Thus,
this structure introduces one more degree of freedom, but the complexity is
increased roughly by a factor α. Taking the block size in the MDF as large as
the delay permits will increase the convergence rate of the algorithm, while
choosing the overlap factor greater than 1 will increase the tracking abilities
of the algorithm.

The case of multichannel adaptive filtering, as shown in Fig. 4.1, has
been found to be structurally more difficult in general. In typical scenarios,
the input signals xp(n), p = 1, . . . , P , to the adaptive filter are not only
auto-correlated but also highly cross-correlated which often results in very
slow convergence of the LP filter coefficients ĥp,κ(n), where κ = 0, . . . , L −
1. This problem becomes particularly severe in multichannel acoustic echo
cancellation [15–17], where the signals xp(n) represent loudspeaker signals
that may originate from common sources. Signal y(n) represents an echo
received by a microphone.
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Fig. 4.1. Multichannel adaptive filtering.

Direct application of commonly used low-complexity algorithms, such as
the LMS algorithm or conventional frequency-domain adaptive filtering, to
the multichannel case usually leads to disappointing results as the cross-
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correlations between the input channels are not taken into account [18]. In
contrast to this, high-order affine projection algorithms and RLS algorithms
do take the cross-correlations into account. Indeed, it can be shown that
the RLS provides optimum convergence speed even in the multichannel case
[18], but its complexity is prohibitively high and, e.g., will not allow real-
time implementation of multichannel acoustic echo cancellation on standard
hardware any time soon.

Two-channel frequency-domain adaptive filtering was first introduced in
[19] in the context of stereophonic acoustic echo cancellation and derived from
the extended least-mean-squares (ELMS) algorithm [20] in the time domain
using similar considerations as for the single-channel case outlined above.

The rigorous derivation of frequency-domain adaptive filtering presented
in the next section leads to a generic algorithm with RLS-like properties.
We will also see that there is an efficient approximation of this algorithm
taking the cross-correlations into account. The single-channel version of this
algorithm provides a direct link to existing frequency-domain algorithms.

The organization of this chapter is as follows. In Section 4.2, we introduce
a frequency-domain recursive least-squares criterion from which the so-called
normal equation is derived. Then, from the normal equation, we deduce a
generic multichannel adaptive algorithm that we can formulate in different
ways, and we introduce the so-called frequency-domain Kalman gain. In Sec-
tion 4.3, we study the convergence of this multichannel algorithm. In Section
4.4, we consider the general MIMO case and, in Section 4.5, we give a very
useful approximation, deduce some well-known single-channel algorithms as
special cases, and explicitly show how the cross-correlations are taken into
account in the multichannel case. We also give design rules for some impor-
tant parameters such as the exponential window, regularization, and adapta-
tion stepsize. A useful dynamical regularization method is discussed in more
detail in Section 4.6. Section 4.7 introduces several methods for increasing
computational efficiency in the multi-input and MIMO cases, such as a robust
recursive Kalman gain computation and FFT computation tailored for over-
lapping data blocks. Section 4.8 presents some simulations and multichannel
real-world implementations for hands-free speech communications. Finally,
our results are summarized in Section 4.9.

4.2 General Derivation of Multichannel
Frequency-Domain Algorithms

In the first part of this section we formulate a block recursive least-squares
criterion in the frequency domain. Once the criterion is rigorously defined,
the adaptive multichannel algorithm follows immediately.
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4.2.1 Optimization Criterion

To obtain an optimization criterion for block adaptation, we assume the
(generally time-variant) adaptive filter coefficients ĥp,0, . . . , ĥp,L−1 for the
input channels 1, . . . , P to be fixed within the block intervals of length N .
For convenience of notation, this allows us to omit the time index of the filter
coefficients during the following derivation of the block error signal.

From Fig. 4.1, it can be seen that the error signal at time n between the
output of the multichannel adaptive filter ŷ(n) and the desired output signal
y(n) is given by

e(n) = y(n) − ŷ(n), (4.1)

with

ŷ(n) =
P
∑

p=1

L−1
∑

κ=0

xp(n − κ)ĥp,κ. (4.2)

By partitioning the impulse responses ĥp into segments of length N as in
[10,11], (4.2) can be written as

ŷ(n) =

P
∑

p=1

K−1
∑

k=0

N−1
∑

κ=0

xp(n − Nk − κ)ĥp,Nk+κ, (4.3)

where we assume that the total filter length L is an integer multiple of N
(N ≤ L), so that L = KN .

For convenient notation of the multichannel algorithms, we rewrite (4.3)
in vectorized form

ŷ(n) =

P
∑

p=1

K−1
∑

k=0

xT
p,k(n)ĥp,k =

P
∑

p=1

xT
p (n)ĥp = xT (n)ĥ, (4.4)

where

xp,k(n) = [xp(n − Nk), xp(n − Nk − 1), · · · , xp(n − Nk − N + 1)]T ,(4.5)

ĥp,k = [ĥp,Nk, ĥp,Nk+1, · · · , ĥp,Nk+N−1]
T , (4.6)

xp(n) = [xT
p,0(n),xT

p,1(n), · · · ,xT
p,K−1(n)]T , (4.7)

ĥp = [ĥT
p,0, ĥ

T
p,1, · · · , ĥ

T
p,K−1]

T , (4.8)

x(n) = [xT
1 (n),xT

2 (n), · · · ,xT
P (n)]T , (4.9)

ĥ = [ĥT
1 , ĥT

2 , · · · , ĥT
P ]T . (4.10)

Superscript T denotes transposition of a vector or a matrix. The length-N
vectors ĥp,k, k = 0, . . . , K − 1, represent sub-filters of the partitioned tap-

weight vector ĥp of channel p.
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We now define the block error signal of length N . Based on (4.1) and (4.4)
we write

e(m) = y(m) − ŷ(m), (4.11)

with m being the block time index, and

ŷ(m) =

P
∑

p=1

K−1
∑

k=0

UT
p,k(m)ĥp,k =

P
∑

p=1

UT
p (m)ĥp = UT (m)ĥ, (4.12)

where

e(m) = [e(mN), · · · , e(mN + N − 1)]T , (4.13)

y(m) = [y(mN), · · · , y(mN + N − 1)]T , (4.14)

ŷ(m) = [ŷ(mN), · · · , ŷ(mN + N − 1)]T , (4.15)

Up,k(m) = [xp,k(mN), · · · ,xp,k(mN + N − 1)], (4.16)

Up(m) = [UT
p,0(m), · · · ,UT

p,K−1(m)]T , (4.17)

U(m) = [UT
1 (m), · · · ,UT

P (m)]T . (4.18)

It can easily be verified that Up,k, p = 1, . . . , P , k = 0, . . . , K−1 are Toeplitz
matrices of size (N × N):

UT
p,k(m) =













xp(mN − Nk) · · · · · · xp(mN − Nk − N + 1)

xp(mN − Nk + 1)
. . .

...
...

. . .
. . .

...
xp(mN − Nk + N − 1) · · · · · · xp(mN − Nk)













These Toeplitz matrices are now diagonalized in two steps:
Step 1: Transformation of Toeplitz matrices into circulant matrices.

Any Toeplitz matrix Up,k can be transformed, by doubling its size, to a
circulant matrix

Cp,k(m) =

[

U′T
p,k(m) UT

p,k(m)

UT
p,k(m) U′T

p,k(m)

]

, (4.19)

where the U′

p,k are also Toeplitz matrices and can be expressed in terms of

the elements of UT
p,k(m), except for an arbitrary diagonal, e.g.,

U′T
p,k(m) =













xp(mN − Nk − N) · · · · · · xp(mN − Nk + 1)

xp(mN − Nk − N + 1)
. . .

...
...

. . .
. . .

...
xp(mN − Nk − 1) · · · · · · xp(mN − Nk − N)













.
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It follows

UT
p,k(m) = W01

N×2NCp,k(m)W10
2N×N , (4.20)

where we introduced the windowing matrices

W01
N×2N = [0N×N , IN×N ],

W10
2N×N = [IN×N ,0N×N ]T .

Step 2: Transformation of the circulant matrices into diagonal matrices.

Using the 2N × 2N DFT matrix F2N×2N with elements e−j2πνn/(2N), where
ν, n = 0, . . . , 2L − 1, the circulant matrices are diagonalized as follows:

Cp,k(m) = F−1
2N×2NXp,k(m)F2N×2N , (4.21)

where the diagonal matrices Xp,k(m) can be expressed by the elements of
the first columns of Cp,k(m),

Xp,k(m) =

diag{F2N×2N [xp(mN − Nk − N), · · · , xp(mN − Nk + N − 1)]T }.(4.22)

Now, (4.20) can be rewritten equivalently as

UT
p,k(m) = W01

N×2NF−1
2N×2NXp,k(m)F2N×2NW10

2N×N . (4.23)

Since

[AX1B, · · · ,AXP B] = A[X1, · · · ,XP ]diag{B, · · · ,B}

for any matrices A,B,Xp with compatible dimensions, it follows for the error
vector using (4.18) and (4.23):

e(m) = y(m) −W01
N×2NF−1

2N×2N [X1(m), · · · ,XP (m)]

· diag{F2N×2NW10
2N×N , · · · ,F2N×2NW10

2N×N}ĥ, (4.24)

where

Xp(m) = [Xp,0(m),Xp,1(m), · · · ,Xp,K−1(m)]. (4.25)

If we multiply (4.24) by the N ×N DFT matrix FN×N , we obtain the error
signal in the frequency domain:

e(m) = y(m) −G01
N×2NX(m)G10

2LP×LP ĥ, (4.26)

where

e(m) = FN×Ne(m), (4.27)

y(m) = FN×Ny(m), (4.28)

G01
N×2N = FN×NW01

N×2NF−1
2N×2N , (4.29)

G10
2LP×LP = diag{G10

2N×N , · · · ,G10
2N×N}, (4.30)
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G10
2N×N = F2N×2NW10

2N×NF−1
N×N , (4.31)

X(m) = [X1(m),X2(m), · · · ,XP (m)], (4.32)

ĥp,k = FN×N ĥp,k, (4.33)

ĥp = [ĥ
T

p,0, ĥ
T

p,1, · · · , ĥ
T

p,K−1]
T , (4.34)

ĥ = [ĥ
T

1 , ĥ
T

2 , · · · , ĥ
T

P ]T . (4.35)

Optimization Criterion:

Having derived a frequency-domain error signal, we now define a frequency-
domain criterion for optimizing the coefficient vector ĥ = ĥ(m):

Jf(m) = (1 − λ)

m
∑

i=0

λm−ieH(i)e(i), (4.36)

where H denotes conjugate transposition and λ (0 < λ < 1) is an exponential
forgetting factor. The criterion (4.36) is very similar1 to the one leading to
the well-known RLS algorithm [5]. The main advantage of using (4.36) is to
take advantage of the FFT in order to have low-complexity adaptive filters.

4.2.2 Normal Equation

Let ∇
ĥ

be the gradient operator with respect to ĥ. Applying the operator ∇
ĥ

to the cost function Jf (4.36), we obtain [1,21] the complex gradient vector:

∇
ĥ
Jf(m) = 2

∂Jf(m)

∂ĥ
∗

(m)
(4.37)

= −2(1− λ)

m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)(G01

N×2N )Hy(i)

+ 2(1 − λ)

[

m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)

· G01
2N×2NX(i)G10

2LP×LP

]

ĥ(m),

where ∗ denotes complex conjugation,

G01
2N×2N = (G01

N×2N )HG01
N×2N

= F2N×2NW01
2N×2NF−1

2N×2N , (4.38)

and

W01
2N×2N =

[

0N×N 0N×N

0N×N IN×N

]

. (4.39)

1 Note that the time-frequency equivalence is assured by Parseval’s theorem.
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By setting the gradient of the cost function equal to zero and defining

y
2N

(m) = (G01
N×2N )Hy(m)

= F2N×2N

[

0N×1

y(m)

]

, (4.40)

we obtain the so-called normal equation:

S(m)ĥ(m) = s(m), (4.41)

where

S(m) = (1 − λ)

m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)G01

2N×2NX(i)G10
2LP×LP

= λS(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)

·G01
2N×2NX(m)G10

2LP×LP (4.42)

and

s(m) = (1 − λ)
m
∑

i=0

λm−i(G10
2LP×LP )HXH (i)y

2N
(i)

= λs(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)y

2N
(m)

= λs(m − 1) + (1 − λ)(G10
2LP×LP )HXH(m)(G01

N×2N )Hy(m). (4.43)

If the input signal is well-conditioned, matrix S(m) is nonsingular. In this
case, the normal equation has a unique solution which is the optimum Wiener
solution.

4.2.3 Adaptation Algorithm

The different formulations for filter adaptation discussed below, i.e., recursive
updates of ĥ(m), are all derived directly from the normal equation (4.41) and
associated equations (4.42) and (4.43).

Here, we replace s(m) and s(m − 1) in the recursive equation (4.43) by
formulating (4.41) in terms of block time indices m and m − 1, respectively.
We then eliminate S(m − 1) from the resulting equation using (4.42). Rein-
troducing the error signal vector (4.26), we obtain an exact recursive solution
of (4.41) by the following adaptation algorithm:

e(m) = y(m) −G01
N×2NX(m)G10

2LP×LP ĥ(m − 1) (4.44)

ĥ(m) = ĥ(m − 1) + (1 − λ)S−1(m)(G10
2LP×LP )H

·XH(m)(G01
N×2N )He(m). (4.45)
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For practical purposes, it is useful to reformulate this algorithm. First, we
multiply (4.44) by (G01

N×2N )H ,

e2N (m) = y
2N

(m) −G01
2N×2NX(m)G10

2LP×LP ĥ(m − 1) (4.46)

ĥ(m) = ĥ(m − 1) + (1 − λ)S−1(m)(G10
2LP×LP )H

· XH(m)e2N (m), (4.47)

where we defined analogously to (4.40)

e2N (m) = (G01
N×2N )He(m)

= F2N×2N

[

0N×1

e(m)

]

. (4.48)

If we multiply (4.47) by G10
2LP×LP , we obtain the algorithm (4.46) and (4.47)

in a slightly different form:

e2N (m) = y
2N

(m) −G01
2N×2NX(m)ĥ2LP (m − 1) (4.49)

ĥ2LP (m) = ĥ2LP (m − 1) + (1 − λ)G10
2LP×LP

· S−1(m)(G10
2LP×LP )HXH(m)e2N (m), (4.50)

where S(m) is given by (4.42), and

ĥ2LP (m) = G10
2LP×LP ĥ(m)

=
[

ĥ
T

2NP,1,0(m), · · · , ĥ
T

2NP,P,K−1(m)
]T

,

ĥ2NP,p,k(m) = F2N×2N

[

ĥp,k(m)
0N×1

]

.

(4.51)

The rank of the matrix G10
2LP×LP is equal to LP . Since we have to

adapt LP unknowns, in principle, (4.50) is equivalent to (4.47). Indeed,
if we multiply (4.50) by (G10

2LP×LP )H , we obtain exactly (4.47) since
(G10

2LP×LP )HG10
2LP×LP = ILP×LP . It is interesting to see how naturally we

have ended up using blocks of length 2N (especially for the error signal) even
though we have used an error criterion with blocks of length N . We can do
even better than that and rewrite the algorithm exclusively using FFTs of
size 2N . This formulation is by far the most interesting one because an ex-
plicit link with existing frequency-domain algorithms can be established. Let
us first define the (2LP × 2LP ) matrix

Sd(m) = (1 − λ)

m
∑

i=0

λm−iXH(i)G01
2N×2NX(i)

= λSd(m − 1) + (1 − λ)XH (m)G01
2N×2NX(m).

(4.52)
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The relation of Sd(m) to S(m) is obviously given by:

S(m) = (G10
2LP×LP )HSd(m)G10

2LP×LP . (4.53)

Next, we define

G10
2N×2N = G10

2N×N (G10
2N×N )H

= F2N×2NW10
2N×2NF−1

2N×2N

and

G10
2LP×2LP = diag{G10

2N×2N · · ·G10
2N×2N}, (4.54)

where

W10
2N×2N =

[

IN×N 0N×N

0N×N 0N×N

]

. (4.55)

Now, we have a relation between the inverse of the two matrices S (as it
appears in (4.50)) and Sd:

G10
2LP×2LP S−1

d (m) = G10
2LP×LP S−1(m)(G10

2LP×LP )H . (4.56)

This can be verified by post-multiplying both sides of (4.56) by
Sd(m)G10

2LP×LP and noting that G10
2LP×2LP G10

2LP×LP = G10
2LP×LP . Using

(4.56), the adaptive algorithm consisting of (4.42), (4.49), and (4.50) can
now be formulated more conveniently:

Sd(m) = λSd(m − 1) + (1 − λ)XH(m)G01
2N×2NX(m) (4.57)

e2N (m) = y
2N

(m) −G01
2N×2NX(m)ĥ2LP (m − 1) (4.58)

ĥ2LP (m) = ĥ2LP (m − 1) + (1 − λ)G10
2LP×2LP S−1

d (m)

·XH(m)e2N (m). (4.59)

Due to the structure of the update equations, we introduce a frequency-
domain Kalman gain matrix in analogy to the RLS algorithm [1]:

K(m) = (1 − λ)S−1
d (m)XH (m). (4.60)

This 2LP × 2L matrix includes the inverse in (4.59) and plays a very im-
portant role in practical realizations, including a tight coupling between the
multiple input channels by coherence terms, as shown in detail in subsequent
sections. Figure 4.2 summarizes the general steps in multichannel frequency-
domain adaptive filtering. For clarity of the figure, the case N = L is depicted.
The two shaded blocks represent the calculation of the Kalman gain using
(4.57) and (4.60), or efficient realizations thereof.
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Fig. 4.2. Principle of multichannel frequency-domain adaptive filtering (N = L).

4.3 Convergence Analysis

In this section, we analyze the convergence behaviour of the algorithm for
stationary signals xp(n) and y(n) based on (4.44) and (4.45).

Due to the assumed stationarity of the filter input signals, we obtain, after
taking the expected value of (4.42):

E{S(m)} = (1 − λ)

m
∑

i=0

λm−iSe, (4.61)

where

Se = E
{

(G10
2LP×LP )HXH(m)G01

2N×2NX(m)G10
2LP×LP

}

(4.62)

denotes the time-independent ensemble average. Noting that in (4.61) we
have a sum of a finite geometric series, it can be simplified to

E{S(m)} = (1 − λm+1)Se. (4.63)

For a single realization of the stochastic process S(m), we assume that

S(m) ≈ (1 − λm+1)Se, (4.64)

and for the steady state we see with 0 < λ < 1 that

S(m) ≈ Se for large m. (4.65)
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4.3.1 Analysis Model

For the following, we assume that the desired response y(n) and the tap-input
vector x(n) are related by the multiple linear regression model [1]

y(n) = xT (n)h + nO(n), (4.66)

where the LP × 1 vector h denotes the fixed regression parameter vector of
the model and the measurement error nO(n) is assumed to be a zero-mean
white noise that is independent of xp(n) ∀ p ∈ {1, . . . , P}. The equivalent
expression in the frequency domain reads

y(m) = G01
N×2NX(m)G10

2LP×LP h + n(m), (4.67)

where h and n(m) are defined in the same way as ĥ in (4.35) and y(m) in
(4.28), respectively.

4.3.2 Convergence in the Mean

By noting that

(G01
N×2N )HG01

N×2N = G01
2N×2N (4.68)

from (4.38), the coefficient update (4.45) can be written in terms of the
misalignment vector ε(m) as

ε(m) = h− ĥ(m)

= h− ĥ(m − 1)

− (1 − λ)S−1(m)(G10
2LP×LP )HXH(m)G01

2N×2NX(m)

· G10
2LP×LP [h − ĥ(m − 1)]

− (1 − λ)S−1(m)(G10
2LP×LP )HXH(m)n(m). (4.69)

Taking the mathematical expectation of expression (4.69), using the inde-
pendence theory [1], and (4.62) together with (4.65), we deduce for large m
that

E{ε(m)} = λE{ε(m − 1)} = λmE{ε(0)}. (4.70)

Equation (4.70) expresses that the convergence rate of the algorithm is gov-
erned by λ. Most importantly, the rate of convergence is completely inde-
pendent of the input statistics (even in the multichannel case). Finally, we
have

lim
m→∞

E{ε(m)} = 0LP×1 ⇒ lim
m→∞

E{ĥ(m)} = h. (4.71)

Now, suppose that λt is the forgetting factor of a sample-by-sample adaptive
algorithm (operating in the time domain). To have the same effective window
length for the sample-by-sample and block-by-block algorithms, we should
choose λ = λN

t . For example, a typical choice for the RLS algorithm [1]
is λt = 1 − 1/(3L). In this case, a good choice for the frequency-domain
algorithm is λ = [1 − 1/(3L)]N .
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4.3.3 Convergence of the Mean-Squared Error

The convergence of the algorithm in the mean is not sufficient for convergence
to the minimum mean-squared error (MMSE) estimate [1] as it only assures

a bias-free estimate ĥ(m). The algorithm converges in the mean square if

lim
m→∞

J ′

f (m) = J ′

f,min < ∞, (4.72)

where

J ′

f (m) =
1

N
E
{

eH(m)e(m)
}

. (4.73)

From (4.44), the error signal e(m) can be written in terms of ε(m) as

e(m) = G01
N×2NX(m)G10

2LP×LP ε(m − 1) + n(m). (4.74)

Expression (4.73) becomes

J ′

f (m) =
1

N
Jex(m) + σ2

n, (4.75)

where the excess mean-square error is given by

Jex(m) = E
{

εH(m − 1)(G10
2LP×LP )HXH(m)G01

2N×2N

· X(m)G10
2LP×LP ε(m − 1)

}

(4.76)

and σ2
n is the variance of the noise signal nO(n). Furthermore, (4.76) can be

written as

Jex(m) = E
{

tr
[

εH(m − 1)(G10
2LP×LP )HXH(m)

· G01
2N×2NX(m)G10

2LP×LP ε(m − 1)
]}

= E
{

tr
[

(G10
2LP×LP )HXH (m)G01

2N×2NX(m)

· G10
2LP×LP ε(m − 1)εH(m − 1)

]}

= tr
[

E
{

(G10
2LP×LP )HXH (m)G01

2N×2NX(m)

· G10
2LP×LP ε(m − 1)εH(m − 1)

}]

.

Invoking the independence assumption and using (4.62), we may reduce this
expectation to

Jex(m) = tr[SeM(m − 1)], (4.77)

where

M(m) = E
{

ε(m)εH(m)
}

(4.78)

is the misalignment correlation matrix.
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We derive an expression for the misalignment vector ε(m) using the nor-
mal equation (4.41), and (4.43):

ε(m) = h− ĥ(m)

= h− S−1(m)s(m)

= h− (1 − λ)S−1(m)
m
∑

i=0

λm−i(G10
2LP×LP )H

· XH(i)(G01
N×2N )Hy(i). (4.79)

Using y(m) from the model (4.67), we obtain with (4.68) and (4.42):

ε(m) = −(1 − λ)S−1(m)

m
∑

i=0

λm−i(G10
2LP×LP )HXH(i)

· (G01
2N×2N )Hn(i). (4.80)

If we plug this equation into (4.78), we obtain, after taking the expectations,
and noting that for a given input sequence, the only random variable is the
white measurement noise n(m):

M(m) = σ2
n(1 − λ)2S−1(m)

[

m
∑

i=0

λ2(m−i)(G10
2LP×LP )H

· XH(i)G01
2N×2NX(i)G10

2LP×LP

]

S−1(m), (4.81)

where E{n(m)nH(m)} = σ2
nI was used. Analogously to (4.64), we find for

the term in brackets in (4.81):

m
∑

i=0

λ2(m−i)(G10
2LP×LP )HXH(i)G01

2N×2NX(i)G10
2LP×LP

≈ (1 − λ2(m+1))Se. (4.82)

Assuming strict equality in (4.82), using (4.64), and 1 − λ2(m+1) = (1 −
λm+1)(1 + λm+1), this leads to

M(m) = σ2
n(1 − λ)2

1 + λm+1

1 − λm+1
S−1

e . (4.83)

Finally, we obtain for (4.75) with (4.77)

J ′

f (m) =

[

LP

N
(1 − λ)2

1 + λm

1 − λm
+ 1

]

σ2
n. (4.84)

This equation describes the convergence curve of the mean-squared error.
One can see that in the steady state, i.e., for large m, the mean-squared error
converges to a constant value as desired in (4.72):

J ′

f (m → ∞) = J ′

f,min =

[

LP

N
(1 − λ)2 + 1

]

σ2
n. (4.85)
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Moreover, we see from (4.84) that the convergence behaviour of the mean-
squared error is independent of the eigenvalues of the ensemble-averaged
matrix Se. The scalar

Jmis(m) = E
{

εH(m)ε(m)
}

(4.86)

describes the convergence of the misalignment, i.e. the coefficient convergence.
Using (4.83), we deduce that

Jmis(m) = tr[M(m)]

= σ2
n(1 − λ)2

1 + λm+1

1 − λm+1
tr[S−1

e ]

= σ2
n(1 − λ)2

1 + λm+1

1 − λm+1

LP−1
∑

i=0

1

λs,i
, (4.87)

where the λs,i denote the eigenvalues of the ensemble-averaged matrix Se. It
is important to notice the difference between the convergence of the mean-
squared error and the misalignment. While the mean-squared error does not
depend on the eigenvalues of Se (i.e., it is also independent of the channel
coherence), the misalignment is magnified by the inverse of the smallest eigen-
value λs,min of Se (and thus of S(m)). The situation is worsened when the
variance of the noise σ2

n is large. So in practice, at some frequencies, where
the signal is poorly excited, we may have a very large misalignment. In order
to avoid this problem and to keep the misalignment low, the adaptive algo-
rithm should be regularized by adding small values to the diagonal of S(m).
In Section 4.6, this important topic is discussed in more detail.

4.4 Generalized Frequency-Domain Adaptive MIMO
Filtering

In this section, we consider the extension of the algorithm proposed in Sec-
tion 4.2 to the general MIMO case, i.e., we have P input signals xp(n),
p = 1, . . . , P , and Q desired signals yq(n), output signals ŷq(n), and error
signals eq(n), q = 1, . . . , Q, respectively (Fig. 4.3). In the sequel, the follow-

+
X(m) E(m)

Y(m)

P Q

-
H
^

(m)
LPxQ

Fig. 4.3. Adaptive MIMO filtering in the frequency domain.

ing questions are discussed: What is the optimum solution? Can correlation
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between the error signals eq(n) be exploited and how do the resulting update
equations look like?

Let us define signal block vectors yq(m), eq(m), y
q
(m), eq(m) for each

output channel in the same way as shown in (4.14), (4.13), (4.28), and (4.27),
respectively. These quantities can be combined in the (N × Q) matrices

E(m) = [e1(m), · · · , eQ(m)],

Y(m) = [y1(m), · · · ,yQ(m)],

E(m) = [e1(m), · · · , eQ(m)],

Y(m) = [y
1
(m), · · · ,y

Q
(m)].

We consider three conceivable generalizations of the recursive least-squares
error criterion proposed in (4.36):

Error criterion 1: Separate optimization

The most obvious approach to the problem is to treat each of the Q desired
signal channels separately by the algorithm proposed above:

Jf1,q(m) = (1 − λ)
m
∑

i=0

λm−ieH
q (i)eq(i) (4.88)

for q = 1, . . . , Q. This criterion has been traditionally used in all approaches
for multichannel echo cancellation which is a system identification problem.

Error criterion 2: Joint optimization

A more general approach foresees to jointly optimize the MIMO filter by the
following criterion:

Jf2(m) =

Q
∑

q=1

Jf1,q(m)

= (1 − λ)

m
∑

i=0

λm−i

Q
∑

q=1

eH
q (i)eq(i)

= (1 − λ)

m
∑

i=0

λm−itr[EH(i)E(i)]

= (1 − λ)
m
∑

i=0

λm−i‖diag{EH(i)E(i)}‖1, (4.89)

where the matrix norm ‖ · ‖1 sums up the absolute values of all matrix ele-
ments. Introducing the (LP ×Q) coefficient matrix in the frequency domain
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based on the subfilter coefficient vectors ĥp,k,q (p, k, q denote input channel,
partition, and output channel, respectively),

ĤLP×Q =











ĥ1,0,1 · · · ĥ1,0,Q

ĥ1,1,1 · · · ĥ1,1,Q
...

. . .
...

ĥP,K−1,1 · · · ĥP,K−1,Q











, (4.90)

and using the same approach as in Section 4.2, we obtain the following normal
equation:

S(m)ĤLP×Q = sLP×Q(m). (4.91)

Fortunately, this matrix equation can be easily decomposed into Q equations
(4.41). Therefore, criteria 1 and 2 are strictly equivalent for the behaviour
of the adaptation. We note, however, that the compact formulation (4.91) of
the normal equation can be used, e.g., to obtain a generalized control of the
adaptation for the echo cancellation application [22].

Error criterion 3: Joint Optimization, accounting for cross-correlations

between error signals

The last formulation of Criterion 2 (4.89) reveals an interesting possibility
to take the cross-correlations between the error signals into account by opti-
mizing

Jf3(m) = (1 − λ)

m
∑

i=0

λm−i‖EH(i)E(i)‖1. (4.92)

Let us consider the optimization of the additional off-diagonal elements
eH

q (i)er(i) (q 6= r) of EH(i)E(i). According to [1,21], we obtain

∂

∂ĥq(i)
eH

q (i)er(i) = 0, (4.93)

and from

∂

∂ĥr(i)
eH

q (i)er(i), (4.94)

we obtain the well-known normal equations (4.41) for ĥq .
Therefore, for all criteria, the generalized frequency-domain adaptive

MIMO filter can be summarized as

Sd(m) = λSd(m − 1) + (1 − λ)XH (m)G01
2N×2NX(m) (4.95)

K(m) = (1 − λ)S−1
d (m)XH (m) (4.96)

E2N×Q(m) = Y2N×Q(m) −G01
2N×2NX(m)Ĥ2LP×Q(m − 1) (4.97)

Ĥ2LP×Q(m) = Ĥ2LP×Q(m − 1) + G10
2LP×2LP K(m)E2N×Q(m) (4.98)

in analogy to equations (4.57) to (4.60).
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4.5 Approximation and Special Cases

We start this section by giving a very useful approximation of the algorithm
proposed in the preceding Section. This allows us both, to show explicitly
the links to the classical single-channel algorithms, and also to derive new
and very efficient multichannel algorithms. The list of special cases of the
framework is not exhaustive and several other algorithms may also be derived.

4.5.1 Approximation of the Frequency-Domain Kalman Gain

Frequency-domain adaptive filters were first introduced to reduce the arith-
metic complexity of the (single-channel) LMS algorithm [7]. Unfortunately,
the matrix Sd is generally not diagonal, so its inversion in (4.96) has a high
complexity and the algorithm may not be very useful in practice. Since Sd is
composed of (K · P )2 sub-matrices

Si,j,k = λSi,j,k(m − 1) + (1 − λ)X∗

i,k(m)G01
2N×2NXj,k(m), (4.99)

it is desirable that each of those sub-matrices be a diagonal matrix. In the
next paragraph, we will argue that G01

2N×2N can be well approximated by the
identity matrix with weight 1/2; accordingly, after introducing the positive
factor µ ≤ 2 in (4.98) and the matrix S′(m) approximating 2Sd(m), we then
obtain the following approximate algorithm:

S′(m) = λS′(m − 1) + (1 − λ)XH (m)X(m) (4.100)

K(m) = (1 − λ)S′−1(m)XH (m) (4.101)

E2N×Q(m) = Y2N×Q(m) −G01
2N×2NX(m)Ĥ2LP×Q(m − 1) (4.102)

Ĥ2LP×Q(m) = Ĥ2LP×Q(m − 1) + µG10
2LP×2LP K(m)E2N×Q(m), (4.103)

where each sub-matrix of S′ and K is now a diagonal matrix and µ ≤ 2 is a
positive number. Note that the imprecision introduced by the approximation
in (4.100) and thus in the Kalman gain (4.101) will only affect the conver-
gence rate. Obviously, we cannot permit the same kind of approximation in
(4.102), because that would result in approximating a linear convolution by
a circular one, which of course can have a disastrous impact in the adaptive
filter behaviour.

To justify the above approximation, let us examine the structure of the
matrix G01

2N×2N . We have

(G01
2N×2N )∗ = F−1

2N×2NW01
2N×2NF2N×2N . (4.104)

Since W01
2N×2N is a diagonal matrix, (G01

2N×2N )∗ is a circulant matrix. There-
fore, inverse transformation of the diagonal of W01

2N×2N gives the first column
of (G01

2N×2N )∗,

g∗ = [g∗0 , g∗1 , · · · , g
∗

2N−1]
T

= F−1
2N×2N [0, · · · , 0, 1, · · · , 1]T .
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The elements of vector g can be written explicitly as:

gk =
1

2N

2N−1
∑

l=N

exp(−j2πkl/2N)

=
(−1)k

2N

N−1
∑

l=0

exp(−jπkl/N), (4.105)

where j2 = −1. Since gk is the sum of a finite geometric series, we have:

gk =

{

0.5 k = 0
(−1)k

2N
1−exp(−jπk)

1−exp(−jπk/N) k 6= 0

=







0.5 k = 0
0 k even
− 1

2N

[

1 − j cot
(

πk
2N

)]

k odd,
(4.106)

where N − 1 elements of vector g are equal to zero. Moreover, since
(G01

2N×2N )HG01
2N×2N = G01

2N×2N , then gHg = g0 = 0.5 and we have

gHg − g2
0 =

2N−1
∑

l=1

|gl|
2 = 2

N−1
∑

l=1

|gl|
2 =

1

4
. (4.107)

We can see from (4.107) that the first element of vector g, i.e., g0, is dominant
in a mean-square sense, and from (4.106) that the absolute values of the N
first elements of g decrease rapidly to zero as k increases. Because of the
conjugate symmetry, i.e. |gk| = |g2N−k| for k = 1, . . . , N − 1, the last few
elements of g are not negligible, but this affects only the first and last columns
of G01

2N×2N since this matrix is circulant with g as its first column. All other
columns have those non-negligible elements wrapped around in such a way
that they are concentrated around the main diagonal. To summarize, we can
say that for N large, only the very first (few) off-diagonals of G01

2N×2N will be
non-negligible while the others can be completely neglected. We also neglect
the influence of the two isolated peaks |g2N−1| = |g1| < g0 on the lower left
corner and the upper right corner, respectively. Thus, approximating G01

2N×2N

by a diagonal matrix, i.e., G01
2N×2N ≈ g0I = I/2, is reasonable, and in this

case we will have µ ≈ 1/g0 = 2 for an optimum convergence rate. For the
rest of this chapter, we suppose that 0 < µ ≤ 2.

4.5.2 Special Cases

In the single-channel case P = Q = 1, S′ and K are diagonal matrices for
N = L and the classical constrained FLMS [7] follows immediately from
(4.100)-(4.103). This algorithm requires the computation of 5 FFTs of length
2L per block. By approximating G10

2LP×2LP in (4.103) to the identity matrix,
we obtain the unconstrained FLMS (UFLMS) algorithm [8] which requires
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only 3 FFTs per block. Many simulations show that the two algorithms have
virtually the same performance.

For N < L, Sd(m) in (4.95) consists of (K ·P )2 sub-matrices that can be
approximated as shown above. It is interesting that for N = 1, the algorithm
is strictly equivalent to the RLS algorithm in the time domain. After the
approximation, we obtain a new algorithm that we call extended multidelay

filter (EMDF) for 1 < N < L that takes the auto-correlations between the
blocks into account. Finally, the classical multidelay filter is obtained by fur-
ther approximating S′(m) in (4.100) by dropping the off-diagonal components
in S′(m):

S′′(m) = diag{S1,1,0(m), · · · ,S1,1,K−1(m)}, (4.108)

where

S1,1,k(m) = λS1,1,k(m − 1) + (1 − λ)X∗

1,k(m)X1,k(m)

are (2N × 2N) diagonal matrices.
In the MIMO case, (4.101) is the solution of a P × P system of linear

equations of block matrices (which consist of K2 diagonal block matrices
each):

K(m) = [KT
1 (m), · · · ,KT

P (m)]T . (4.109)

This allows us to formally write the update equation (4.103) as PQ tightly
coupled ‘single-channel’ update equations

ĥp,q(m) = ĥp,q(m − 1) + µG10
2N×2NKpeq(m) (4.110)

(p = 1, . . . , P , q = 1, . . . , Q) with the sub-matrices Kp(m) taking the cross-
correlations between the input channels into account. These update equations
(4.110) can then be calculated element-wise and the (cross) power spectra are
estimated recursively:

Si,j(m) = λSi,j(m − 1) + (1 − λ)X∗

i (m)Xj(m), (4.111)

where Sj,i(·) = S∗

i,j(·).
It is important to note that the calculation of the Kalman gain (Eqs.

(4.95) and (4.96)), which is the computationally most demanding part, is
completely independent of the number Q of output channels and thus, has
to be calculated only once, while the remaining update equations (4.110)
formally correspond to single-channel algorithms (e.g., (U)FLMS for N = L).

In the case of two input channels P = 2, the Kalman gain can be written
in an explicit form by block-inversion:

K1 = D(m)S−1
1,1(m)[X∗

1(m) − S1,2(m)S−1
2,2(m)X∗

2(m)] (4.112)

K2 = D(m)S−1
2,2(m)[X∗

2(m) − S2,1(m)S−1
1,1(m)X∗

1(m)], (4.113)
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with the abbreviation

D(m) = (1 − λ)[I2L×2L − S∗

1,2(m)S1,2(m){S1,1(m)S2,2(m)}−1]−1.

The solutions of (4.101) for more than two input channels may be for-
mulated similarly to the corresponding part of the stereo update equations
(4.112) and (4.113) (e.g. using Cramer’s rule). These representations allow
an intuitive interpretation as a correction of the interchannel-correlations in
Ki between X∗

i and the other input signals X∗

j , j 6= i.
For three channels, we have (omitting, for simplicity, the block time index

m of all matrices)

K1 = (1 − λ)D−1[X∗

1(S2,2S3,3 − S3,2S2,3) −X∗

2(S1,2S3,3 − S1,3S3,1)

−X∗

3(S1,3S2,2 − S1,2S2,3)],

D := S1,1(S2,2S3,3 − S3,2S2,3) − S2,1(S1,2S3,3 − S1,3S3,1)

− S3,1(S1,3S2,2 − S1,2S2,3)

as the first of the three Kalman gain components with the common factor D.
Unfortunately, for a higher number of channels (and/or a higher number

of sub-filters in case of the extended multidelay filter), the number of update
terms increases rapidly, and the equations become too complicated for prac-
tial use. Therefore, a more efficient scheme for these cases will be proposed
in section 4.7.

4.6 A Dynamical Regularization Strategy

In most practical scenarios, the desired signal y(n) is disturbed, e.g., by
some acoustic background noise. As shown above (c.f. (4.87)), the parameter
estimation (i.e., misalignment) is very sensitive in poorly excited frequency
bins. For robust adaptation the power spectral densities Si,i are replaced

by regularized versions according to S̃i,i = Si,i + diag{δi} prior to inversion
in (4.96). The basic feature of the regularization is a compromise between
fidelity to data and fidelity to some prior information about the solution [23].
The latter increases the robustness, but leads to biased solutions. Therefore,
we propose here a bin-selective dynamical regularization vector

δi(m) = δmax · [e
−S

(0)
i,i

(m)/S0 , · · · , e−S
(2L−1)
i,i

(m)/S0 ]T (4.114)

with two scalar parameters δmax and S0. S
(ν)
i,i denotes the ν-th frequency

component (ν = 0, · · · , 2N − 1) on the main diagonal of Si,i. Note that
for efficient implementation, e in (4.114) may be replaced by a basis 2 and
modified S0. δmax should be chosen according to the (estimated) disturbing
noise level in the desired signal y(n).

As shown in Fig. 4.4, this exponential method provides a smooth transi-
tion between regularization for low input power and data fidelity whenever
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the input power is large enough, and yields improved results compared to
fixed regularization and to the popular approach of choosing the maximum

out of the respective component S
(ν)
i,i and a fixed threshold δth. Results of

numerical simulations can be found in Section 4.8. The method also copes
well with unbalanced excitation of the input channels, and most importantly,
it can be easily extended for the efficient Kalman gain calculation introduced
in the next section.

S   (m)i,i
(ν)

S   (m)i,i
(ν)~

δmax

δth

constant regularization

regularization below threshold

exponential (proposed) regularization

no regularization

Fig. 4.4. Different regularization methods (channel i, bin ν).

4.7 Efficient Multichannel Realization

As will be demonstrated by simulation results and real-world applications in
Section 4.8, the presented algorithm copes well with multichannel input. The
cases of a larger number of filter input channels (P larger than 2 or 3) and/or
a larger number of sub-filters (N < L) when using the EMDF algorithm (c.f.
Section 4.5.2) call for further improvement of the computational efficiency. In
this section, we propose efficient and stable recursive calculation schemes for
the frequency-domain Kalman gain and the DFTs of the overlapping input
data blocks for the case of a large number of filter input channels. Overlapping
input data blocks result from an overlap factor α > 1, originally proposed in
[13]. Incorporating this extension in the proposed algorithm is very simple.
Essentially, only the way the input data matrices (4.22) are calculated, is
modified to

Xp,k(m) = diag{F2N×2N [xp(m
N

α
− Nk − N), · · ·

· · · , xp(m
N

α
− Nk + N − 1)]T }. (4.115)

Simulations show that increased overlap factors α are particularly useful in
the multichannel case.

4.7.1 Efficient Calculation of the Frequency-Domain Kalman

Gain

For a practical implementation of a system with P > 2 channels, we propose
computationally more efficient methods to calculate (4.101) as follows.
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Due to the block diagonal structure of (4.101), it can be simply decom-
posed w.r.t. the DFT components ν = 0, . . . , 2N − 1 into 2N equations

K(ν)(m) = (1 − λ)(S(ν)(m))
−1

(X(ν)(m))H (4.116)

with (usually small) KP × KP unitary and positive definite matrices S(ν)

containing the ν-th components on the block diagonals of S′−1 in (4.101).
Both K(ν) and X(ν) are vectors of length KP . Note that for real input signals
xi we need to solve (4.116) only for N + 1 bins.

A well-known and numerically stable method for this type of problems is
the Cholesky decomposition of S(ν) followed by solution via backsubstitution,
see [24]. The resulting total complexity for one output value is then

O(KP · log2(2N)) + O((KP )3), (4.117)

where for the (U)FLMS algorithm in the two-channel (stereo) case the second
term O((KP )3) is much smaller than the share due to the first term.

For a large number (≥ 3) of input channels (see, e.g., the applications
in Section 4.8) we introduce a recursive solution of (4.116) that jointly esti-
mates the inverse power spectra (S(ν))−1 in (4.100) using the matrix-inver-
sion lemma, e.g. [1]. This lemma relates a matrix

A = B−1 + CD−1CH (4.118)

to its inverse according to

A−1 = B −BC(D + CHBC)−1CHB, (4.119)

as long as A and B are positive definite. Comparing (4.100) to (4.118), we
immediately obtain from (4.100) an update equation for the inverse matrices

(S(ν)(m))−1 = λ−1
[

(S(ν)(m − 1))−1

−
(S(ν)(m − 1))−1(X(ν)(m))HX(ν)(m)(S(ν)(m − 1))−1

λ(1 − λ)−1 + X(ν)(m)(S(ν)(m − 1))−1(X(ν)(m))H

]

using the bin-wise quantities introduced in (4.116) (making the denominator
a scalar value). Introduction of the common vector

T
(ν)
1 (m) = (S(ν)(m − 1))−1(X(ν)(m))H (4.120)

in the numerator and the denominator leads to

(S(ν)(m))−1 = λ−1(S(ν)(m − 1))−1

−
T

(ν)
1 (m)(T

(ν)
1 (m))H

λ2(1 − λ)−1 + λX(ν)(m)T
(ν)
1 (m)

. (4.121)

The Kalman gain (4.116) can then be efficiently calculated (using (4.121))
by

K(ν)(m) =
1 − λ

λ
T

(ν)
1 (m)

[

1 −
(T

(ν)
1 (m))H (X(ν)(m))H

λ(1 − λ)−1 + X(ν)(m)T
(ν)
1 (m)

]

. (4.122)
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Again, there are common terms

T
(ν)
2 (m) = X(ν)(m)T

(ν)
1 (m) (4.123)

in (4.122) and (4.121).
Note that our approach should not be confused with the classical RLS

approach [5] which also makes use of the matrix-inversion lemma. As we
apply the lemma independently to usually small KP × KP systems, where
KP << N , (4.116), it is numerically much less critical than in the RLS
algorithm. Note that for N = L, there is no analogon to a more efficient fast

RLS [25] due to the different matrix structures (in this case, vector X(ν)(m)
does not reflect a tapped delay line).

The complexity of the different computation methods for the Kalman
gains (in MUL/ADDs for one output value e(n)) are compared in Fig. 4.5 for
the case N = L (i.e., K = 1). Finally, we note that further gains in compu-
tational complexity can be achieved this way when employing the extended
multidelay filter for N < L.
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Fig. 4.5. Complexity (MUL/ADDs) of Kalman gain for K = 1.

4.7.2 Dynamical Regularization for Proposed Kalman Gain

Approach

Due to the recursion (4.121) the regularization according to (4.114) is not
immediately applicable. Therefore, an equivalent modification is applied di-
rectly to the data matrices X(ν)(m) by addition of mutually uncorrelated
white noise sequences to each channel and frequency bin, respectively. Using
the modified signal vectors, denoted by

X̃(ν)(m) = X(ν)(m) + N(ν)(m), (4.124)

where N(ν)(m) are the vectors of the white noise signals, we obtain the mod-
ified power spectral density matrices (c.f. Eq. (4.100))

S̃(ν)(m) ≈ (1 − λ)

m
∑

q=0

λm−qX(ν)H(q)X(ν)(q)
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+ (1 − λ)
m
∑

q=0

λm−qdiag{[|N
(ν)
1 (q)|2, · · · , |N

(ν)
P ·K(q)|2]T }. (4.125)

The diagonal elements of the second term can be interpreted as a bin-selective
dynamical regularization vector δ(ν)(m) with elements (for channel and/or
partition i and bin ν)

δ
(ν)
i (m) = (1 − λ)

m
∑

q=0

λm−q |N
(ν)
i (q)|2,

= λδ
(ν)
i (m − 1) + (1 − λ)|N

(ν)
i (m)|2. (4.126)

Thus, in order to update the regularization from δ
(ν)
i (m− 1) to δ

(ν)
i (m) with

the appropriate speed (determined by λ), we need to add noise with power

|N
(ν)
i (m)|2 =

δ
(ν)
i (m) − λδ

(ν)
i (m − 1)

1 − λ
. (4.127)

On the other hand, according to (4.114), the regularization should be chosen
according to

δ
(ν)
i (m) = δmax · exp

(

−
S

(ν)
i,i (m)

S0

)

= δmax · exp

(

−
λS

(ν)
i,i (m − 1) + (1 − λ)|X

(ν)
i (m)|2

S0

)

. (4.128)

Now, unlike other dynamical regularization methods, the exponential regu-

larization allows simple elimination of the elements S
(ν)
i,i (m − 1) of the non-

inverted matrix (which therefore need not be computed at all due to the
matrix-inversion lemma (4.119)), since

δ
(ν)
i (m) = δmax

[

exp

(

−
S

(ν)
i,i (m − 1)

S0

)]λ

· exp

(

−
(1 − λ)|X

(ν)
i (m)|2

S0

)

= δ1−λ
max(δ

(ν)
i (m − 1))λ · exp

(

−
(1 − λ)|X

(ν)
i (m)|2

S0

)

. (4.129)

4.7.3 Efficient DFT calculation of overlapping data blocks

In this section we address the first term of the computational cost given
in (4.117) which is mainly determined by the DFTs of the frequency-domain
adaptive filtering scheme (Fig. 4.2). The 2N -point DFT calculation in (4.115)
has to be carried out for each of the P loudspeaker signals and is therefore
most costly. Moreover, as will be discussed in Section 4.8, an increased over-
lap factor α is often desirable in the multichannel case. Therefore, we aim
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at exploiting the overlap of the input data blocks by implementing (4.115)
recursively as well. For simplicity, we assume a block length of N = L in this
section.

For the following derivation,

x
(n)
i (m) = xi

(

m
L

α
− L + n

)

(4.130)

denotes the n-th component (n = 0, . . . , 2L − 1) of the time domain vector
(block index m) to be transformed in (4.115). Let us now consider the ν-th
element on the diagonal of Xi(m) where w = e−j2π/2L:

X
(ν)
i (m) =

2L−1
∑

n=0

x
(n)
i (m)wνn. (4.131)

Separating the summation into one for previous and one for new input val-
ues (Fig. 4.6), followed by the introduction of the previous vector elements

x
(n)
i (m − 1) leads to

X
(ν)
i (m) =

2L−L/α−1
∑

n=0

x
(n)
i (m)wνn +

2L−1
∑

n=2L−L/α

x
(n)
i (m)wνn

=

2L−1
∑

n=L/α

x
(n)
i (m − 1)wν(n−L/α) + ∆X

(ν)
i (m), (4.132)

where

∆X
(ν)
i (m) =

2L−1
∑

n=2L−L/α

x
(n)
i (m)wνn (4.133)

contains the new input values and will be the update term in our recursive

scheme. Next, we introduce the previous DFT output values X
(ν)
i (m−1) by

0 L/2-1 L-1 3L/2-1 2L-1

x(m-1)

0 L/2-1 L-1 3L/2-1 2L-1

x(m)

previous values new values

Fig. 4.6. Example: overlapping data blocks, α = 2.

subtracting the vector elements of x
(n)
i (m − 1) of the previous data vector
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shifted out of the DFT length 2L:

X
(ν)
i (m) = w−νL/α

(

2L−1
∑

n=0

x
(n)
i (m − 1)wνn

−

L/α−1
∑

n=0

x
(n)
i (m − 1)wνn



+ ∆X
(ν)
i (m)

= w−νL/αX
(ν)
i (m − 1) − w−νL/α

·

2L−1
∑

n=2L−L/α

x
(n−2L+L/α)
i (m)wν(n−2L+L/α)

+ ∆X
(ν)
i (m). (4.134)

Using (4.130), we can show that

x
(n−2L+L/α)
i (m) = x

(n)
i (m − 2α + 1). (4.135)

Finally, we obtain

X
(ν)
i (m) = w−νL/αX

(ν)
i (m − 1)

− w−ν2L∆X
(ν)
i (m − 2α + 1) + ∆X

(ν)
i (m).

(4.136)

Again, this recursive update needs to be carried out only for the bins ν =

0, . . . , L if x
(n)
i (m) is real-valued. Only the update ∆X

(ν)
i (m) in this equation

has to be calculated explicitly using the L/α new values of the input vector.
With the truncation of the time-domain input vector for calculating

∆X
(ν)
i (m) in mind, we consider now the decimation-in-frequency FFT al-

gorithm. Figure 4.7 shows a simple example for 2L = 8 and α = 2. 2L−L/α
inputs (thin lines) always carry zero value. As can be seen from the figure,
the first log2(α) stages do not contain any summations while for the following
stages any FFT algorithm (e.g. from highly optimized software libraries) can
be employed. Generally, the elimination of operations on zeros in the FFT
is referred to as pruning and was first described by Markel [26]. Since then,
several pruning algorithms with increased efficiency have been proposed. A
summary and further references of different approaches may be found, e.g.,
in [27].

In summary, using FFT pruning, the recursive DFT approach reduces the
first term of the complexity in (4.117) for N = L to O(P · log2(L/α)) for each
output point.

4.8 Simulations and Real-World Applications

As mentioned in the introduction, there are many areas of applications for
multichannel adaptive filtering. In the following, we demonstrate the perfor-
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Fig. 4.7. Illustration of decimation-in-frequency FFT with windowed input.

mance of our approach in a few examples for hands-free speech communica-
tion.

4.8.1 Multichannel Acoustic Echo Cancellation

For applications such as home entertainment, virtual reality (e.g., games,
training), or advanced teleconferencing, there is a growing interest in mul-
timedia terminals with an increased number of audio channels for sound
reproduction (e.g., stereo or 5.1 channel - surround systems). In such appli-
cations, multichannel acoustic echo cancellation is a key technology whenever
hands-free and full-duplex communication is desired (Fig. 4.8).

Transmission Room
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Speech
Recognizer
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Fig. 4.8. Multichannel acoustic echo cancellation.

The fundamental problem is that the multiple channels may carry linearly
related signals which in turn may make the normal equation to be solved by
the adaptive algorithm singular. This implies that there is no unique solution
to the equation but an infinite number of solutions and it can be shown that
all but the true one depend on the impulse responses of the transmission room
[15,16]. It is shown in [17] that the only solution to the nonuniqueness problem
is to reduce the correlation between the different signals. Three methods of
preprocessing can be distinguished: inaudible nonlinear processing, e.g., [17],
additive noise (preferably below the masking threshold of human hearing),



124 Herbert Buchner et al.

e.g., [28], and time-varying filtering, e.g., [29]. For the following example, a
signal from a common source (in the transmission room) was convolved by P
different room impulse responses and nonlinearly, but inaudibly preprocessed
according to [17] (P different nonlinearities with factor 0.5). In this subsection
we consider only Q = 1 microphone in the receiving room. The convergence
behaviour is shown both in terms of system misalignment (ratio of the squared
norms of (4.69) and the desired response), and in terms of echo return loss
enhancement (ERLE) which describes the ratio of the short-term powers of
the echo y(n) − nO(n) and the residual echo e(n) − nO(n). (For smoothing
the ERLE curves, a moving average filter of length 256 was used.)

Figure 4.9 illustrates the effect of taking the cross-correlations in (4.112)
and (4.113) for P = 2 into account. As input xp(n), a common white noise
signal was convolved by the room impulse responses in the transmission room.
Another white noise signal was added to the echo on the microphone for
SNR = 35dB. Here, both the receiving room impulse responses and the
modeling filter lengths were chosen to be 1024 (solid lines: proposed, dashed
lines: classical UFLMS algorithm).
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Fig. 4.9. Effect of taking cross-correlation into account (P=2 channels, α = 4). (a)
Misalignment, (b) ERLE.

For simulations with real-world signals, the lengths of the measured re-
ceiving room impulse responses were 4096 and the modeling filters were 1024,
respectively. One common speech signal from the transmission room serves as
input signal. Figure 4.10 shows the misalignment convergence of the described
algorithm (solid) for the multichannel cases P = 2 (lowest curve),3, 4, 5 (up-
permost curve), and the basic NLMS [1] (dashed) for comparison. In (a) the
overlap factor α was set to 4 in all cases, while in (b) the overlap factor α was
set to 4 for P = 2, and adjusted to 8 for P = 3, 4, and to 16 for P = 5. Using
these parameters, the convergence curves for the different numbers of chan-
nels are almost indistinguishable. Figure 4.11 (a) shows the corresponding
ERLE curves.
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Figure 4.11 (b) compares different regularization methods (white noise
distortion as above): no regularization (uppermost curve), constant regu-
larization (dotted), threshold (dashed), exponential with original algorithm
(dash-dot), proposed Kalman gain computation 4.122 (lower solid line).
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Fig. 4.10. Misalignment convergence for the multichannel cases P=2 (lowest),3,4,5
(uppermost). (a) Overlap α = 4, (b) overlap α adjusted.
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Fig. 4.11. (a) ERLE convergence for the multichannel cases P=2,3,4,5 and ad-
justed α and (b) comparison of regularization methods, P=5, α=16.

We note that for both, stereophonic teleconferencing and hands-free
speech recognition applications, real-time systems could be successfully im-
plemented on regular personal computers [2,3].

4.8.2 Adaptive MIMO Filtering for Hands-Free Speech

Communication

In applications such as hands-free speech recognition, it is very important to
reduce interfering noise or competing speech signals, and reverberation of the
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target speech signal, in addition to the acoustic echo cancellation (Fig. 4.12).

Interferer

Echoes

Multimedia System

Target

Reverberation

Fig. 4.12. Hands-free speech recognition in multimedia systems.

An efficient approach to address these problems is to replace the single
microphone by a microphone array directing a beam of increased sensitivity
at the active talker [30]. In any practical system, this scenario presents a
MIMO system identification problem for the acoustic echo canceller [30,3].
Fortunately, as noted in Section 4.4, the costly calculation of the Kalman gain
is necessary only once, i.e., it is independent of the number of microphones.
Figure 4.13 gives an example of a low-complexity structure. Echo cancellation
is applied to several beamformer (BF) output signals. The fixed beamformers
do not disturb the convergence of the echo cancellation and direct beams to
all directions of interest [30]. Thanks to the efficient frequency-domain ap-
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Fig. 4.13. A human/machine interface for hands-free speech recognition.

proach, it has become possible to run such a system in real-time on standard
PC platforms. The implementation is fully scalable (e.g., sampling rate, num-
ber of loudspeakers, microphones, and beams) with dynamical allocation of



4 Multichannel Adaptive Filtering, Acoustic Echo Cancellation 127

computational power. Example parameters for a speech recognition interface
with 5.1-channel surround sound reproduction running on a 1.7 GHz dual
processor board are: PL = 5 · 4096 adaptive filter coefficients, an overlap
factor α = 16, and a sampling rate of 12kHz for the acquisition.

4.9 Conclusions

In many applications where an adaptive filter is required, frequency-domain
algorithms are an attractive alternative to time-domain algorithms, expecially
for the multichannel case. First, the computational complexity can be low
by utilizing the efficiency of the FFT. Second, the convergence is improved
if crucial parameters of these algorithms such as the exponential window,
regularization, and adaptation step are properly chosen.

A general framework for multichannel frequency-domain adaptive filter-
ing was presented and its efficiency in actual applications was demonstrated.
A generic multichannel algorithm with a MMSE convergence that is indepen-
dent of the input signal statistics can be derived from the normal equation
after minimizing a block least-squares criterion in the frequency domain. We
analyzed the convergence of this algorithm and discussed some approxima-
tions that lead to both, well-known algorithms in the single-channel case,
such as the FLMS and UFLMS, and new algorithms such as the EMDF. For
the multichannel case the framework is attractive as the cross-correlations
between all input signals are efficiently taken into account. We have also
presented strategies to improve the computational efficiency further by in-
troducing stable schemes for recursive DFT and Kalman gain computation.
Several simulations and real-time implementations illustrate the benefits of
the multichannel algorithm.
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