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Nomenclature
List of mathematical symbols
The following general conventions are used in this chapter: Matrices and vectors are written boldface,
e.g., x(n), matrices often uppercase and vectors lowercase, while scalar sequences are written non-bold,
e.g., x(n). Quantities in the frequency-domain are written in uppercase Latin, e.g., X(k, m), or boldface
in the DFT-domain, e.g., S(m). Estimated quantities are labeled with a hat, e.g., ŝ(n). Some special
quantities are denoted by Greek symbols:

d(n) acoustic echo signal
e(n) error signal after acoustic echo cancellation
fs sampling frequency
G(m, ν) echo path transfer function (delay compensated!)
hn acoustic echo path coefficients at time-lag n
I identity matrix
k(n) time-varying Kalman gain vector
m block time index, m ∈ Z

n discrete sampling time index, n ∈ Z

N number of FIR filter coefficients
Rs(n) time-varying covariance matrix of near-end speech s
s(n) near-end speech signal (including environmental noise)
x(n) received signal from the far speaker
y(n) microphone signal

μ stepsize factor of LMS-type algorithms
ν discrete frequency index, ν = 0, 1, . . . , M − 1
σ 2

s (n) time-varying power, i.e., variance, of near-end speech s(n)

( · )H transposition and complex conjugation of the argument
( · )T transposition of the argument
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E{·} statistical expectation operator
ln, log natural and base-10 logarithm

List of Abbreviations

A/D Analog-to-Digital
AEC Acoustic Echo Control
AES Acoustic Echo Suppression
AGC Adaptive (or Automatic) Gain Control
APA Affine Projection Algorithm
DCR Diagonal Coordinate Representation
DFT Discrete Fourier Transform
EEF Echo Estimation Filter
EOS Equivalent Orthogonal Structure
ESF Echo Suppression Filter
ERLE Echo Return Loss Enhancement
FDAF Frequency-Domain Adaptive Filter
FFT Fast Fourier Transform
FIR Finite Impulse Response
IDFT Inverse Discrete Fourier Transform
IFFT Inverse Fast Fourier Transform
IIR Infinite Impulse Response
IP Internet Protocol
ITU International Telecommunication Union
LMS Least Mean-Square Algorithm
MCAEC Multichannel Acoustic Echo Cancellation
MMSE Minimum Mean-Square Error
NLMS Normalized Least Mean-Square Algorithm
PSD Power Spectral Density
RLS Recursive Least-Squares Algorithm
SER Signal-to-Echo Ratio
SNR Signal-to-Noise Ratio
STFT Short-Time Fourier Transform
VAD Voice Activity Detector

4.30.1 Introduction
Acoustic echo control (AEC) refers to signal processing technology used in communication systems
with full-duplex hands-free acoustic man-machine interfaces. AEC technology is required to com-
bat the undesired acoustic coupling between sound reproduction and acquisition in a system. In this
introductory section, we first clarify the problem statement, before we describe typical elements of the
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4.30.1 Introduction 809

signal processing chain in sound front-ends of hands-free communication systems. We then refer to
most relevant applications and quality measures for AEC technology.

4.30.1.1 Problem statement and early developments
In the signal model of a hands-free voice communication system in Figure 30.1, the task of the AEC
unit is to reproduce the desired near-end speech s(n), at discrete time n, in the output signal ŝ(n) in
sending direction of the system, while suppressing the undesired echo d(n) of the far-end speech x(n).
The echo signal due to the echo path hn typically consists of the direct sound between loudspeaker and
microphone as well as multiple reflections of walls in the enclosure. The larger the roundtrip delay of
the far-end speech in an end-to-end communication, the more echo attenuation is required [1].

The black-box AEC in Figure 30.1 represents different types of signal processing that have been
pursued to achieve the separation of the echo from the near-end speech. Voice controlled switching has
been developed in the 1960s and is still used in many products to suppress the acoustic echo of the far
speaker. In an example of this technique, the hands-free microphone signal y(n) is strongly attenuated
whenever a received signal x(n) from the far speaker side is observed. Alternatively, we could attenuate
the received signal x(n) before reproduction by the loudspeaker if near-end speech is detected and has
priority. In any case, the loop gain from x(n) to ŝ(n) should provide the required echo attenuation.
Voice controlled switching can be implemented easily, analog or digital, but the fundamental problem
is that switching effectively leads to an unacceptable half-duplex connection between both ends of
the communication system. Especially the background noise transmission would suffer from on-off
modulations. Therefore, voice controlled switches (or other gain functions in the system) are nowadays
implemented in conjunction with comfort noise injection [2].

Many of the current developments in AEC can be traced back to the fundamental idea of creat-
ing a replica of the echo path impulse response hn in Figure 30.1 using FIR filter structures. The
FIR filter is essentially placed in parallel to the echo path and stimulated by the loudspeaker signal.

h n
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s n )(y ( n)
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To Far Speaker
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Echo

Path
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Echo

Controller

FIGURE 30.1

Acoustic front-end of hands-free voice communication systems.
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The resulting echo replica at the filter output can be subtracted from the microphone signal to achieve
echo cancellation and said FIR filter is thus termed echo canceler. This principle was originally con-
ceived in the 1960s to solve the problem of line echoes due to non-ideal hybrids in long distance
telephone networks [3,4]. Using this technology for canceling acoustic echoes, however, turns out to be
a quite challenging task, since the duration of the impulse response of an acoustical echo path is usually
many times longer than impulse responses of line echoes. Depending on the acoustic environment and
the sampling frequency, acoustic echo cancellation then requires FIR filters with a very large number of
coefficients. In the small interior of the car environment and for the low sampling frequency of 8 kHz,
i.e., for telephone quality, it already amounts to hundreds of coefficients, while in the office environment
we may even encounter thousands of taps depending on the reverberation time [4]. It has been shown
that IIR filters will not achieve better echo path modeling with lesser coefficients [5].

4.30.1.2 Typical building blocks of current systems
Virtually all existing systems are based on the early ideas of echo attenuation and echo cancellation.
In practice, it turns out that hybrid solutions often provide the best performance. The mainstream in
system development for acoustic echo control is wrapped up in Figure 30.2, which basically represents
a zoom into the black-box AEC of Figure 30.1. If the echo canceler would exactly match the echo
path, then the echo signal could be eliminated completely from the microphone signal. However, echo
paths are in most of the cases a priori unknown and time-varying systems (e.g., due to moving persons
in the vicinity of loudspeaker and microphone) and for this reason adaptive filters and adaptive filter
algorithms have to be considered. The developments for the adaptive echo canceler are reported in great
detail, e.g., in [6–9] and references therein.

Due to the related computational load and numerical requirements, the field of acoustic echo
cancellation eventually has been understood as an application of very-high-order adaptive filters [6]. In
this way, it has also been an important driving force in the development of new and powerful adaptive
filtering algorithms. Among the desirable properties of adaptive echo cancellation filters, we have low
computational complexity, low memory requirements, fast convergence, and excellent tracking ability.
Due to this multitude of requirements which have to be satisfied simultaneously, the first successful
implementations and commercial products for the acoustic echo case were available not until the 1980s
[4]. Again considering Figure 30.2, the most frequently used adaptive filter algorithms in the echo
cancellation context are the gradient-based NLMS, APA, RLS, and FDAF type of algorithms. Their
properties are thoroughly described for example in [10] and briefly summarized here:

• The normalized least-mean-square (NLMS) algorithm is by far the most popular technique for
adaptive identification of the acoustic echo path [2]. The popularity of the NLMS algorithm is due
to its simplicity, low complexity, and robust (i.e., model-independent) performance. In the case of
correlated (i.e., non-white) echo path input signals x(n), such as speech, the convergence rate of
the NLMS algorithm is, however, too slow to track the echo path impulse response of time-varying
acoustic environments. This problem can be resolved partly by applying decorrelation filters to
the input x(n) and the echo cancellation error e(n) before feeding them into the NLMS algorithm
[11,12].

• The affine projection algorithm (APA) introduced in [13] utilizes several previous input vectors
to determine the input signal correlation. The APA can be seen as a generalization of the NLMS
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algorithm and converges rapidly for autoregressive input signals [14]. A computationally efficient
realization has been presented in [15].

• The fastest convergence is achieved by the recursive least-squares (RLS) algorithm. For decorre-
lation purposes, the RLS algorithm utilizes the inverse of the autocorrelation matrix of the input
signal, the numerical computation of which is demanding and needs to be handled with care [16].
Computationally efficient implementations have been developed [17,18], but still the RLS algorithm
is often considered as too cumbersome for practical applications.

• Subband solutions and frequency-domain adaptive filters (FDAF) have been developed as interesting
alternatives with good convergence properties, low computational complexity, and often favorable
numerical properties [19–21]. The drawback inherent to most of these techniques is the signal
delay that is caused by analysis and synthesis filtering or windowing. The signal delay related
to the FDAF can be reduced either by using the partitioned-block frequency-domain adaptive fil-
ter (PBFDAF)/multi-delay filter (MDF) [22–24], or the specific soft-partitioned frequency-domain
adaptive filter (SPFDAF) [25], or simply by choosing large frame overlap in the FDAF overlap-
save architecture, e.g., [26–28], the latter at the expense of larger computational load. In all these
variants of the FDAF, the algorithmic signal delay and the actual filter length can be adjusted inde-
pendently. Delayless subband adaptive filters, which essentially perform the adaptation process in
the frequency-domain and the actual filtering in the time-domain, are described, e.g., in [29,30].

• Another class of algorithms, with increasing popularity, exploits the sparseness of impulse responses
in both network and acoustic echo cancellation applications. In particular, the sparseness is taken
into account by updating the filter coefficients independently of each other with different adap-
tation time constants—in proportion to the magnitude of the already estimated filter coefficients.
Implementation of this proportionate mechanism obviously requires another feedback loop in the
algorithm, besides the already utilized output error signal. Larger coefficients are then adjusted with
faster convergence, while smaller coefficients converge slower, and consequently the overall speed
of convergence increases. One of the first proportionate algorithms is found in [31]. Since that time,
variants and improvements of the basic proportionate NLMS (PNLMS) algorithm have been pre-
sented, e.g., [32,33]. All this exploitation of sparseness in echo cancellation should be viewed in the
context of seminal work on sparse regression [34].

Adaptive algorithms as mentioned here have two (related) fundamental problems in common: track-
ing ability and robustness. It turns out difficult to let the echo canceler coefficients follow the true
time-varying echo path of realistic acoustic environments. On the one hand, the adaptation must be fast
enough to track the time-varying system, while on the other hand, the adaptation must be robust against
interfering near-end speech (so-called double-talk situation) and background noise. Both requirements
are contradicting and herein lies the key problem of acoustic echo control. As a result, sophisticated
control mechanisms were proposed to support the fast and robust adaptation of echo canceler coeffi-
cients [2,35]. A perfect solution is, however, not available due to the nature of a statistical optimization
problem. In an attempt to satisfy both requirements, many systems utilize time-varying adaptive stepsize
control to accelerate the adaptation in the absence of near-end speech and noise and to slow down (or
even halt) otherwise. Since there are as many publications on stepsize control as on adaptive filters, we
can refer to only some contributions.
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An optimum stepsize for the NLMS algorithm has been determined by quite some authors [2,10,36–
39], where the optimization is always based on the idea of minimum mean-square system distance
between echo canceler and echo path. Optimum stepsizes for the FDAF and the PBFDAF have been
derived in [40]. Unfortunately, all these stepsizes cannot be implemented directly as the (frequency-
dependent) time-varying system distance between echo canceler and echo path is also required as an
input parameter, but difficult to measure out of the lab. Thus, suboptimal control mechanisms have
been developed to approximate the optimum stepsize. Some methods have been designed to explicitly
estimate the actual system distance, whereas other methods aim to facilitate system distance estimation
or to control the adaptation directly:

• The popular delay coefficients method computes the system distance from the leading coefficients
of the adaptive filter, provided that the echo path has natural or artifical zeros at the corresponding
impulse response lags [39]. It is important to note that the delay coefficients method alone is not able
to deliver a reliable estimate of the system distance. An additional detector for echo path changes is
required to avoid stalling (freezing) of the adaptation [2,10,36].

• Double talk detectors (DTD) can be utilized to directly halt the adaptation in the presence of near-end
speech at the microphone [35] or, alternatively, to facilitate system distance estimation [2]. DTD
can be based on cross-correlation measures [41] or on the simple comparison of signal powers or
magnitudes [42]. Remote single talk detection (voice activity detection) as described in [2] is closely
related to DTD.

• The two echo path model [43] can be used in different ways to control the adaptation. Basically, the
approach models a fast and a slowly changing echo path by a background and a foreground adaptive
filter, respectively. An evaluation and comparison of their respective echo cancellation errors then
provides means for adaptive stepsize control in the foreground adaptive filter. This technique finds
widespread application in cases where its computational complexity is tolerable.

• Dynamic regularization controls gradient adaptive filters by means of a time-varying additive quan-
tity in the denominator of the gradient [10,44,45]. It was shown in [46] for the NLMS algorithm
that optimum regularization is equivalent to optimum stepsize control.

• The term residual echo power estimation [47–50] basically refers to the same thing as system distance
estimation, since the respective quantities are simply related by the available echo path input signal
power. System distance estimation is usually preferable, as it separates system properties from signal
properties.

In recent years, in addition to the above control mechanisms, adaptation algorithms have been devel-
oped which are inherently more robust to double talk. Instead of the least-squares approach as in NLMS,
APA, RLS (which corresponds to Gaussian noise assumption) they are based on more advanced stochas-
tic signal models. Basically, there are three fundamental stochastic signal properties that may be taken
into account in these models, and hence, be exploited by the adaptation algorithm: nonstationarity,
nonwhiteness, and nongaussianity.

The simplest way of exploiting nongaussianity—which is equivalent to taking into account higher-
order statistics (HOS)—is to apply a suitable error nonlinearity within the optimization criterion. In
the context of echo cancellation the error nonlinearity was already mentioned in the early paper [3] in
order to cope with outliers caused by misdetections of the double-talk detector. The outliers generally
exhibit a supergaussian probability density. Later, the concept of robust statistics [51], known from
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the statistics literature to systematically address the need of outlier robustness, has been identified as a
powerful and systematic statistical framework for the control of adaptive filters [35,52,53]. It turns out
that this concept can in fact be seen as a systematic and statistically motivated refinement of the use of
an error nonlinearity together with a certain adaptive scaling factor.

Another important and even more general class of HOS-based statistical methods is independent
component analysis (ICA) [54] which can be interpreted from an information-theoretic point of view, and
was originally developed for the problem of blind source separation. Considering now the acoustic echo
control problem from this information-theoretic point of view, an alternative criterion for acoustic echo
control would be to minimize the mutual information between the transmission signal ŝ(n) according
to Figure 30.1 and the loudspeaker signal x ′(n). In other words, the transmission signal ŝ(n) should
be made statistically independent from the echo contribution. Hence, from this point of view, AEC
can be considered as a (supervised) signal separation problem with the accessible loudspeaker signal
as side information. Indeed, using a generic broadband formulation of ICA for convolutive mixtures,
a conceptually simple, yet fundamental relation between AEC and blind adaptive filtering algorithms
was established in this way in [55,56].

In addition to the nongaussianity, the nonstationarity and the nonwhiteness of the signals can be
expoited by the adaptation algorithm. Indeed, all the above-mentioned double-talk handling approaches
are based directly on the nonstationarity property of the near-end speech signal s(n), and in some cases
on the nonwhiteness of the involved signals. Both the nonwhiteness and nonstationarity are captured
by (time-varying) correlation matrices in multivariate second-order statistics.

In [55,57] all three fundamental approaches, i.e., exploiting nongaussianity, nonwhiteness, nonsta-
tionarity, are combined in one generic information-theoretic broadband adaptive filtering framework,
which we call TRINICON (“TRIple-N Independent component analysis for CONvolutive mixtures”).
An interesting finding from this top-down approach is that the generic framework contains not only
all well-known adaptation algorithms mentioned above (e.g., NLMS, APA, RLS) but it also inherently
includes the various known adaptation controls mentioned above, including robust statistics [55,56].
This has led to various new insights into the adaptation mechanisms and we believe that it continues to
be a valuable source of synergy effects for the development of new and improved adaptation algorithms.

In addition to the modeling and exploitation of these signal properties, later parts of this chapter will be
concerned also with introducing the somewhat younger treatment of system properties, especially system
uncertainties. Thereby we will mostly focus on minimum mean-square error (MMSE) optimization
based on Gaussian statistics, i.e., the special case of second-order statistics. A joint consideration of
both signal and system properties has not been achieved yet and may thus represent a future endeavor.

Despite the availability of fast and robust adaptive echo cancelers, residual echo always remains
after the echo canceler and it is widely accepted that an echo canceler alone will not be able to deliver
sufficient echo attenuation in all situations. Adaptive echo cancellation combined with voice controlled
switching is thus implemented in real systems to improve the echo attenuation, but the distortion of the
desired signal s(n) due to switching can still be unacceptable. Another major branch of developments in
the field of acoustic echo control is thus devoted to more sophisticated post-processing for residual echo
suppression in the sending path of the communication system, as shown by Figure 30.2. In stand-alone
form, i.e., without an echo canceler in the system, we refer to echo suppression technology. The latter
is most applicable if the many requirements to the adaptive echo canceler (such as low complexity,
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fast tracking ability, clock synchronization etc.) cannot be satisfied in an application at hand. Further
motivation for stand-alone echo suppression will be provided in Section 4.30.3.

Frequency-selective post-processing, in conjunction with echo cancellation, is also termed postfil-
tering for residual echo suppression [58–61]. In principle, the operation of a residual echo suppression
postfilter is very similar to that of a noise suppression filter and it was reported that both functionalities
can be combined efficiently [58,62]. The key for a good postfilter is the availability of the power spectral
density (PSD) of the residual echo signal. As the residual echo is not a measurable signal, the estimation
of the residual echo PSD from the available signals has to be designed carefully [48,49].

Some publications have shown a tight relationship between the optimum statistical adaptation of echo
canceler and postfilter coefficients [48,63,64]. Ideally, both filters employ the residual echo PSD as a
control parameter. On the one hand, the residual echo PSD governs the adaptive stepsize of LMS- and
FDAF-type adaptive echo cancellation filters and, on the other hand, it is required in the spectral weight
calculation for adaptive postfiltering. Exploitation of this relationship leads to intelligent interaction
of both filters with shared responsibility for acoustic echo control. Interestingly, joint control of echo
canceler and postfilter can be realized simpler than their individual control, if the aforementioned
synergy is taken into account. This has been demonstrated, e.g., by the compact and contained algorithm
in [27], which provides the required echo attenuation and also preserves the full-duplex ability of the
system [65].

Regarding the post-processor in general, there are further options how to adjust a fixed or adaptive,
linear or nonlinear, scalar or frequency-dependent echo attenuation. Post-processing techniques are,
however, not so well documented in the literature as adaptive filters for the echo canceler. Byproducts
of the control mechanisms for the echo canceler are sometimes used to adjust the post-processor. More
hints on post-processors can be found for example in [2,35,66, Chapter 7].

Yet more algorithms and variants of the aforementioned algorithms have been proposed in the
literature, so that our presentation can never be complete. Further references are provided in the course
of this chapter where applicable in the respective context. For complete bibliography, including the
history of acoustic echo control, we recommend further reading in [2,8,9,35].

4.30.1.3 Applications of acoustic echo control
The most important business for acoustic echo control technology is created by hands-free telephones
and speech dialog systems with full-duplex ability. In this chapter, we are mainly concerned with algo-
rithms for hands-free telephony in different environments. Recently, the hands-free telephone market
has been growing due to the advent of modern telecommunication systems, such as

• mobile phones and smart phones with integrated or external hands-free loudspeaker unit,
• car hands-free telephones (integrated or based on mobile phone),
• desktop teleconferencing equipment (e.g., dedicated hardware or PC based solutions for

Voice-Over-IP),
• and audio-visual environments for tele-presence (e.g., HP Halo, Cisco Telepresence, or

Tandberg T3).

The disturbing effect of the acoustic echo and the requirement for acoustic echo control essen-
tially arise from large transmission delays in modern communication. The echo signal delay (which
is twice the transmission delay) ranges from about 200 ms in mobile radio up to seconds in some
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IP connections. The large transmission delay of IP connections necessitates acoustic echo control even in
handset or headset modes of communication. Low signal-to-noise ratio at the microphone, such as in car
hands-free telephony and mobile phones, further causes uncertainties regarding the precise detection
and separation of the disturbing echo from the desired signal.

In many of the aforementioned configurations, the hands-free voice interface is supposed to provide
for improved user-friendliness and simplicity of the communication. In the area of car telephony, the
motivation for hands-free solutions is not only given by the additional user convenience. Here, it is
rather the case that legal aspects in the form of safety regulations are the driving force for the use of
hands-free systems.

Speech dialog systems refer to applications which make use of automatic speech recognition (ASR)
units. Originally, speech recognition was mostly relevant for industrial applications, automatic answer-
ing services over the phone, and smart traffic products (navigation). More recently, the availability of
modestly priced processing power has also made the ubiquitous ASR possible in smart home appli-
cations, i.e., in the consumer market. In speech dialog systems with full-duplex ability, acoustic echo
control based on the known reproduction signal is required as a preprocessing unit for ASR to avoid
confusion between user commands and simultaneous loudspeaker output. This line of research is of
high practical importance for various kinds of next-generation multimedia terminals, such as advanced
TV sets, future multimedia workstations, systems for interactive retrieval of multimedia data, computer
games, navigation, and other voice controlled systems with the ambition of continuous recognition and
reproduction.

4.30.1.4 Quality measures
According to product advertisement in the hands-free telephone market, the speech quality of the
respective solution is always excellent, i.e., the sound is loud and clear and the system has full-duplex
ability (simultaneous transmission in both directions). Of course, such statements are derived from
well-known customer needs and, therefore, they give us a first insight into the quality aspects of hands-
free telephones. What the customer in fact expects is a quality that cannot be distinguished from the
hand-held telephone. Quality impairments are usually not acceptable and can immediately lead to a
reduced acceptance of the product in the market. This has been recognized as a serious problem, e.g.,
for premium car manufacturers if their pre-installed hands-free telephones do not fully comply with
quality expectations.

The reality of hands-free telephones shows that in quite some cases the speech quality is not sufficient
yet. Typical complaints of users refer to a “thin and metallic (or reverberant) sound of the voice”, “annoy-
ing half-duplex functionality”, “insufficient loudness”, or “low intelligibility due to noise”. The same
complaints were also confirmed by the results of independent test labs for car hands-free telephones, e.g.,
[67,68]. The lack of quality then explains an insufficient consumer acceptance of hands-free products,
as for example in the automotive area—despite the hand-held phone ban enforced by legislation.

Objective prediction and evaluation of the subjective quality of modern hands-free communication
systems is a very complex issue and is still under investigation, e.g., [69]. The difficulty is due to a
variety of nonlinear and time-variant signal processing in the hands-free terminals and in the network
(e.g., dynamic level control, echo cancellation, residual echo suppression, noise reduction, comfort
noise injection, coding, jitter buffering, and error concealment). Thus, the description of the perceived

Author’s personal copy
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speech quality by a single value or quality index seems to be out of sight. What can be said is that the
subjective quality of hands-free telephones depends at least on the following quality parameters:

• loudness and sound quality, i.e., listening speech quality,
• acoustic echo attenuation, i.e., talking speech quality,
• double talk speech quality, i.e., duplex ability,
• and naturalness of (residual) background noise transmission.

At this point, it should be noted that the simultaneous optimization of these quality parameters is
indeed required to achieve sufficient performance. This is the requirement which constitutes the actual
difficulty in the field of acoustic echo control. Relaxation of just one or two quality aspects stands
for undue simplification in the design of hands-free telephones. For instance, by significantly reducing
the reproduction loudness of the device, we can easily avoid echo, but obviously it does not help the
communication.

Instrumental speech quality measures, which have been described, e.g., in [70,71], and newer tech-
niques which have been developed for the analysis of coded and transmitted speech, e.g., [72–74], are
not directly applicable to evaluate the quality of acoustic echo control and speech enhancement systems
in general. The reason is that the specific signal modifications and distortions which are introduced by
acoustic echo and noise reduction techniques are not explicitly modeled in these approaches.

A variety of subjective and objective quality parameters, as well as testing methods for systems which
rely on acoustic echo control, are described in the following ITU-T recommendations: [1,75–82]. A
comprehensive and promising specification of objective test procedures for car hands-free telephones has
been enforced by the association of German car manufacturers (VDA) [83,84]. The VDA specification
is based on previously mentioned ITU-T recommendations, but in addition to the standard quality
parameters, the VDA defines a more detailed analysis of double talk situations and background noise
transmission.

From the algorithm developer’s viewpoint in the field of acoustic echo control, a convenient way of
assessing the echo quality of a hands-free system is the calculation of the echo return loss enhancement
(ERLE) as an indicator function for the echo attenuation achieved by the system. Based on the signals
at sampling time index n in the block diagram in Figure 30.2, the ERLE can be defined via statistical
expectation E as follows:

ERLE = E{d2(n)}
E{(d(n) − d̂(n))2} . (30.1)

This formula can be applied under lab conditions when the echo signal d(n) and thus the residual echo
d(n) − d̂(n) after echo cancellation are available explicitly. Otherwise, the echo signal d(n) can be
replaced by the noisy microphone signal y(n) and conclusions regarding the echo attenuation can be
drawn as long as the level of near-end speech and noise is low. After the post-processor in Figure 30.2,
a more suitable measure is to evaluate the resulting near-end speech quality in form of a signal-to-echo
ratio (SER) according to the following definition:

SER = E{s2(n)}
E{(s(n) − ŝ(n))2} . (30.2)
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818 CHAPTER 30 Acoustic Echo Control

Besides the estimated speech ŝ(n), the isolated near-end speech signal s(n) needs to be available for
SER calculation. Both measures, ERLE and SER, can be represented as time-varying functions when
the statistical expectation is resolved by short-time averaging.

As shown by previous sections, most AEC systems internally rely on an adaptive estimate ĥn of the
acoustic echo-path impulse response hn in Figure 30.1 to achieve echo cancellation. In that respect, a
normalized echo path misalignment measure, often termed system distance or coefficient error norm,
according to

D =
∑

n‖hn − ĥn‖2∑
n‖hn‖2 , (30.3)

can be very useful for the developer to look inside the system and to prove operation of the adaptive
echo path identification algorithm, e.g., NLMS. Under specific circumstances, i.e., in particular with
white noise excitation x(n), the echo path misalignment and the echo return loss enhancement turn out
to be the inverse of each other [28]. This can be easily recognized by looking at d(n) and d̂(n) as a
convolution of hn and ĥn , respectively, with the same input signal x(n). However, for correlated input
signals, such as speech, or multichannel systems with coherent input signals on different input channels,
cf. Section 4.30.4, the equivalence of both measures is lost.

An open issue regarding the currently available instrumental and automatic test procedures is, how-
ever, that the correlation between predicted speech quality and perceived quality is not always guaran-
teed. In order to surpass this issue, ongoing developments take the following strategies into account to
increase the significance of existing quality measures:

• analysis of the acoustic echo control performance in the case of time-varying echo paths,
• specification of the required echo attenuation in the presence of noise,
• and the measurement of speech quality parameters during the simultaneous presence of speech,

noise, and echo.

This brief survey on speech quality of hands-free telephones has shown that research in this difficult
area cannot be considered as finalized. Due to its multi-dimensional nature, the objective prediction of
speech quality is probably yet more challenging than the speech enhancement problem itself. A more
comprehensive overview about the current state-of-the-art in the field of advanced speech quality testing
for modern (hands-free) telecommunication systems can be found in [85]. A recent update and some
specific directions for future work are presented in [86,87].

4.30.1.5 Outline of this chapter
After this itemized introduction to history and mainstream technology in acoustic echo control, we shall
now proceed and deepen the understanding in formal terms. In the core sections of this chapter, we will
partly revisit the established technology and add more specific references, but mainly we will trace the
more recent trends due to research beyond 2000.

In Section 4.30.2, we first pick up the single-channel linear AEC problem and present a fresh view in
terms of an uncertainty model of the acoustic environment and a suitable adaptive algorithm development
in a recursive Bayesian estimation style. In this uncertainty framework, particular objectives are given
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by the rigorous justification of the adaptive echo cancellation and post-processing hybrid through joint
optimization, and by the unification of adaptive filters and adaptive filter control in the form of statistical
Kalman filtering techniques.

In Section 4.30.3, the uncertainty model about the echo path is understood harsh enough to drop the
echo cancellation concept and stick to echo suppression alone. This strategy is justified, for example,
when the uncertainty is due to data dropouts in the audio stream or clock desynchronization between
sound reproduction and acquisition. For the echo suppression, we then present a dedicated class of
algorithms which do not rely on complex echo path impulse identification, but rather on the estimation
of a smoothed magnitude-squared echo power transfer function.

In Section 4.30.4, the treatment of acoustic echo cancellation (i.e., no echo suppression) is generalized
to the case with multiple reproduction channels. The additional problems of multichannel acoustic echo
cancellation are fundamentally different from those of traditional single-channel echo cancellation. Not
only the computational requirements are higher, but also the identification of more unknowns is naturally
more difficult, especially when echo path impulse responses with mutually correlated input signals have
to be tackled. As a field of its own, we provide major references to multichannel echo cancellation and
specifically highlight the art of decorrelation of the inputs of the acoustic channels. For generality, the
treatment will be based on the TRINICON framework which includes inherent adaptation control as
mentioned above.

Unfortunately, the linear echo path model (single- or multichannel) does often not capture the real-
ity of today’s telecommunication devices which may include cheap audio hardware introducing non-
negligible nonlinear distortion into the signal played back by the loudspeaker. Informal listening tests
indicate that the human listener tolerates nonlinear distortion up to a level at which it can no longer be
modeled and cancelled by linear AEC with sufficient accuracy. As a result, unacceptable nonlinearly
distorted acoustic echo would remain in the signal chain. Hence, in Section 4.30.5, we treat the extension
to nonlinear acoustic echo cancellation in the form of a survey of the current state-of-the-art in this
field.

While these core sections describe the fundamental approaches in the respective fields, we finally
move on to a more application-oriented presentation of AEC technology and results in Section 4.30.6.
In this application corner, we are then dealing with different acoustic environments, such as in car
hands-free telephony, desktop teleconferencing, living room, and mobile phones. After this, we draw
our conclusions from this chapter.

4.30.2 Echo cancellation and postfiltering
Echo cancellation might be considered as the ideal solution to acoustic echo control, since the acoustic
echo could be removed without harm to the desired near-end speech. However, it depends on the working
assumption that the echo path impulse response is determined with sufficient accuracy. In this section,
we develop a generalized view which will explicitly take uncertainty about the acoustic echo path into
account. We shall see the consequences of the uncertainty model of the echo path on the optimum
signal processing for acoustic echo control, where the optimization of the system will explicitly target
the estimation of the desired near-end speech.
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At first we formulate the uncertainty model of the echo path by means of a multivariate random
variable with statistical mean and covariance. The covariance of the random variable basically describes
the uncertainty about the true echo path coefficients. From here, we derive the linear minimum mean-
square error (MMSE) estimator for the near-end speech components in the microphone signal. The
resulting estimator consists of a subtractive echo canceler which duplicates the systematic part of the
echo path (i.e., the echo path expectation) and a statistical postfilter for residual echo suppression due
to the echo path uncertainty. This result proves, by the presence of uncertainty alone, the coexistence
of echo canceler and postfilter for otherwise linear echo path models and unlimited number of echo
canceler coefficients. Echo cancellation with postfiltering for residual echo suppression had previously
found its justification merely by the presence of nonlinearities or undermodeled impulse response tails
of the echo path.

Then we develop a Bayesian adaptive algorithm for joint mean and covariance estimation of the echo
path. The derivation is based on an uncertainty model which represents the typical variability of the
echo path in the form of a stochastic Markov model. Since this time-varying echo path is observed in
the presence of independent near-end speech at the microphone, the Bayesian adaptive algorithm turns
out to be a Kalman filter.

Throughout this section, it remains a contrast to other literature that the echo path is modeled as a
random process, whereas the known echo path input is treated as a deterministic signal. Nevertheless,
the classical Wiener solution for subtractive echo cancellation is included as a special case.

4.30.2.1 Uncertainty model of the linear echo path
In this section, we prepare for the rigorous joint derivation of acoustic echo canceler and postfilter by
setting up the uncertainty model of the linear echo path. In the subsequent Section 4.30.2.2, we then
derive the MMSE optimum filtering solution for the problem at hand. The core procedures in this and
the next section had been outlined in [27,88]. Here, we shall take the opportunity to translate these
procedures into unified vector notation in order to smoothly establish the relationship with vector-
oriented adaptive filter algorithms for echo path mean and covariance identification in Section 4.30.2.5.

Getting back to the system in Figure 30.1, let us assume that the impulse response hn entirely
models the electroacoustic coupling between the loudspeaker signal x ′(n) and the microphone signal
y(n). If sufficiently good transducers are used, the linear echo path is widely accepted as a realistic
model for the acoustic environment of hands-free systems. To provide transparent sound at least to the
near-end speaker, who typically is the owner of the system, we set the loudspeaker signal equal to the
received signal,1 i.e., x ′(n) = x(n). The microphone signal y(n) comprising near-end speech s(n) and

1In an even more general approach, we may abolish the simplification x ′(n) = x(n) and consider some kind of signal
processing also in receiving direction of the system. In this case, the relation between the output x ′(n) and the inputs x(n)

and y(n) has to be defined in a similar way as for the output ŝ(n) later in Eq. (30.13). Furthermore, an appropriate distortion
measure then has to be defined in receiving direction and has to be minimized simultaneously with the distortion in sending
direction. In this way, the distortion in sending direction might be reduced at the expense of a distortion in receiving direction.
For the sake of simplicity, we are not dealing with filters in receiving direction here, but it seems promising to treat this issue
in future work.
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convolutive echo d(n) then reads

y(n) = s(n) + d(n)

= s(n) + hn ∗ x(n)

= s(n) +
N1∑

k=0

hk x(n − k)

= s(n) + hT x(n), (30.4)

where the vector
x(n) = [

x(n), x(n − 1), . . . , x(n − N1)
]T (30.5)

denotes a collection of the most recent echo path input samples at discrete time n and

h = [
h0, h1, . . . , hN1

]T (30.6)

is the finite set of the N1 corresponding impulse response coefficients.
In the traditional theory of acoustic echo control, the speech signal s(n) and the received signal x(n)

are both modeled as independent random processes, while the echo path hn is treated as an unknown
deterministic parameter. For these model assumptions, the minimization of the mean-square output
error e(n) of the echo cancellation filter, cf. Section 4.30.1, leads to the well known Wiener solution,
i.e., the echo canceler ideally mimics the true echo path in order to compensate for the acoustic echo
in the microphone signal [2,10]. This solution will be absorbed as a special case of our uncertainty
framework as shown in Section 4.30.2.3.

In the uncertainty framework, to be considered from now, the speech signal s(n) is not observable
alone and is therefore still modeled as a stationary random process with zero mean and autocorrelation
matrix Rs = E{s(n)sT (n)} based on the length N2 vector

s(n) = [
s(n), s(n − 1), . . . , s(n − N2)

]T
. (30.7)

However, the echo signal d(n) is now given as the linear convolution of a measurable (i.e., deterministic)
loudspeaker signal x(n) with unknown echo path coefficients hn . Due to this uncertainty about the
acoustic echo path, the coefficient vector h, too, is modeled as an independent random variable with
some statistical expectation ĥ and covariance p:

ĥ = E{h}, (30.8)

hr = h − ĥ, (30.9)

p = E{hr hT
r }. (30.10)

The mean ĥ then represents a systematic (i.e., deterministic) component of the uncertain echo path
h, whereas the residual hr is its truly unpredictable (i.e., zero-mean) component. The signal model as
presented here clearly fits the practical applications of acoustic echo control in which the echo path is
usually unknown, but the echo path input is in fact known to the system. The implications of the echo
path uncertainty model will developed in the following sections in conjunction with the derivation of
optimum filters.
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4.30.2.2 Generalized Wiener filter architecture
We initiate the actual derivation of the optimal AEC by a formal definition of the desired quality of
near-end speech reconstruction in the form of an objective function. On the one hand, full-duplex
operation of the hands-free system in Figure 30.1 ideally requires strong attenuation of the acoustic
echo signal d(n) by the acoustic echo controller. On the other hand, the echo attenuation is subject to the
undistorted reproduction of the desired signal s(n) at the system output. Mathematically, this conflict
can be expressed as a statistical optimization problem which aims, for example, at the minimum mean-
square error (MMSE) between s(n) and ŝ(n):

ε2 = E
{(

s(n) − ŝ(n)
)2

}
→ min. (30.11)

In order to facilitate the computation of the system output ŝ(n), we formulate the echo control
problem as a general unconstrained linear filtering problem, where the output signal ŝ(n) is obtained as
a linear combination of the available input signals x(n) and y(n):

ŝ(n) = w′
2,n ∗ y(n) + w′

1,n∗x(n) (30.12)

= w2,n ∗ [
y(n) − w1,n ∗ x(n)

]
. (30.13)

Mathematically, the filter structures in (30.12) and (30.13) are equivalent, since they can be uniquely
transformed into each other. In principle, we can either optimize the linear filters w′

1,n and w′
2,n , or

alternatively w1,n and w2,n . It turns out, however, that the solution for the filter structure in (30.13) is
somewhat simpler and more intuitive. To be in line with the common literature on acoustic echo control,
we will then refer to w1,n as the echo canceler and to w2,n as the postfilter for residual echo suppression.
The formulation as an unconstrained, possibly IIR filtering problem emphasizes that the echo control
problem is not undermodeled by a strict limitation of the adaptive filter length here. That implies that
the echo canceler w1,n can entirely cover the span of the linear echo path hn . Since w1,n = hn would
clearly eliminate the echo, it will be interesting to clarify the role of the postfilter w2,n in this seemingly
simple configuration.

The filter structure in (30.13) requires the implementation of two consecutive convolutions, i.e.,
the convolution of x(n) with w1,n , and the subsequent convolution of the difference e(n) = y(n) −
w1,n ∗ x(n) with the filter w2,n . In vector notation, that means that we have to provide a vector

e(n) = [
e(n), e(n − 1), . . . , e(n − N2)

]T (30.14)

of input samples for the second convolution and thus a vector of output samples from the first convolution.
That in turn requires the definition of an input signal matrix

X(n) = [
x(n), x(n − 1), . . . , x(n − N2)

]T
, (30.15)

which then allows us to write the AEC output according to (30.13) as

ŝ(n) = wT
2 e(n)

= wT
2 [y(n) − X(n)w1] (30.16)

= [yT (n) − wT
1 XT (n)]w2, (30.17)
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where
y(n) = [

y(n), y(n − 1), . . . , y(n − N2)
]T (30.18)

is a vector of most recent microphone samples and

w1 = [
w1,0, w1,1, . . ., w1,N1

]T (30.19)

w2 = [
w2,0, w2,1, . . ., w2,N2

]T (30.20)

are the coefficient vectors of length N1 and length N2 of echo canceler and postfilter, respectively. The
two forms in (30.16) and (30.17) are equivalent.

We further exploit the available vector-matrix notation to write the microphone signal vector y(n) as

y(n) = s(n) + X(n)h (30.21)

in accordance with the original convolutive signal model in (30.4).
We then proceed by substituting the two-stage linear filter structure (30.13) into (30.11) and by

computing the partial derivatives of the mean-square error ε2 with respect to the coefficients w1 and
w2. The following expressions for the derivatives are obtained using not more than the previously made
assumptions of a deterministic input signal X(n) and independent near-end speech s(n) with zero mean:

∂ε2

∂w1
= −2E

{(
s(n) − ŝ(n)

) ∂ ŝ(n)

∂w1

}
= 2E {

ŝ(n)
}

XT (n)w2

= 2
[
E

{
yT (n)

}
w2 − wT

1 XT (n)w2

]
XT (n)w2, (30.22)

∂ε2

∂w2
= −2E

{(
s(n) − ŝ(n)

) ∂ ŝ(n)

∂w2

}
= −2E {(

s(n) − ŝ(n)
) (

y(n) − X(n)w1
)}

= −2E {
ŝ(n)

}
X(n)w1 − 2E {

y(n)
(
s(n) − ŝ(n)

)}
. (30.23)

Here, the reason for the remaining time index n after the evaluation of the statistical expectation lies in
the deterministic nature of X(n).

In the next step of our derivation, we make use of the linear signal model in (30.21) and find that
E {

yT (n)
} = E {

hT
}

XT (n). Now it can be easily seen that ∂ε2/∂w1 = 0 by choosing the optimum
echo canceler coefficients as

w1 = E{h} = ĥ. (30.24)

In order to find the postfilter w2 that satisfies ∂ε2/∂w2 = 0, we consider the last line of Eq. (30.23)
and initially note that E {

ŝ(n)
}

again vanishes due to the choice w1 = ĥ for the echo canceler, as before
in (30.22). The second part of (30.23) can be expanded by inserting the system output ŝ(n) according
to (30.17) and the signal model for y(n) as shown in (30.21):

E {
y(n)

(
s(n) − ŝ(n)

)} = E
{

y(n)
[
s(n) −

(
yT (n) − wT

1 XT (n)
)

w2

]}
= E

{[
s(n) + X(n)h

] [
s(n) −

(
sT (n) + hT XT (n) − wT

1 XT (n)
)

w2

]}
.
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By then utilizing the uncertainty model h = ĥ + hr of the echo path as shown in (30.9), and invoking
the optimum solution w1 = ĥ in (30.24), and finally the independence of hr and s(n), we arrive at the
following equation (consisting of deterministic and statistical terms) for the optimum filter w2:

E {
y(n)

(
s(n) − ŝ(n)

)} = E
{[

s(n) + X(n)(ĥ + hr )
] [

s(n) −
(

sT (n) + hT
r XT (n)

)
w2

]}
= E {s(n)s(n)} − E

{
s(n)sT (n)w2

}
− E

{
X(n)hr hT

r XT (n)w2

}
= rs − Rsw2 − X(n)pXT (n)w2 = 0, (30.25)

where rs = E {s(n)s(n)}is the autocorrelation vector of the near-end speech being equal to the first
column of Rs . From here, we can easily solve for the optimum postfilter w2 by rearranging the vector-
matrix equation to

w2 =
(

Rs + X(n)pXT (n)
)−1

rs . (30.26)

We note that the result for w2 has the structure of a Wiener filter to perform noise reduction on the
signal

e(n) = y(n) − ĥT x(n) = s(n) + hT
r x(n), (30.27)

with hT
r x(n) being the effective noise (here: The residual echo) and s(n) the desired signal. In this

interpretation, the compound quantity X(n)pXT (n) in (30.26) can be considered as the noise autocor-
relation matrix. It is in fact obtained as a weighted short-term autocorrelation X(n)XT (n) of the input
signal x(n), where the weighting matrix p serves as a statistical descriptor of the uncertain residual
echo transmission system hr = h − ĥ. Commutativity of signals and systems further allows for the
equivalent and yet more intuitive understanding of the random quantity hr as the input of a deterministic
transmission system described by the known vector x(n). The latter interpretation right away explains
the covariance X(n)pXT (n) of the output of the convolution hT

r x(n) = xT (n)hr .
In our derivation, echo canceler and postfilter have been deduced jointly from the MMSE criterion

and, therefore, we will refer to the combination of (30.24) and (30.26) as the generalized Wiener solution
for acoustic echo control. The optimization was based on a signal model which consists of an uncertain
linear echo path with a deterministic input signal. We assume that this signal model greatly fits the
practical applications of acoustic echo control in which the echo path is usually unknown and the echo
path input is in fact measurable. A block diagram of the resulting optimal filter structure immediately
follows from Eq. (30.13). It is depicted in Figure 30.3a.

Regarding the practical implementation of the algorithms, however, we have to mention that the
assumption of stationarity of the near-end speech s(n) is of course not realistic. As usual in speech and
audio processing, the optimum filters thus have to be updated at a time-constant of 10–30 ms on the basis
of short-term stationary signal frames. Moreover, the calculation of the postfilter in (30.26) requires
efficient algorithms for matrix inversion, such as the generalized Levinson algorithm [89], or we can
alternatively approach efficient solutions in the frequency-domain [27]. The digital filtering as such,
according to (30.16), can be realized by fast convolution in the DFT domain or by direct convolution
in the time-domain [90].
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(a) Generalized Wiener solution for the uncertain linear echo path model
with non-zero mean E{h} and non-zero covariance p.
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(b) Classical Wiener solution for the deterministic echo path model with-
out uncertainty, i.e., E{h} = h and p = 0.
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(c) Wiener solution for an unpredictable echo path with zero-mean, i.e.,
E{h} = 0 and p = Rh = E{hhT }.

FIGURE 30.3

The generalized Wiener solution and important special cases.
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4.30.2.3 General and special cases
Before moving on to adaptive algorithms dedicated for the generalized Wiener filter, we shall clarify its
significance in comparison with two special cases of it. We will demonstrate that the general solution
and its better known special cases correspond to different filter structures, mainly differing in the way
they utilize a priori information in form of the mean and the covariance of the acoustic echo path,
depending on the application at hand.

4.30.2.3.1 General statistical case
For the convenience of the reader, we first repeat the two optimum filters:

w1 = E{h} (30.28)

w2 =
(

Rs + X(n)pXT (n)
)−1

rs . (30.29)

It can be seen that the generalized Wiener filter fully takes the statistical properties of the echo path
h into account. More specifically, the mean and covariance of the echo path are utilized separately
to determine the optimum echo canceler and postfilter coefficients, respectively. The optimum echo
canceler w1 = E{h} = ĥ creates a replica of the echo components which are due to the systematic
component of the echo path, i.e., d̂(n) = ĥT x(n). The echo subtraction according to Figure 30.3a
therefore results in the error signal e(n) = y(n) − d̂(n) = s(n) + hT

r x(n), comprising the desired
signal s(n) plus undesired residual echo hT

r x(n). The signal e(n) is then postfiltered with coefficients
according to (30.29), thereby taking the echo path covariance p in conjunction with the input signal
X(n) into account.

It turns out in practice that this general two-filter solution is very much suitable to achieve acous-
tic echo control in hands-free communication systems, such as in car hands-free telephones to be
described in Section 4.30.6.1. In many other applications, too, it is indeed feasible to determine a
(possibly time-varying) systematic component ĥ of the echo path h using the acoustic system iden-
tification approach, e.g., [2,35]. Nevertheless, some degree of uncertainty p about the echo path
always remains and, therefore, the postfilter is an indispensable component of advanced hands-free
telephones.

4.30.2.3.2 Deterministic case
In special cases without uncertainty about the echo path at all, i.e., if E{h} = h and thus p = 0, our
general solution degenerates to

w1 = h (30.30)

w2 = u, (30.31)

where u = [1, 0, 0, . . . , 0]T denotes the unit vector of length N2. Here, the optimum echo canceler w1 is
an ideal copy of the true echo path h and the perfectly echo-canceled error signal e(n) = y(n)−hT x(n) =
s(n) will naturally pass the postfilter w2 unprocessed. This procedure is commonly understood as the
Wiener solution for acoustic echo cancellation [2,10] and it is indeed optimal for a deterministic echo
path h. The filter structure corresponding to this special case is illustrated in Figure 30.3b.
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The purely deterministic echo path model assumed here is often not the best choice in real systems.
It may require extremely sophisticated adaptive filters and control mechanisms to let the echo canceler
coefficients follow a true time-varying echo path with sufficient accuracy. It is obvious that especially in
noisy and time-varying acoustic environments, as for example in vehicles, the true echo path cannot be
determined exactly at all times. As a consequence, the deterministic strategy may not deliver sufficient
echo attenuation, i.e., residual echo can appear at the system output. The situation can be different
in applications of network or line echo cancellation. Here, the echo path coefficients can often be
measured with sufficient accuracy during call setup and they are not expected to change significantly
during conversation. A postfilter for residual echo suppression is then not needed.

4.30.2.3.3 Zero-mean case
When no systematic information is available about the echo path at all, i.e., if E{h} = 0 and thus
p = Rh = E{hhT }, we obtain another special case of the generalized Wiener solution:

w1 = 0, (30.32)

w2 =
(

Rs + X(n)RhXT (n)
)−1

rs . (30.33)

Obviously, the generalized Wiener filter degenerates to an MMSE equalizer in sending direction
of the communication system, i.e., the responsibility for acoustic echo suppression is entirely with
the statistical postfilter. The corresponding block diagram in Figure 30.3c clearly reminds ourselves
to the methodology of background noise suppression. The difference, however, is that the known far-
end speech X(n) is taken into account to calculate the noise PSD in conjunction with the echo path
covariance Rh .

The practical relevance of the zero-mean case is given by applications in which it turns out difficult
to determine a systematic component of the echo path at all. This situation can appear in extremely
time-varying and noisy systems, e.g., teleconferencing equipment in reverberant environments or hands-
free accessories with unstable microphone and loudspeaker placement. Mobile devices may simply not
provide the computational resources for a sophisticated echo path estimator. At the same time, it should
be noted that the desired speech at the system output can be distorted and the background noise of the
near-end can be modulated by the presence of the far-end speech signal. Section 4.30.3 is dedicated to
the zero-mean case and its implications.

4.30.2.4 Dynamical echo path modeling
In almost all practical applications of acoustic echo control, such as car hands-free systems, telecon-
ferencing equipment, mobile phones, and speech dialog systems, we face a time-varying acoustic echo
path h(n). Depending on the application, the degree of change can be more or less pronounced. In
reality, we further have to expect sometimes quite abrupt changes and sometimes almost static behavior
of the echo path. On average, the acoustic echo path is certainly not standing still, but also not changing
arbitrarily fast, i.e., the dynamical process is governed by finite bandwidth.

In order to exploit the average smooth dynamical nature of the echo path in adaptive algorithm
development, we shall now refine our previous uncertainty model of the echo path in (30.8)–(30.10) .
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In this respect, a particularly convenient stochastic model for time-varying systems h(n) is the first-order
recursive Markov chain [10], i.e.,

h(n + 1) = a · h(n) + �h(n), (30.34)

where two consecutive realizations at times n and n + 1 are related to each other by the transition
coefficient 0 ≤ a ≤ 1 and the independent process noise quantity �h(n) with zero mean and covariance
matrix R� = E{�h(n)�hT (n)}. The Markov model therefore represents dynamic behavior in which
the state h(n) gradually changes into an unpredictable direction—very much in agreement with the
nature of time-varying impulse responses in realistic acoustic environments.

Clearly, the Markov model will serve only as a simplified model of the real world situation. However, it
brings along two major relationships with real time-varying systems by, firstly, restricting the bandwidth
of change according to the transition factor “a” and, secondly, providing an element of uncertainty
through the process noise �h(n). In order to describe different degrees of variability, we might intuitively
adjust the transition factor or the process noise covariance of the model. However, to be sure about the
consequences, we shall more formally consider some properties of the Markov model in conjunction
with the acoustic echo control purpose:

• With the process noise �h(n) assumed to be zero-mean and stationary, where the latter is reflected
explicitly by the time-invariant process noise covariance R�, and by considering the linear time-
invariant system in (30.34), the echo path h(n) is immediately recognized as a zero-mean and
stationary random process, too, and described by the time-invariant covariance Rh = E{h(n)hT (n)}.
Such properties of h(n) are well in agreement with the acoustic echo control application. Here, the
zero mean, E{h(n)} = 0, in fact represents the average over all possible echo paths when no suitable
a priori information is available about the electroacoustic environment—including gain and phase
of loudspeaker and microphone amplifiers, the exact physical distance between loudspeaker and
microphone, and the room characteristics. The time-invariance of the echo path covariance Rh

further expresses the persistence of the acoustic echo path impulse response h(n), independent of
the highly nonstationary echo path input x(n).

• By applying square expectation on both sides of (30.34), and by exploiting stationarity of h(n), i.e.,
Rh = E{h(n + 1)hT (n + 1)} = E{h(n)hT (n)}, and utilizing the independence of �h(n), we can
evaluate the echo path covariance as follows:

Rh = a2Rh + R�. (30.35)

This result can be rearranged to obtain an interesting proportionality between the covariances of
echo path changes and echo path:

R� = (1 − a2)Rh . (30.36)

From this relationship, we learn that we cannot choose the transition factor “a” and the process noise
covariance R� of the Markov model in (30.34) independently, since the echo path covariance Rh is
typically given as a somewhat fixed and persistent quantity, despite the possibly changing acoustic
impulse response h(n). Moreover, the relation in (30.36) can even be very useful to determine an
unknown covariance of the echo path changes, R�, from an estimated or a priori known echo path
covariance Rh .
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Finally, the state Eq. (30.34) and the linear observation model (30.4) can be formally combined
into a general stochastic state-space model of the unknown echo path state h(n). For convenience and
to include the time-varying echo path into the observation equation, both models are repeated here
together:

h(n + 1) = a · h(n) + �h(n), (30.37)

y(n) = s(n) + xT (n)h(n). (30.38)

In summary, the echo path state equation is governed by the independent process noise �h(n) with
covariance R�. The resulting state h(n) is then observed through the microphone signal y(n) in the
presence of near-end speech s(n) which acts as independent observation noise with covariance σ 2

s . This
statement of the AEC problem will now lead us to the utilization of powerful state estimators from
control theory to deduce contained and efficient adaptive algorithms for acoustic echo control.

4.30.2.5 Adaptive algorithms
The previous section has argued for modeling the a priori echo path mean E{h(n)} = ĥ as zero. The

optimum echo canceler in (30.28) would thus degenerate to w1(n) = ĥ = 0, practically meaning that
the generalized Wiener solution turns into the MMSE equalizer in (30.33). In order to exploit the full-
featured Wiener solution, we have to resolve at least partly the uncertainty about the echo path h(n).
This can be done by recasting the uncertainty framework in a way that incorporates the observations
y(n) into the stochastic echo path model. Mathematically, this can be accomplished by defining the
conditional mean and covariance of the echo path at time n, given the observations y(n) up to and
including time n − 1:2

ĥ(n) = E{h(n)|y(n − 1), y(n − 2), . . . , y(0)}, (30.39)

hr (n) = h(n) − ĥ(n), (30.40)

p(n) = E{hr (n)hT
r (n)}. (30.41)

This data driven uncertainty model of the echo path basically replaces the a priori echo path model
in (30.8)–(30.10). In place of the a priori mean ĥ, we now have the time-varying conditional mean ĥ(n).
The former residual hr in (30.9) accordingly has been replaced by its time-varying counterpart hr (n),
representing the misalignment between the now conditional echo path mean and the true echo path h(n).
Moreover, the former a priori echo path covariance p has turned into the now time-varying echo path
covariance p(n) based on the conditional mean. Structurally, the definitions (30.39)–(30.41) are fully
consistent with the previous ones in (30.8)–(30.10). Therefore, the conditional mean ĥ(n) can serve
as an optimum filter for subtractive echo cancellation in (30.28) along with the conditional covariance
p(n) in place of p in the postfilter Eq. (30.29).

2In the application of acoustic echo control, the most recent data y(n) at time n is usually not included into the estimation
of the acoustic echo path h(n) at time n, e.g., consider the LMS, APA, and RLS family of adaptive algorithms [2]. This has
the practical advantage that the estimated echo path is completely determined already at time n − 1 and can be employed for
echo cancellation immediately when the input data y(n) is available. In the language of state-space modeling and estimation,
the conditional mean ĥ(n) in (30.40) is called the a priori estimate of the state h(n). An a posteriori estimate ĥ+(n) which
is a refinement of ĥ(n) based on the current data y(n) could be defined as well.
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The computation of the conditional expectation in (30.39) and the corresponding covariance in
(30.41), subject to the state-space model in (30.37) and (30.38), is a well understood problem. The
adequate mathematical instrument for the solution is the statistical Kalman filter. In literature, we find
several principal interpretations of it. In [10], the Kalman filter is derived as the linear MMSE estimator
of the state of a linear dynamical system. In [91], the Kalman filter is developed as the MMSE state
estimator under the assumption of Gaussianity of process noise and observation noise. A very intuitive
presentation of the Kalman filter equations can be found for example in [92]. The original work of
Kalman is documented in [93]. Independent of the particular interpretation, the Kalman filter delivers
at least a good approximation of the conditional mean ĥ(n) and the corresponding estimation error
covariance p(n) with respect to the unknown parameter vector h(n). The algorithm consists of the
following set of recursive and iteratively coupled matrix equations:

ĥ(n + 1) = a · ĥ+(n), (30.42)

p(n + 1) = a2 · p+(n) + R�, (30.43)

ĥ+(n) = ĥ(n) + k(n)(y(n) − xT (n)ĥ(n)), (30.44)

p+(n) = (I − k(n)xT (n))p(n), (30.45)

k(n) = p(n)x(n)
(

xT (n)p(n)x(n) + σ 2
s (n)

)−1
. (30.46)

Equations (30.42) and (30.44) recursively determine the conditional mean ĥ(n) in a prediction-
correction style. In doing so, the formulas utilize the Kalman gain k(n) from (30.46) as a weight vector
which essentially depends on the state error covariance p(n). The latter is again determined recursively
through Eqs. (30.43) and (30.45) of the Kalman filter.

The Kalman gain k(n) can be considered as an intelligent adaptive stepsize parameter in the recursive
learning procedure for the conditional echo path mean ĥ(n), i.e., k(n) basically upgrades the role
of the fixed stepsize μ in the LMS algorithm [2,10]. Through the Kalman gain, the model-based
“system distance” p(n) between the true and the estimated acoustic system interacts with the prediction-
correction procedure for the estimation of ĥ(n). In this way, Kalman filtering can be understood as the
ever sought unification of linear adaptive filtering and adaptation control. After all, the Kalman filter
differs from LMS and RLS by its inherent stability [10], i.e., it does not require additional control
mechanisms (e.g., the double-talk detection) in order to achieve fast and yet robust adaptation in time-
varying and noisy acoustic environments.

So far, the Kalman filter has been employed for acoustic system identification hardly ever. This
can be attributed to its high computational load and to the risk for numerical instability in the case of
higher-order adaptive filters [10]. Furthermore, a comprehensive signal model for the Kalman filter,
particularly the availability of observation and process noise covariances for the acoustic state-space
model in (30.38) and (30.37), seemed to be out of sight [2].

In order to tame the exact Kalman filter, we briefly outline the procedure as described in [94]. At
first, we replace the matrix quantity k(n)xT (n) in (30.45) with the inner vector product xT (n)k(n)/N1.
This seemingly brutal simplification can be well justified in the case of broadband input x(n), since
the recursively smoothed matrix quantity k(n)xT (n) resembles the near-diagonal correlation matrix of
x(n). Provided that we specify a diagonal process noise covariance R� = σ 2

�I, the state error covariance
matrix p(n) then can be treated as a scalar p(n) without further assumption or approximation, as seen
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from (30.43) and (30.45). The normalization by factor N1 in the former replacement xT (n)k(n)/N1
achieves appropriate scaling after the substitution. Due to the broadband rationale behind these rear-
rangements, the resulting algorithm is termed broadband Kalman filter:

ĥ(n + 1) = a · ĥ+(n), (30.47)

p(n + 1) = a2 · p+(n) + σ 2
�, (30.48)

e(n) = y(n) − xT (n)ĥ(n), (30.49)

ĥ+(n) = ĥ(n) + k(n)e(n), (30.50)

p+(n) =
(

1 − xT (n)k(n)/N1

)
p(n), (30.51)

k(n) = p(n)x(n)
(

p(n)xT (n)x(n) + σ 2
s (n)

)−1
. (30.52)

By the simplifications introduced here, naturally, the presented algorithm loses its decorrelation
ability regarding the input signal x(n) if non-white input is processed. However, all the structural
support to handle the estimation of time-varying unknown systems h(n) in the continuous presence
of observation noise s(n), with possibly time-varying level σ 2

s (n), is fully preserved in the broadband
Kalman filter. Moreover, we have at the same time gained considerable numerical efficiency by reducing
the dimension of the original state error covariance p(n) from matrix to scalar.

Next, we mention an opportunity to resolve a possible uncertainty regarding the time-varying obser-
vation noise power σ 2

s (n) in the Kalman gain (30.52), because this quantity is indispensable for the
operation of the Kalman filter. Unfortunately, the corresponding signal s(n) is not available explicitly
for the calculation of sample covariances, but the error signal e(n) in (30.49) represents at least a good
estimate of the observation noise signal s(n) in case of successful state estimation. Thus, we can approx-
imate σ 2

s (n) ≈ σ 2
e (n) and then obtain the error signal power σ 2

e (n), e.g., by recursive averaging of the
explicitly available square error e2(n).

The scalar process noise covariance parameter σ 2
� required in (30.48) can be specified as

σ 2
� = (1 − a2)E{hT (n)h(n)}/N1, where E{hT (n)h(n)} denotes an expectation of the echo path norm.

This formula is in line with (30.36) by again reducing the process noise covariance from matrix to scalar
dimension as done already in the derivation of the broadband Kalman filter, R� = Iσ 2

�, and similarly
Rh = Iσ 2

h = IE{hT (n)h(n)}/N1. The transition parameter “a” has to be determined appropriately for
the application at hand.

Substituting (30.50) and (30.52) into (30.47), while assuming low near-end speech and near-end
noise, i.e., σ 2

s (n) → 0, the broadband Kalman filter reveals structural equivalence with the NLMS
algorithm [10], except for the leaky factor a which appears in the update equation (instead of a stepsize
factor as for the pure NLMS algorithm):

ĥ(n + 1) = a ·
(

ĥ(n) + k(n)e(n)
)

, (30.53)

k(n) =
(

xT (n)x(n)
)−1

x(n), (30.54)

e(n) = y(n) − xT (n)ĥ(n). (30.55)
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The resulting NLMS algorithm proves the numerical efficiency and robustness obtained through the
simplification of the exact Kalman filter. The broadband Kalman filter, still with σ 2

s (n) 	= 0, then in fact
represents an excellent compromise in terms of adaptive performance and structural simplicity between
exact Kalman filters and very popular LMS-type adaptive algorithms for acoustic system identification.
In contrast to our top-down justification of the broadband Kalman filter, a model-based bottom-up
generalization of the NLMS algorithm leads to a similar algorithm [95,96].

Resuming to more general considerations, we finally want to mention that and alternative and pre-
ferred realization of adaptive algorithms for joint conditional mean and covariance estimation has been
presented in the literature. In [27], a block frequency-domain adaptive Kalman filter and the underlying
state-space model in the DFT domain have been suggested. It was demonstrated that the aforemen-
tioned drawbacks of the exact Kalman filter in time-domain can be circumvented very efficiently by
diagonalization—through minor approximation—of the matrix algebra in the DFT domain. Intuitive
approaches for process and observation noise covariance learning were suggested, similar to the ones
presented right above, and the impact of model mismatch between the underlying states-space model of
the Kalman filter and real world dynamics has been reported to be “graceful.” In [97], the DFT-domain
adaptive algorithm was then reformulated as a state-space frequency-domain adaptive filter (SSFDAF)
in the context of acoustic echo control. In [98], the intuitive way of covariance learning was confirmed
in the maximum-likelihood sense and the superiority of state-space frequency-domain adaptive filtering
in comparison to traditional frequency-domain adaptive filtering was demonstrated.

The block frequency-domain adaptive Kalman filter is not limited to, but especially suits the adap-
tation of a frequency-domain representation of the generalized Wiener filter as shown in [27]. This
concept and implementation will be used as the basis for the presentation of numerical results in the
application of car hands-free systems in Section 4.30.6.1.

4.30.3 Echo suppression
An alternative way to prevent acoustic echoes is the use of an acoustic echo suppressor (AES) [99]
providing echo free half-duplex communication. If echo suppression is carried out independently at
each frequency of a short-time spectral domain, a good degree of duplexity can be achieved. Recently,
AES approaches have been introduced [100,101] that are similar to the residual echo postfiltering as
presented in Section 4.30.2, while completely discarding the acoustic echo canceler (AEC) part. These
approaches do not require the identification of the room impulse response as an FIR filter, but model
parametrically the echo path with a delay and a single real-valued gain at each frequency of short-time
spectra, resulting in lower computational complexity than when using a precise echo path estimation.

Conventional cancellation methods to cope with acoustic echoes have been successfully imple-
mented, see Section 4.30.1. In practice, however, the achievable echo attenuation for these conventional
approaches is not sufficient due to, e.g., the echo tail effect (modeling of too short a portion of the echo
path), nonlinear echo components caused by vibration effects or the nonlinear behavior of low-cost
audio hardware, and convergence problems in case of highly time varying echo paths [102]. Therefore,
AEC are usually combined with a suppression scheme to remove residual echoes which the AEC lets
through [35]. Commonly, the suppression of residual echoes is performed in a frequency selective way
[27,35,58,62,64]. Indeed, virtually all acoustic echo cancellation systems use such a postfilter because
they fail too often to reduce the echo to become sufficiently inaudible.
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Such a suppressor greatly improves the echo attenuation, but contrary to the linear echo canceler
alone, the resulting audio quality and double talk performance often suffer from it: Distortions on the
desired signal are more likely to appear due to spectral suppression with a requirement to be aggressive
enough to suppress all residual echoes [103]. Consequently, when high echo attenuation is required,
the linear echo canceler can only cover a small fraction of the needed attenuation compared to the
echo suppressor, and thus, the AEC is made unnecessary when the audio quality is bounded to what
the suppressor yields. The benefit of purely subtractive operation by the linear echo canceler is thus
restricted and an AES alone can be advantageously implemented in this case.

Now, we first review the general approach of AES as introduced in [101], before we present a
complete implementation of an improved AES.

4.30.3.1 Alternative problem statement
Recall from Section 4.30.2.1 that the microphone signal y(n) is composed of the near-end signal s(n)

and the acoustic echo signal that results from the feedback of the loudspeaker signal x(n), i.e.,

y(n) = hn ∗ x(n) + s(n), (30.56)

where hn is the room impulse response and ∗ denotes convolution, as in (30.4). Generally, a room
impulse response hn can be decomposed into a direct sound, early reflections, and late reverbera-
tion. Here, only a global delay parameter τ and a filter gn are used to model parametrically the echo
path in order to capture direct sound and early reflections. The microphone signal y(n) can thus be
approximated by:

y(n) = gn ∗ x(n − τ) + s(n). (30.57)

As illustrated in Figure30.4, short-time discrete Fourier transform (STFT) spectra are computed from
the loudspeaker and microphone signals. The STFT-domain representation of (30.57) is then given by

Y (m, ν) = G(m, ν)Xτ (m, ν) + S(m, ν), (30.58)

where m is the block time index and ν denotes the frequency index. Xτ (m, ν) is the STFT-domain
correspondence of the loudspeaker signal x(n) delayed by τ samples (30.57). An estimate of the echo
power spectrum can be obtained by applying an estimated delay τ and an estimate of the magnitude-
squared filter |G(m, ν)|2 to the loudspeaker signal power spectrum, i.e.,∣∣Ŷ (m, ν)

∣∣2 = ∣∣Ĝ(m, ν)
∣∣2 |Xτ (m, ν)|2. (30.59)

Since in practice the echo transfer function |G(m, ν)| is not known a priori, it has to be replaced by the
estimate |Ĝ(m, ν)|, corresponding to a real-valued gain at each frequency. In this model, late reflections
are not estimated explicitly, but they are later considered by specific time-smoothing applied to the
echo power spectrum estimate |Ŷ (m, ν)|2. Then, the actual acoustic echo suppression, derived from the
echo estimate (30.59), is performed by modifying the magnitude of the STFT of the microphone signal
Y (m, ν), while keeping its phase unchanged. This can be expressed by

Ŝ(m, ν) = F(m, ν)Y (m, ν), (30.60)

where F(m, ν) represents a real valued, positive gain factor in each bin.
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FIGURE 30.4

Basic block diagram of a short-time spectral domain acoustic echo suppressor. STFT, ISTFT, EEF, ESF, and
SM stand for short-time Fourier transform, its inverse, echo estimation filter, echo suppression filter and
spectral modification, respectively.

In the following, the echo path estimate in (30.59) is denoted as the echo estimation filter (EEF).
Since the EEF is only a real-valued magnitude filter, it ought to be possible to estimate it without phase
sensitivity. In [104] a technique was proposed to estimate the EEF based on power spectral fluctuations
making the EEF insensitive to the phase relation between loudspeaker and microphone signals, whereas
conventional echo path and EEF estimation processes are known to fail in such scenarios [105]. The
suppression of echoes (30.60) is then implemented analogously to a Wiener filter [10], referred to as the
echo suppression filter (ESF), based on a short-time power spectrum estimate of the echo. A weakness
of the described AES systems is that, since a short-time ESF is applied on the microphone signal, the
suppression of a low SNR echo signal tends to introduce artifacts, such as so-called “musical noise”
artifacts [106]. To mitigate this problem, smoothing is applied to the echo estimate (30.59) and to the
final gain filter (30.60).

From the above discussion we conclude that there are two important tasks included in acoustic
echo suppression: On one hand, a suitable EEF has to be estimated in order to obtain a good estimate
of the spectral components of the echo signal included in the microphone signal. On the other hand,
an appropriate computation rule for the ESF is required that maximizes the echo suppression while
keeping the distortions on the desired near-end signal as low as possible. Solutions to these two tasks
are presented in the next two sections. The estimation of the EEF is thoroughly discussed next. Since
the associated delay τ is also not known in advance, it also has to be estimated. We consider only one
single delay for all frequencies. The estimation of the delay is straightforward when using correlation
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methods, e.g. [107], and is not discussed further here. Then, the derivation of the final ESF is described
later.

4.30.3.2 Echo path estimation
The computation of the echo estimation filter (EEF) is a crucial part of acoustic echo suppression. The
estimation of the echo power spectrum |Ŷ (m, ν)|2 is achieved based on the observable loudspeaker
signal and an EEF (30.59), i.e., an estimate of the echo transfer function G(m, ν).

As proposed in [101], a straightforward solution for estimating G(m, ν) results from the signal model
(30.58). Assuming that the near-end speaker is silent, (30.58) implies that the EEF can be estimated as
the magnitude of the least squares estimator (Wiener filter),

Ĝw(m, ν) =
∣∣∣∣∣ E {

Y (m, ν)X∗
τ (m, ν)

}
E {

Xτ (m, ν)X∗
τ (m, ν)

}
∣∣∣∣∣ , (30.61)

where ∗ denotes the complex conjugate operator. Since the acoustic echo path is likely to vary in time,
Ĝw(m, ν) is estimated iteratively by

Ĝw(m, ν) =
∣∣∣∣ �Y X∗

τ
(m, ν)

�Xτ X∗
τ
(m, ν)

∣∣∣∣ , (30.62)

where

�Y X∗
τ
(m, ν) = αY (m, ν)X∗

τ (m, ν) + (1 − α)�Y X∗
τ
(m − 1, ν), (30.63)

�Xτ X∗
τ
(m, ν) = αXτ (m, ν)X∗

τ (m, ν) + (1 − α)�Xτ X∗
τ
(m − 1, ν), (30.64)

and α ∈ [0, 1] is determined as a function of the desired smoothing time constant T,

α = 1 − exp

(
− K

T fs

)
, (30.65)

where fs is the sampling frequency and K the STFT window hop size, T = 1.5 s is a reasonable value.
The above technique effectively estimates the echo path transfer function and takes the magnitude

thereof to obtain the real-valued EEF. Whenever the phase changes abruptly, such as during echo
path changes, this EEF estimation has to re-converge. To make (30.61) insensitive to phase variations,
correlations are modified to be computed from the power spectra rather than from the complex spectra,
i.e.,

Ĝ2
b(m, ν) = E {|Xτ (m, ν)|2|Y (m, ν)|2}

E {|Xτ (m, ν)|2|Xτ (m, ν)|2} . (30.66)

In order to illustrate that the proposed technique is insensitive to phase variations in the echo path,
both EEF estimates, (30.61) and (30.66), are compared. The proposed methods are implemented using
a discrete short-time Fourier transform (STFT), running at a sampling rate of 16 kHz. A 512-tap FFT
is used using sine analysis and synthesis windows and successive windows have an overlap of 50%.
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FIGURE 30.5

The true EEF G(m,ν) as it would be ideally estimated.

In order to simulate realistic scenarios, a measured room impulse response hn of length 64 ms is used
to model the echo path. Also, as reference, the true EEF G(m, ν) is shown in Figure 30.5 as it would
be ideally estimated over the complete simulation time. The simulations consider a far-end signal with
additive Gaussian noise with a SNR of 24 dB. The microphone signal contains the echo and near-end
Gaussian noise with the same SNR. Figure 30.6 shows, for three different phase variations, the EEF
computed as in (30.61) and (30.66). For Panels (a) and (d) a change in the phase of the room impulse
response hn after 4 seconds has been simulated, resulting in the EEF filters Ĝw(m, ν) and Ĝb(m, ν),
respectively. While the EEF based on complex spectra diverges from the desired filter when the phase
of hn is modified, the EEF based on power spectra stays similar to the true EEF in Figure 30.5. Also,
a sampling rate mismatch of 1 Hz between loudspeaker and microphone signals was simulated. Panels
(b) and (e) show the resulting EEF filters Ĝw(m, ν) and Ĝb(m, ν), respectively, where only the second
stays similar to the true EEF. The observations are the same between the EEF filters Ĝw(m, ν) and
Ĝb(m, ν), in Panels (c) and (f), where random loss of 4 samples in the loudspeaker signal was simulated.
Figure 30.6 indicates that the proposed EEF estimate Ĝb(m, ν) converges quickly and is hardly affected
by the phase and time modifications of the echo path. In contrast to that, the conventional EEF estimation
method Ĝw(m, ν) does not converge since it relies on phase information.

However, assuming that the non-zero near-end signal S(m, ν) and the far-end signal Xτ (m, ν) are
statistically independent and zero mean, it follows from (30.58) that Ĝb(m, ν) according to (30.66)
gives

Ĝ2
b(m, ν) = |G(m, ν)|2 + E

{
|S(m, ν)|2

} E {|Xτ (m, ν)|2}
E {|Xτ (m, ν)|4} , (30.67)

as demonstrated in Section 4.30.3.5. Obviously, any non-negligible near-end signal S(m, ν) included
in the microphone signal Y (m, ν) leads to a positive bias in the estimate Ĝb(m, ν). The biased EEF
leads to too large estimates of the echo power in the spectrum. From (30.67) it follows that this effect
is especially prominent in case of high levels of the near-end signal S(m, ν). In the following, we
additionally describe a method to compute the EEF based on power spectra, however, without bias.
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FIGURE 30.6

Effect of phase variations in the room impulse response hn on Ĝw(m,ν) (on the left) and Ĝb(m,ν) (on the
right). (a) and (d) Effect of a phase response modification after 4 s. (b) and (e) Effect of a sampling rate
mismatch of 1 Hz between loudspeaker and microphone signals. (c) and (f) Effect of random loss of four
samples in the loudspeaker signal.

This is achieved by estimating G(m, ν) based on temporal fluctuations of the power spectra computed
according to

Ỹ (m, ν) = |Y (m, ν)|2 − E
{
|Y (m, ν)|2

}
, (30.68)

X̃τ (m, ν) = |Xτ (m, ν)|2 − E
{
|Xτ (m, ν)|2

}
. (30.69)

In practice, the expectation operator E{.} is implemented as single pole temporal averaging analogously
to (30.63). Note that the smoothing time constant used in (30.68) and (30.69) is chosen smaller than
the time constant T in (30.65), i.e., about a few hundred of milliseconds. The estimation of the EEF
is then performed analogously to (30.66), but based on the fluctuating spectra of the loudspeaker and
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FIGURE 30.7

Biased (on the left) and unbiased (on the right) EEF estimates for 24 dB and 6 dB SNR in Panels (a), (d)
and (c), (d), respectively.

microphone signals:

Ĝ2(m, ν) = E {
X̃τ (m, ν)Ỹ (m, ν)

}
E {

X̃τ (m, ν)X̃τ (m, ν)
} . (30.70)

This, as demonstrated in Section 4.30.3.5, yields an un-biased echo estimation filter,

Ĝ2(m, ν) = |G(m, ν)|2. (30.71)

It is important to note that the fluctuating power spectra are only used for the estimation of G(m, ν).
The computation of the echo suppression filter F(m, ν), in (30.60), is still based on the original power
spectra of the loudspeaker and microphone signals. Based on the simulations as defined previously,
we show the bias resulting from the EEF estimate using power spectra (30.66). A far-end signal with
a SNR of 24 dB is considered, while the microphone signal contains the echo and near-end Gaussian
noise with two different SNRs: 24 dB and 6 dB. Figure 30.7 shows in the two left panels the biased EEF
estimates Ĝb(m, ν), and in the two right panels, the unbiased EEF estimates Ĝ(m, ν), for 24 dB and
6 dB SNR, respectively. While the unbiased EEF estimates Ĝ(m, ν) are similar for all SNR conditions,
the biased EEF estimates Ĝb(m, ν) are more impaired the lower the SNR is.

Eventually, in order to prevent the EEF (30.71) from diverging, when near-end speech is active, a two
echo path model [43] is used. One background path comprising a fully adaptive echo estimation filter,
and one foreground path which comprises the echo estimation filter effectively used for computation
of the echo power spectrum. The values of the foreground echo estimation filter are refreshed by those
of the background one based on the performance of the algorithm. Also two voice activity detectors
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FIGURE 30.8

A far-end speech signal is considered in Panel (a). The resulting echo estimates corresponding to (30.59)
and (30.72) are respectively shown in Panels (b) and (c). The used exponential decay αRT corresponds to a
time constant of 60 ms.

(VADs) at far-end and near-end sides [2], respectively, are used to discriminate whenever far-end and/or
near-end speech is active.

4.30.3.3 Echo suppression filter
The estimate of the echo spectrum according to (30.59) covers only a fraction of the length of the
true echo path corresponding to direct sound and early reflections. To cope with the echo components
resulting from late reverberation, a temporal smoothing is applied to the echo spectrum estimate in
order to mimic typical exponential decay of late reflexions. This is achieved by applying recursively a
forgetting factor on the echo power spectrum estimate of previous frame

|Ŷ (m, ν)| = max
{|Ŷ (m, ν)|, αRT|Ŷ (m − 1, ν)|}, (30.72)

where αRT ∈ [0, 1] is determined as a function of the amount of late reverberation and is computed
similarly to (30.65). Based on the simulations as defined previously, and considering a far-end speech
signal X(m, ν) shown in Panel (a) of Figure 30.8, the corresponding echo estimate (30.59) is shown in
Panel (b), while the smoothed estimate (30.72) is shown in Panel (c). The described temporal smoothing
does not change signal dynamic but models the exponential decay of the echo.
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From the echo estimate (30.72), the optimum values for the echo suppression filter (ESF) F(m, ν)

can be derived by minimizing the contribution of the echo components |Ŷ (m, ν)|2 to the output signal
Ŝ(m, ν) in the mean square error (MSE) sense. Since the near-end signal S(m, ν) and the loudspeaker
signal X(m, ν) were assumed to be statistically independent, we obtain [10]

Fopt(m, ν) = E {|Y (m, ν)|2} − E {|Ŷ (m, ν)|2}
E {|Y (m, ν)|2} . (30.73)

A practical approach for the computation of the ESF is based on generalized, instantaneous versions
of (30.73). In [101] it has been proposed to use the power spectral subtraction approach analogously
to [108]:

F(m, ν) = |Y (m, ν)|2 − β|Ŷ (m, ν)|2
|Y (m, ν)|2 , (30.74)

where β represents a design parameter to control the amount of echo to be suppressed [109]. F(m, ν)

can be considered as an estimate of Fopt(m, ν) according to (30.73). To prevent residual echoes, the
ESF in (30.74) is computed to attenuate the microphone signal aggressively such that no residual echo
remains. This is, e.g., achieved by intentionally over-estimating the echo power spectrum (by choosing
β > 1), but also by applying a suitable time-smoothing to F(m, ν). These design parameters have an
important role to address attenuation of residual echoes, resulting from long echo paths, non-linearities,
etc. Considering a near-end speech signal as shown in Figure 30.9, the computation of ESF is simulated
with the same far-end signal as in Panel (a) of Figure 30.8 and the echo path as defined in Figure 30.5.
The resulting ESF is shown in Panel (b) of Figure 30.9, where the contribution for the echo is removed
and the time-frequency tiles corresponding to near-end signal are kept untouched as shown by Panel (c).

The acoustic echo suppression method, as presented above, is derived analogously to spectral sub-
traction used for stationary noise suppression [106]. And since echo control applications often require
in the same time noise suppression, both echo and noise suppression can be advantageously combined
to minimize the resulting distortions on the processed signal like “musical noise” artifacts [110].

4.30.3.4 Perceptual acoustic echo suppression
In order to further reduce computational complexity, the AES processing is not carried out on each STFT
frequency bin separately. The uniformly spaced spectral coefficients can be grouped into a number of
non-overlapping partitions, similar as in [111]. Each such partition (group of bins) corresponds to one
subband in which the processing is carried out. The bandwidth of each group of bins is chosen such
that it roughly follows the frequency resolution of the human auditory system. The partition bandwidth
for example is chosen to be approximately two times the equivalent rectangular bandwidth (ERB)
[112], resulting, for example, in 16 partitions for 16 kHz as shown in Panel (a) of Figure 30.10. The
different statistics and filters are then only computed once for each partition, instead of once for each
STFT frequency bin, resulting in lower computational complexity. Prior to applying the partition echo
suppression filter (ESF) to the uniform signal STFT spectrum, it has to be interpolated. An example of
this interpolation is illustrated in Panel (b) of Figure 30.10: At one frame, the values for partitions are
indicated as points (•) and the resulting interpolated values, obtained by interpolation, are indicated as
line. In this way, the proposed interpolation smoothes the filter values over frequency reducing artifacts
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FIGURE 30.9

The desired near-end speech signal is shown in Panel (a). The ESF is shown in Panel (b) with a far-end
signal chosen to be the same as in Panel (a) of Figure 30.8. The resulting output signal Ŝ(m,ν) is shown in
Panel (c)

which would result from high fluctuations of the filter. This approach, based on frequency resolution of
the human auditory system, is referred as to perceptual acoustic echo suppression (PAES) [113].

4.30.3.5 Derivation of echo estimation filters
The present subsection gives the derivation which lead to the biased and unbiased echo estimation filters
(EEF), (30.67) and (30.71), respectively. First, we consider a general result holding for statistically
independent processes. Let A and B be two independent statistical random processes, and f and g two
arbitrary functions. Then,

E { f (A)g(B)} = E { f (A)} E {g(B)} (30.75)

holds [114].
Regarding the EEF derivation itself, it is reasonable to assume that loudspeaker signal Xτ (m, ν) and

near-end signal S(m, ν) are statistically independent, zero-mean random processes. In the following,
the indexes m and ν are discarded for presentational simplicity. From (30.58) it follows that the power
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Panel (a) shows how the STFT frequency bins are grouped to obtain partitions mimicking the frequency
resolution of the human auditory system. Panel (b) shows an example of interpolation of the ESF F (m,ν)

from partitions to STFT frequency bins to be applied on the microphone spectrum Y (m,ν).

spectrum |Y |2 can be written as:

|Y |2 = Y Y ∗

= (G Xτ + S)(G Xτ + S)∗ (30.76)

= |G|2|Xτ |2 + |S|2 + G∗ X∗
τ S + G Xτ S∗.

Since both, Xτ , and S are statistically independent, zero-mean processes,

E
{
|Y |2

}
= |G|2E

{
|Xτ |2

}
+ E

{
|S|2

}
. (30.77)

The EEF is estimated by (30.66), whose numerator is

E
{
|Y |2|Xτ |2

}
= E

{(
|G|2|Xτ |2 + |S|2 + G∗ X∗

τ S + G Xτ S∗) |Xτ |2
}

, (30.78)

considering 30.75, it leads to

E
{
|Y |2|Xτ |2

}
= |G|2E

{
|Xτ |4

}
+ E

{
|S|2

}
E

{
|Xτ |2

}
. (30.79)

Furthermore, the denominator of (30.66) is

E
{
|Xτ |2|Xτ |2

}
= E

{
|Xτ |4

}
. (30.80)
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The EEF according to (30.79) and (30.80), thus, yields

Ĝ2
b = |G|2 + E |S|2 E {|Xτ |2

}
E {|Xτ |4

} . (30.81)

As can be seen, the near-end signal S introduces a bias term into the estimate of the EEF. Furthermore,
(30.81) implies that the bias in the EEF increases with increasing near-end signal variance.

In the proposed method, in order to avoid the bias introduced in (30.66), the EEF in (30.70) is
computed based on the temporal fluctuations of the power spectra (30.68) and (30.69). The numerator
of the EEF (30.70) is given by

E {
Ỹ X̃τ

} = E
{(

|G|2|Xτ |2 + |S|2 + G∗ X∗
τ S + G Xτ S∗ (30.82)

− |G|2E
{
|Xτ |2

}
− E

{
|S|2

}) (
|Xτ |2 − E

{
|Xτ |2

})}
.

This simplifies to

E {
Ỹ X̃τ

} = E
{
|G|2|Xτ |4 − 2|G|2|Xτ |2E

{
|Xτ |2

}
+ |G|2E

{
|Xτ |2

}2
}

, (30.83)

and finally, considering (30.75),

E {
Ỹ X̃τ

} = |G|2
(

E
{
|Xτ |4

}
− E

{
|Xτ |2

}2
)

. (30.84)

Also, the denominator of (30.70) is

E {
X̃τ X̃τ

} = E
{(

|Xτ |2 − E
{
|Xτ |2

}) (
|Xτ |2 − E

{
|Xτ |2

})}
= E

{
|Xτ |4

}
− E

{
|Xτ |2

}2
. (30.85)

Thus, the EEF according to (30.70) yields

Ĝ2 = |G|2. (30.86)

Note that (30.70) leads to an unbiased estimate of the echo power transfer function also in case of
near-end signal included in the microphone signal.

4.30.4 Multichannel acoustic echo cancellation
Multichannel acoustic echo cancellation (MCAEC) is a key technology whenever hands-free and full-
duplex communication in modern systems with multichannel sound reproduction is required. For various
applications, such as home entertainment, virtual reality (e.g., games, simulations, training), or advanced
teleconferencing, multimedia terminals with an increased number of audio channels for sound repro-
duction are highly desirable (e.g., stereo, 5.1 surround systems, or even beyond). Although the basic
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principle of echo cancellation has been well known for several decades, the multichannel case poses
some additional and fundamentally different challenges. Moreover, there are even some notable differ-
ences between the two-channel case and the general multichannel case which has been addressed bit by
bit only in recent years. The aim of this section is twofold. On the one hand, after a brief review of the
problem of multichannel acoustic echo cancellation, this section gives an outline of how the problem
may be tackled based on some fundamental principles. In this sense, the presentation in this section
brings together ideas from the theory on signals and systems, information theory, psychoacoustics, and
also wave physics. Based on this framework, and as the other main contribution, we present in this
section some recent advances in the field of MCAEC. Thereby, important issues in the case of more
than two channels are emphasized. Finally, as an outlook, we touch on some ongoing work towards
MCAEC for massive multichannel sound reproduction, such as wave field synthesis.

4.30.4.1 Description of signals and systems
Acoustic echo cancellation has already been discussed extensively for stereo sound reproduction (e.g.,
[115–118]). Only in recent years, AEC has been realized for more than two reproduction channels [26,
119,120]. Figure 30.11 describes a typical scenario for stereo and multi-channel AEC. In a transmission
room, a sound source (e.g., a speaker) is picked up by P microphones (P = 2 for stereo). The microphone
signals are transmitted to a receiving room and reproduced via P loudspeakers. At the same time, a
microphone in the receiving room picks up speech from a local user. In order to avoid an echo of
the loudspeaker signals xi (n) in the transmission room, the AEC attempts to cancel the additional
contributions by the loudspeakers to the microphone by subtracting filtered versions of the loudspeaker
signals from the microphone signal. This generally requires that cancellation filters (assumed to be
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FIGURE 30.11

Scenario for multi-channel AEC.
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length-N FIR filters) are dynamically adjusted by an adaptation algorithm to achieve minimum error
signal e(n) and thus optimum cancellation. This is the case when the adaptive cancellation filters

ĥi (n) =
[
ĥi,1(n), . . . , ĥi,N (n)

]T
, i = 1, 2, . . . , P (30.87)

accurately model the impulse responses hi from the emitting speakers to the microphone.
It has been shown for stereo AEC that a so-called non-uniqueness problem exists [121]: If the

loudspeaker signals are strongly correlated, then the adaptive filters generally converge to a solution
that does not correctly model the transfer functions between the speakers and the microphone, but
merely optimizes echo cancellation for the given particular loudspeaker signals [28]. This is due to the
fact that the observation model y = h1 ∗ x1 + · · · + h P ∗ xP does not provide us with enough linearly
independent equations for resolving the unknowns hi and the problem is thus underdetermined. As a
consequence, a change in the characteristics of the loudspeaker signals (e.g., due to a change of the
geometric position of the sound source in the transmission room) will result in a breakdown of the echo
cancellation performance and requires new adaptation of the cancellation filters.

From a statistical point of view, the high cross-correlations between the loudspeaker signals lead to a
highly ill-conditioned tap-input correlation matrix Rxx(n) in the normal equation, Rxx(n)h(n) = rxx(n),
to be solved for the minimization of E{e2(n)} [115], where

Rxx(n) = E
{

x(n)xT (n)
}

(30.88)

=
⎡
⎢⎣

Rx1x1(n) · · · Rx1xP(n)
...

. . .
...

RxP x1(n) · · · RxP xP(n)

⎤
⎥⎦ ,

x(n) = [
x1(n), . . . , xP (n)

]
,

xi (n) = [
xi (n), . . . , xi (n − N + 1)

]T
,

h(n) = [
h1(n), . . . , hP (n)

]
. (30.89)

To tackle this challenging problem of ill conditioning, various techniques have been proposed mainly
in the stereo context so far. They can be distinguished into two different classes representing separate
system components as shown, e.g., in [116]:

(a) Application of a robust and fast converging adaptation algorithm taking all cross-correlations into
account.

(b) Preprocessing of the signals transmitted from the transmission room prior to their reproduction in
the receiving room in order to partially decorrelate all channels relative to each other.

We then face the two conflicting requirements that, on the one hand, the preprocessing must not introduce
any objectionable artifacts into the reproduced audio signals while, on the other hand, we require
a decorrelation for convergence enhancement. Therefore, a systematic design for MCAEC based on
first principles of coefficient estimation and optimization, together with a complete stochastic signal
description, and considering human auditory perception, is necessary. The structure of this section is
motivated by a step-by-step incorporation of these principles. Within this framework, we place recent
advances in MCAEC with emphasis on more than two reproduction channels, and deduce various new
insights and practical results.
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4.30.4.2 Elements from estimation and information theory
In general, to optimally exploit the information contained in the involved signals, the coefficient esti-
mation process should take into account all their fundamental stochastic properties: Nongaussianity,
nonwhiteness, nonstationarity. A suitable broadband signal formulation for this purpose was developed
within the so-called TRINICON framework for adaptive multiple-input and multiple-output (MIMO)
filtering [55,57,122,123], as already mentioned in Section 4.30.1.

In [56], the AEC problem was linked explicitly to the more general MIMO system identification and
signal separation problem as addressed by TRINICON, and as illustrated by the two dashed boxes in
Figure 30.11. The left and right dashed boxes correspond to a MIMO mixing system and a corresponding
MIMO demixing system, respectively. The demixing system follows rigorously from the ideal MIMO
separation solution derived in [124,125]. This formal connection facilitates the introduction of stochastic
signal models in the form of multivariate probability densities which capture the temporal structure by
multiple time lags and the nonstationarity by time-varying correlation matrices.

The TRINICON optimization criterion for the case of separation (and system identification) problems
is based on minimizing the information-theoretic quantity of mutual information between the output
channels of the demixing MIMO system using the multivariate densities mentioned above. In the special
case of AEC, we separate the contributions of the loudspeaker signals from the error signal e(n) at the
AEC output (Figure 30.11 and [56]). In the special case of Gaussian signals, this separation process
corresponds to a simultaneous block-diagonalization of the output correlation matrix for multiple time
instants since the local speech s(n) is assumed to be uncorrelated from the loudspeaker signals [56,123].

Following [126], we show here how to generalize the information-theoretic separation approach in
[56] to multichannel AEC with typically highly correlated loudspeaker signals. Specifically, the output
channels x1(n), . . . , xP (n) of the mixing system in Figure 30.11 do not require separation from each
other. Figure30.12 illustrates the output correlation matrix Ryx after mixing (left) and the corresponding
desired structure Rex after demixing (right) for the special case of Gaussian signals and P = 2. Hence,
the approach in [56] generalizes straightforwardly to the MCAEC case by just using this modified matrix
partitioning.

In [56] the update equations for TRINICON-based coefficient adaptation in AEC have been presented
for the simple case of gradient-based optimization. However, it is known that gradient-descent algorithms
(e.g., LMS/NLMS [10]) generally exhibit very slow convergence for highly correlated input signals such
as in the multichannel case.

The so-called Newton-Raphson-type optimization procedure is known as the canonical method for
more challenging optimization problems. As detailed in [55], a TRINICON-based Newton update can
be derived in a way analogous to [52]. The Newton algorithm contains virtually all of the well-known
adaptation schemes as special cases, most notably the recursive least-squares (RLS) algorithm. The
important feature of Newton-type/RLS-type algorithms is that they explicitly take all input correlations
(30.88) into account within their Hessian matrix [10,52] which makes them very attractive for the
MCAEC application [116].

In addition to this desirable property of RLS-type algorithms, the more general TRINICON-based
approach inherently leads to a multivariate error nonlinearity to take both the nongaussianity and the
nonwhiteness of the near-end signal into account [56]. This provides an inherent double-talk handling
and a link to the powerful concept of robust statistics, e.g., [51,53]. Moreover, the block online adaptation
and block averaging obtained in [56] further speeds up the convergence (especially in MCAEC).
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AEC process for second-order statistics and P = 2.

Note also that the general TRINICON-based approach also leads to important insights in the case of
AEC for multiple microphone channels in the receiving room, as explained further in Section 4.30.4.4.

Finally, another aspect in the design of a real-time solution to MCAEC is its computational com-
plexity. Unfortunately, straightforward implementations of RLS-type algorithms are computationally
very expensive due to the required (implicit or explicit) inversion of the correlation matrix. A very
efficient practical solution to this problem is to formulate the above-mentioned broadband algorithm
in a mathematically rigorous way in the frequency domain, as shown, e.g., in [26,52,123], followed
by the introduction of carefully selected approximations. The most important features of this con-
cept of frequency-domain adaptive filtering (FDAF) is that in addition to the efficient use of the FFT
(gains for both, adaptation and filtering), all the sub-matrices of the input correlation matrix (30.88)
are approximately diagonalized by the DFT. In this way, it is possible to efficiently take into account
all cross-correlations [26]. This is possible for both, second-order and higher-order statistics. A first
MCAEC system for 5-channel surround sound applications, based on the multichannel FDAF algo-
rithm has been presented in [26,119]. This real-time implementation also utilizes the concept of robust
statistics [52].

4.30.4.3 Elements from psychoacoustics
As mentioned in Section 4.30.4.1, among the key requirements for the techniques to preprocess the
signals transmitted from the transmission room prior to their reproduction in the receiving room is
the subjective sound quality. While several of the known preprocessing techniques provide enough
decorrelation to achieve proper AEC convergence in the stereo case, considerations of sound quality
have frequently not been addressed adequately. In this section we first give a brief overview of the
known two-channel preprocessing approaches. We then describe a recently introduced novel approach
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[120], based on perceptual considerations. It easily generalizes to the multi-channel case and has been
demonstrated to be effective in surround sound echo cancellation.

4.30.4.3.1 Known two-channel preprocessing approaches
A first simple preprocessing method for stereo AEC was proposed by Benesty et al. [115,127] and
achieves signal decorrelation by adding non-linear distortions to the signals. While this approach fea-
tures extremely low complexity, the introduced distortion products can become quite audible and objec-
tionable, especially for high-quality applications using music signals. Moreover, the generalization of
this approach to an arbitrary number of channels is not straightforward.

A second well-known approach consists of adding uncorrelated noise to the signals. In [128], this is
achieved by perceptual audio coding/decoding of the signal which introduces uncorrelated quantization
distortion that is masked due to the noise shaping according to the encoder’s psychoacoustic model. The
use of an explicit psychoacoustic model plus analysis/synthesis filterbanks is able to prevent audible
distortions in audio signals and may be easily generalized to more than two channels. However, the
associated implementation complexity and the introduced delay render this approach unattractive for
most applications.

Other approaches employ switched/time-varying time-delays [118] or variable all-pass filtering [129]
to produce a time-varying phase shift / signal delay between the two channels of a stereo AEC and thus
“decorrelate” both signals. Specifically, [118] describes a preprocessing system in which the output
signal switches between the original signal and a time-delayed/filtered version of it. As a disadvantage,
this switching process may introduce unintended artifacts into the audio signal. Ali [129] describes a
system in which an allpass preprocessor is randomly modulating its allpass filter parameter. In [130],
it was proposed to apply this allpass preprocessor only to the low frequency range up to 1 kHz due to
convergence requirements.

4.30.4.3.2 Psychoacoustically motivated method for the multichannel case
In order to obtain a preprocessing method offering both good decorrelation properties for the enhance-
ment of AEC convergence and minimal alteration of the perceived stereo image, the method proposed
in [120] is based on several considerations. From the previously discussed approaches, the time-varying
modulation of the phase of the audio signal, as proposed in [118,129], is an effective method which
is generally unobtrusive in its perceptual effects on audio signals as compared to other methods while
avoiding computationally expensive masking models. Nonetheless, it is difficult to achieve maximum
decorrelation while guaranteeing that introducing a time/phase difference between left and right chan-
nels does not result in an alteration of the perceived stereo image. Several aspects must be accounted
for:

• Interaural phase/time difference is a relevant perceptual parameter for subjective perception of
a sound stage [131] and has been used extensively in synthesis of stereo images (e.g., [111]).
Consequently, a change in the perceived stereo image can only be avoided if the introduced time/phase
difference stays below the threshold of perception, as it applies to audio signals that are reproduced
via loudspeakers.

• Optimal AEC convergence enhancement can be achieved if the preprocessing introduces time/phase
differences just at the threshold of perception, i.e., applies the full amount of tolerable modification.
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• Known from psychoacoustics, the human sensitivity to phase differences is high at low frequen-
cies, and gradually reduces for increasing frequencies, until it fully vanishes for frequencies above
ca. 4 kHz.

• Neither a simple time delay modulation nor a low-order time-varying allpass filtering approach
offers the flexibility to tailor the amount of time/phase shifting as a function of frequency, such that
the full potential of perceptually tolerable change is exploited.

Hence, in contrast to earlier phase modulation approaches, the method in [120] is designed to allow
a perceptually motivated frequency-selective choice of phase modulation parameters (modulation fre-
quency, modulation amplitude, and modulation waveform) by employing analysis/synthesis filterbanks.
The input audio signal is decomposed into subband signals by means of an analysis filterbank. Then,
the subband phases are modified based on a set of frequency-dependent modulating signals. According
to the above considerations, subbands belonging to the low frequency part of an audio signal should be
left largely untouched, while subbands corresponding to frequencies above 4 kHz may be modulated
heavily. The frequency-selective phase modulation amplitude can be optimized by a listening procedure.
Finally, the modified spectral coefficients are converted back into a time-domain representation by a
synthesis filterbank. To allow easy access to the signal’s phase, a complex-valued filterbank [132] is
used, and a phase modification is implemented by a complex multiplication of the subband coefficient
with ejϕ(t,ν) where ϕ(t, ν) denotes the intended time-varying phase shift in subband ν. It is preferable
to choose a smooth modulating function ϕ(t, ν), such as a sine wave at a relatively low frequency.
Moreover, to account for the symmetry of typical multi-channel speaker setups, such as 5.1 or 7.1, the
modulation of channel pairs is carried out in a complex conjugate fashion. The modulation frequencies
for pairs are chosen such that they provide “orthogonal” modulation activity.

Figure30.13 shows a summary of the results of a standardized subjective MUSHRA (“MUlti Stim-
ulus test with Hidden Reference and Anchor”) listening test carried out with 10 experienced listeners
in a typical surround sound listening setup. The sound quality was quantified on a scale from 0 to
100 for 5 critical music excerpts and one speech excerpt (see [120] for further details). The different

hidden ref.

lp35

mp3 48

mp3 48 phase

phase

NL 05

0 20 40 60 80 100
bad poor fair good excelle nt

FIGURE 30.13

MUSHRA listening test results (averages and 95% confidence).
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preprocessing types are the original reference and a 3.5 kHz band-limited version thereof, both required
by MUSHRA, the individual channel mp3 en/decoding at 48 kbit/s (“mp3 48”), the described perceptual
phase modulation method (“phase”), a combination of mp3 encoding/decoding and phase modulation
(“mp3 48 phase”), and the conventional non-linear processing (“NL 05” after [115,127]). It is visible
from the graph that the phase modulation method emerges as the clear winner in terms of sound qual-
ity. Note that the latter four methods were tuned for comparable convergence speeds of the adaptive
algorithms.

4.30.4.4 MIMO processing and elements from wave physics
4.30.4.4.1 MIMO case for multiple microphones
So far in this section, we have focused on the case of multiple reproduction channels but only one
microphone in the receiving room. The more general case of a full MIMO loudspeaker-room-microphone
system appears when combining MCAEC with a microphone array, e.g., [26]. Traditionally, in this case
several parallel multiple-input and single-output (MISO) systems are independently applied, which has
been shown to be optimal in terms of least-squares-based coefficient estimation.

As explained in Section 4.30.4.2, TRINICON-based AEC is generally able to exploit the nonwhite-
ness of the signals in the receiving room (upper left sub-matrix in Figure 30.12). By further generalizing
the TRINICON-based AEC to the case of MIMO loudspeaker-room-microphone systems, it is also
able to exploit the spatial nonwhiteness in the receiving room by simultaneously taking into account all
microphone signals for the adaptation process. In other words, the performance may be improved with
multiple microphones.

4.30.4.4.2 Massive multichannel systems and wave physics
Current loudspeaker setups, such as the 5.1 format, still rely on a restrained listening area (“sweet spot”).
A high-quality volume solution for a large listening space is offered by the wave field synthesis (WFS)
method which is based on wave physics [133]. The so-called Kirchhoff-Helmholtz integrals which can
be derived from the acoustic wave equation state that at any point within a source-free listening area,
the sound pressure field can be calculated if both the sound pressure and its gradient are known on the
contour enclosing this area. Thus, in WFS, closely spaced arrays of a large number P of individually
driven loudspeakers generate a pre-specified sound field. P may lie between 20 and several hundred.
An analogous approach is possible for wave field analysis (WFA) using microphone arrays.

Building a full-duplex system with this massive multichannel setup for unrestricted audio content
might be considered as the supreme discipline of MCAEC research since in this case even the P × P
frequency bin-wise correlation matrices of the loudspeaker driving signals are generally still large and
ill-conditioned after the approximate blockwise diagonalization of (30.88) within the frequency-domain
adaptive filtering (FDAF) coefficient update (cf. Section 4.30.4.2).

The basic idea of wave-domain adaptive filtering (WDAF), e.g., [134,135], is to replace the point-to-
point MIMO system model by a more detailed spatial consideration exploiting wave-physics foundations
as in WFS/WFA. In particular, WDAF extends the conventional FDAF approach by a suitable spatio-
temporal transform for efficiency. Figure30.14 illustrates this two-step transformation approach from
the RLS via FDAF towards WDAF in terms of the loudspeaker correlation matrix and its approximate
temporal and spatio-temporal diagonalization. It can be seen that each transformation step is supposed
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FIGURE 30.14

WDAF concept and relationship with conventional algorithms.

to achieve yet more sparseness of the multichannel correlation matrix. More sparseness then provides
a more tangible basis for explicit or implicit matrix inversion.

Requirements for the spatio-temporal basis functions are that they should be orthogonal and must
fulfill the acoustic wave equation (e.g., circular harmonics). Moreover, since the transducers are only
placed on the contour enclosing the listening area, corresponding transformations taking into account
the Kirchhoff-Helmholtz Integrals are necessary. These transformations depend on the array geometries,
and for certain setups, e.g., circular arrays [134,135], they can in fact be formulated in a compact form.
A rigorous formulation of RLS-type MIMO algorithms in spatio-temporal transform domains using
arbitrary orthogonal bases was developed in [136] as a systematic extension of the FDAF formalism,
e.g., [26,52,123].

Advantages of the approximate MIMO decoupling due to the spatio-temporal transformation are
both an improved convergence and a significant complexity reduction, as shown, e.g., in [134,135].
Note also that the WDAF concept can be well applied to the general TRINICON approach. Since all
microphone signals are jointly taken into account by the spatio-temporal transformation, WDAF also
facilitates an efficient exploitation of the spatial nonwhiteness mentioned in the previous subsection.

Recently, a related approach using data-based estimation of optimal decoupling transformation matri-
ces was proposed in [137]. Advantages of the data-based approach are that the resulting transformations
account for arbitrary array geometries and reverberant environments.

4.30.5 Nonlinear modeling and cancellation of echo
The previous approaches for acoustic echo cancellation assumed that the acoustic echo path can be
modeled by a linear system. In practice, however, many loudspeaker systems involve non-negligible
nonlinearities, e.g., caused by overloaded amplifiers or low-cost loudspeakers driven at high volume
[138,139]. Beyond a certain degree of nonlinear distortion, purely linear approaches are not able to
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provide sufficient echo attenuation and nonlinear approaches become desirable. Therefore, we recall
different approaches that have been proposed for coping with nonlinear acoustic echoes based on sim-
plified models of the acoustic echo path. In Section 4.30.5.1, we prepare the discussion by first outlining
physical properties of nonlinear audio hardware components that are typical in hands-free or mobile
communication. Then, in Sections 4.30.5.2–4.30.5.4, we present different nonlinear adaptive structures
for application in the nonlinear echo cancellation context. Thereby, we distinguish between memoryless
nonlinearities such as saturation characteristics of amplifiers on the one hand, and nonlinearities with
memory as required for nonlinear loudspeakers on the other hand. In the first case, nonlinear cascaded
structures [140] and power filters [141] are considered, whereas in the latter case second-order Volterra
filters are of interest [142,143].

4.30.5.1 Nonlinear acoustic echo paths
The structure of an acoustic echo path with possible nonlinearities is illustrated in Figure30.15. As can
be seen, it basically consists of the cascade of the amplifier, loudspeaker, and microphone. Additionally,
it comprises the acoustic propagation path between the loudspeaker and the microphone.

The propagation path between loudspeaker and microphone can usually be considered as a linear
system. It is commonly modeled by a linear FIR filter representing the room impulse response. The
microphone signals that are common with hands-free and mobile telephony have only moderate exci-
tation levels. Thus, it is reasonable to assume a linear behavior for the microphone, too, which is in
accordance with the observations reported in [140]. We then consider two main sources for nonlinear
distortion: The amplifier and the loudspeaker.

Amplifier nonlinearities are especially present in mobile communication devices. There, the dilemma
arises to provide high signal levels while having a low battery voltage. Consumers usually prefer
an overloading of the amplifier over a reduction of the sound volume. The nonlinear behavior of
amplifiers can therefore be described as a memoryless saturation characteristic with a soft clipping
of large amplitude values [140].

AECd(n)

s(n)

x(n)

y(n)
e(n)

d̂(n)

FIGURE 30.15

Hardware setup of the acoustic echo cancellation problem.
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Many researchers have worked on the characterization of the nonlinearities of electrodynamic loud-
speakers (see, e.g., [144,145]). Summarizing their results, one can identify two sources of nonlinear
distortion that are relevant in the AEC context: The nonlinearities in the electromagnetic part are mainly
caused by the asymmetries of the magnetic flux and its decay outside the air gap of the motor. Thus, the
driving force on the voice coil is a nonlinear function of its position. Additionally, in the mechanical
part, the nonlinear dependency of the stiffness of the spider and the outer rim on the position of the
voice coil has to be taken into account. Without looking at further details, we exploit the main result of
[144,145] which imply that the nonlinear behavior of loudspeakers can be modeled by an appropriate
Volterra filter. More precisely, we follow [142] and consider the loudspeaker as a black box, whose
input/output relation can be approximated sufficiently well by a second-order Volterra filter.

It should also be mentioned that the results presented in [141] indicate that for mobile phones, a
saturation-type behavior of the miniaturized loudspeakers can be expected. In this case, soft clipping
characteristics as in case of overloaded amplifiers represent a better model.

Other sources for nonlinear distortion in the acoustic echo path can be rattling and vibration effects
caused by a strong physical coupling between loudspeaker, microphone, and their enclosure, as, e.g.,
common in mobile phones. However, this distortion can hardly be modeled or predicted, as it is of
chaotic nature [102]. It should rather be considered as uncorrelated noise (analogously to any background
noise) and, thus, be processed accordingly. The problem of vibrating system components is not further
considered here.

4.30.5.2 Cascaded structure
First, we look at the case where the nonlinear distortion is introduced by an overloaded amplifier. From
the discussion in Section 4.30.5.1 it follows, that a simplified model of the nonlinear echo path is given
by the cascade of a memoryless saturation characteristic, corresponding to the amplifier, followed by a
linear FIR filter. Here, the linear filter corresponds to the remaining propagation path of the echo signal
including the loudspeaker, the room, and the microphone. The real nonlinear echo path and its cascaded
model is shown on the left hand side and the center of Figure30.16, respectively. The parallel structure
depicted on the right hand side will be considered later in Section 4.30.5.3.

The following discussion of adaptive realizations of the cascaded model according to Figure 30.16
center is based on [140]. The input/output relation of the memoryless nonlinearity can be expressed by

xnl(n) = f(a, x(n)), (30.90)

where x(n) is the input signal and a denotes a parameter vector that includes all model parameters
required to specify the function f ( · ). Note that since f ( · ) represents a memoryless nonlinearity, its
output xnl(n) depends only on the current input value x(n). In general, f ( · ) could be any function that
properly models the desired saturation behavior. Possible functions are hard-clipping characteristics
[140], or other parametric functions as proposed in [139].

Another general class of memoryless nonlinearities is given by truncated Taylor series expansions
and has already been successfully applied to nonlinear AEC in [140]. In case of a Taylor series expansion
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FIGURE 30.16

Illustration of the nonlinear acoustic echo path (left), its cascaded model (center), and a parallelized model
with power filters (right).

truncated at order P, Eq. (30.90) becomes

xnl(n) =
P∑

p=1

apx p(n), (30.91)

where ap represent the coefficients of the Taylor series expansion, i.e., a = [a1, a2, . . . , aP ] here. To
give a practical example, in [140] an order P of seven has been proposed.

The overall output of the cascaded structure is obtained as the linear convolution of xnl(n) with the
linear FIR filter gk . If the AEC in Figure 30.15 is realized accordingly, the estimate of the echo signal
d̂(n) is given by

d̂(n) =
Ng−1∑
k=0

gk xnl(n − k). (30.92)

Since both, the coefficients of Taylor series expansion ap, and the coefficients of the linear filter gk are
not known in advance and, moreover, vary in time, they have to be realized adaptively.

The most prominent adaptive algorithm in the AEC context is given by the least mean square (LMS)
algorithm [10]. We seek to minimize the mean square of the error signal e(n) at the output of the AEC,
where

e(n) = y(n) − d̂(n), (30.93)

as shown in Figure 30.15. In the following we briefly present the corresponding update equations
without further discussions. For more algorithmic details and rigorous derivations, the interested reader
is referred to [139,140].

Analogously to linear AEC, the update of the filter coefficients gk using the LMS algorithm yields

gk(n + 1) = gk(n) + μg(n)e(n)xnl(n − k), (30.94)
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where xnl(n) is the output of the memoryless nonlinearity according to (30.91). The corresponding
normalized LMS (NLMS) is obtained by normalizing the step-size parameter μg(n) according to

μg(n) = αg(n)∑Ng−1
k=0 x2

nl(n − k)
. (30.95)

The normalized step-size parameter αg(n) is chosen according to 0 < αg(n) < 2 to assure stable
convergence [10]. To obtain robust adaptation in practice, the step-size parameter has to be controlled
to account for distortions such as background noise or double-talk situations [2].

The LMS-type adaptation of the Taylor series expansion is performed according to

ap(n + 1) = ap(n) + μap (n)e(n)u p(n), (30.96)

where the auxiliary signal u p(n) is defined as

u p(n) =
Ng−1∑
k=0

gk x p(n − k). (30.97)

The normalization of the step-size parameter μap (n) is given analogously to μg(n) and obtained by
replacing xnl(n) with u p(n) in (30.95).

In order to increase the convergence speed of the coefficients of the Taylor series expansion, the
authors of [140] perform their adaptation via RLS. Since the number of coefficients P is generally small
(e.g., P ≤ 7), the increase in computational complexity compared to the LMS algorithm is rather small,
while the convergence speed is significantly improved. A recursive Bayesian algorithm for coupled
estimation of ap and gk , the variational Bayesian state-space frequency-domain adaptive filter, was
then proposed as a further update featuring inherent step-size control [146].

It should be noted that miniaturized loudspeakers of mobile phones, when driven into saturation,
show similar behavior to overloaded amplifiers [141]. Thus, the above considerations analogously apply
in this case.

4.30.5.3 Power filters
The application of cascaded structures that match the model of the nonlinear acoustic echo path, as
discussed in the previous section, represents a straightforward and computationally efficient approach
to nonlinear AEC. However, it is often challenging to assure convergence to the optimum solution or
even assure stable adaption behavior for adaptive cascaded structures. In this section, we, therefore,
consider so-called power filters as a practical parallelized model of the nonlinear echo path in case it
includes memoryless saturation characteristics.

The general structure of power filters is illustrated on the right hand side of Figure 30.16. Assuming
that the AEC in Figure 30.15 is realized as a Pth-order power filter, its input/output relation reads as
follows

d̂(n) =
P∑

p=1

Np−1∑
k=0

h p,k x p(n − k). (30.98)
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From (30.98) we notice that power filters can be considered as linear multiple input/single output
systems, where the input of the pth channel is given by the pth power of x(n). The input of each channel
is then filtered by an associated linear filter h p,k with memory length Np.

As already indicated in Figure 30.16, there is a close relation between the output of the cascaded
structure according to (30.92) and the corresponding power filter: Substituting the definition of xnl(n)

according to (30.91) into (30.92) gives

d̂(n) =
P∑

p=1

Ng−1∑
k=0

apgk x p(n − k). (30.99)

Comparing (30.98) and (30.99), the power filter model of the corresponding cascaded structure is
directly obtained by

h p,k = apgk . (30.100)

It should be noted, that the number of parameters is increased from P + Ng for the cascaded structure
to P Ng for the parallel structure. In practice, however, the increase in number of coefficients is usually
much less, as the higher-order channels require less memory compared to the linear channel, i.e.,
Np < Ng for p > 1. The results reported in [141,143] indicate that power filters of order three already
achieve a remarkable increase in echo attenuation compared to linear approaches in case of both, an
overloaded amplifier and the nonlinear loudspeaker of a mobile phone.

As already mentioned, power filters can be considered as linear multichannel systems. Thus, a
corresponding adaptive realization is straightforward. Here, we only present the LMS algorithm for the
update of the coefficients of the power filter h p,k(n), i.e.,

h p,k(n + 1) = h p,k(n) + μp(n)e(n)x p(n − k). (30.101)

In practice, a control of the step-size parameter μp(n), as well as an appropriate normalization, is
important to achieve a reasonable compromise between convergence speed and robustness against
distortions such as background noise and double-talk. In nonlinear echo cancellation, the adaptation
control additionally has to take into account the influence of nonlinear distortion. A corresponding
step-size control and normalization for adaptive power filters has been presented in [143,147].

Again referring to the multi-channel interpretation of power filters, we recall that the input signals
of the different channels, i.e., x(n), x2(n), . . . , x P (n) are in general correlated. This implies that the
convergence speed of a respective adaptive implementation is rather slow. In order to increase the
convergence speed of adaptive power filters, it has been proposed in [141,143] to use corresponding
orthogonalized structures instead. The new set of mutually orthogonal input signals for each channel
of the power filter is then given by

xo,p(n) = x p(n) +
p−1∑
i=1

qp,i x i (n), (30.102)

for 1 < p ≤ P , while the linear channel remains unchanged. The orthogonalization coefficients qp,i

are chosen such that the cross-correlation between the input signals of different channels becomes zero.
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The orthogonalization coefficients qp,i can be determined, e.g., by using the Gram-Schmidt orthogo-
nalization method. More details about time-variant orthogonalization for non-stationary input signals
such as speech are discussed in [141,143].

In linear adaptive filtering, frequency-domain approaches are known to increase convergence speed
while even decreasing computational complexity. Due to their close relation to linear multichannel
filtering, an efficient implementation of adaptive power filters in the frequency domain is well possible,
as it has been discussed in [143,147]. This is achieved by performing the time-domain update Eq.
(30.101) as well as the computation of the output signal d̂(n) (30.98) in the frequency domain. A
multichannel recursive Bayesian learning algorithm, the multichannel state-space frequency-domain
adaptive filter was recently proposed as a contained adaptive algorithm for the power-filter model at
hand [148]. It provides inherent stepsize control according to its underlying Kalman filter architecture
and has thus proven robustness for noisy and time-varying acoustic environments.

4.30.5.4 Second-order Volterra filters
For the case that the medium-sized loudspeaker of a hands-free telecommunication device represents
the main source for nonlinear distortion in the echo path, it has to be modeled by a nonlinearity with
memory. As already mentioned in Section 4.30.5.1, second-order Volterra filters represent a suitable
model for nonlinear loudspeakers which has already been applied in [142,143].

Assuming that the AEC is realized as a second-order Volterra filter, the AEC output d̂(n) can be
expressed by the sum of the output of its linear kernel d̂1(n), and the output of its quadratic kernel d̂2(n),
i.e.,

d̂(n) = d̂1(n) + d̂2(n), (30.103)

where the input/output relation of the linear and the quadratic kernel, respectively, are given by

d̂1(n) =
N1−1∑
k=0

hk x(n − k), (30.104)

d̂2(n) =
N2−1∑
k1=0

N2−1∑
k2=k1

hk1,k2 x(n − k1)x(n − k2), (30.105)

respectively.
Analogously to the previous sections, we now look at a simplified model for the nonlinear acoustic

echo path as shown in Figure 30.17. Assuming that the amplifier of the loudspeaker is sufficiently linear,
the echo path can be modeled by the cascade of a second-order Volterra filter (̃hk , h̃k1,k2) representing the
nonlinear loudspeaker, followed by a linear filter, corresponding to the room impulse response gk . This
cascaded Volterra structure is illustrated in the center of Figure 30.17. It should be mentioned here, that in
[149] the authors propose to realize the nonlinear AEC analogously to such a cascaded Volterra structure.
On the one hand, this approach has a rather low computational complexity. However, on the other hand,
such adaptive implementations of cascaded systems with memory in general exhibit severe convergence
problems, making their application in echo cancellation inappropriate. In the following we thus consider
the structure on the right-hand side of Figure 30.17, which consists of a single second-order Volterra
filter (hk, hk1,k2) modeling the complete acoustic echo path, i.e., including the room propagation path.
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FIGURE 30.17

Illustration of the nonlinear acoustic echo path (left), its cascaded Volterra filter model (center), and the
corresponding overall model of a single Volterra filter (right).

As has been shown in [143,150], the corresponding quadratic Volterra kernel has specific properties,
namely a large part of the coefficients of the quadratic kernel are known to be zero in advance.

In order to exploit the a priori knowledge about the kernel coefficients for efficient implementations,
it is useful to employ an alternative representation of the quadratic kernel. Following [150], we rewrite
(30.105) using the so-called diagonal coordinate representation (DCR):

d̂2(n) =
R−1∑
r=0

N2−r−1∑
k=0

hk,r+k x(n − k)x(n − r − k). (30.106)

Comparing (30.105) and (30.106), we notice that the above computation of d̂2(n) can be interpreted as
the summation over R diagonals within the Cartesian coordinate system constructed by the summation
indices (k1, k2). Thereby, the main diagonal corresponds to r = 0. Obviously, in case of R = N2,
(30.105) and (30.106) are equivalent.

Referring to the cascaded structure shown in the center of Figure 30.17, we now assume that the
leading Volterra filter has a memory length of L for both, linear and quadratic kernel. Furthermore, we
assume that the linear filter gk has length Ng . As shown in [150], the resulting overall Volterra filter
has memory lengths N1 = N2 = L + Ng − 1. However, the width R of the corresponding DCR of the
quadratic kernel remains unchanged, i.e., R = L . Considering that L represents the memory effects of
the loudspeaker and Ng corresponds to the reverberation time of the room, it becomes obvious that in
typical applications R 
 N2. As can be seen from (30.106), this special property can easily be taken
into account when using the DCR of Volterra filters.

Author’s personal copy



4.30.6 Application to Realistic and Real Systems 859

Another interesting property of Volterra filters can be found when introducing the virtual input signal
xr (n) = x(n)x(n − r) of the rth diagonal into (30.106)

d̂2(n) =
R−1∑
r=0

N2−r−1∑
k=0

hk,r+k xr (n − k). (30.107)

As can be seen, the inner summation represents a linear convolution between the kernel coefficients
on the rth diagonal with the input signal xr (n). Thus, quadratic Volterra kernels can be considered as
a special type of linear multichannel systems, where each diagonal of the DCR corresponds to one
channel with input xr (n). Regarding this, algorithms known from linear adaptive filtering can easily
be extended to adaptive second-order Volterra filters. To give an example, the update equation for the
coefficients of the quadratic kernel using the LMS algorithm is given by

hk,r+k(n + 1) = hk,r+k(n) + μk,r+k(n)e(n)xr (n − k). (30.108)

A detailed discussion of suitable methods for the normalization and control of the step-size parameter
μk,r+k(n) can be found in [143].

Due to the close relation between Volterra filters and linear multichannel systems, the derivation of
corresponding efficient frequency-domain realizations is straightforward. For instance in [143,150], it
has been proposed to perform the linear filtering required for each diagonal in (30.106) by using fast
block convolution techniques in the frequency domain. Additionally, the update of the kernel coefficients
hk,r+k(n) can also be performed in the frequency domain. It turns out, that the benefits of frequency-
domain approaches as known from linear adaptive filtering also transfer to adaptive Volterra filters.

Apart from the described potential of nonlinear modeling and identification using Volterra filters, the
huge computational complexity and slow convergence related to the large number of parameters have
been clearly recognized as limitations regarding the usability. As a result, significant research has been
devoted recently to the design of fast and robust algorithms using iterated coefficient update [151] and
to complexity reduction via dynamical adjustment of the kernel memory [152].

4.30.6 Application to realistic and real systems
In this section, we describe various acoustic environments with different configuration regarding the
hands-free communication application. In particular, we consider the car, the desktop PC, the living
room, and the mobile phone environment. Essentially, these environments exhibit individual degrees of
environmental noise, length and time-variability of the acoustic echo path, and nonlinearities such
as sampling asynchrony or loudspeaker saturation. As a consequence, different signal processing
approaches have been used by researchers to tackle the acoustic echo control problem in the differ-
ent environments. In the following, the results that have been achieved are outlined along with main
properties of the respective environment.

4.30.6.1 Car environment
Due to the relatively small size acoustic environment of the car interior, we have a relatively short echo
path impulse response of only 30–100 ms duration in most of the cases. However, the natural presence
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and interaction of the user in the environment will cause the echo path impulse response to exhibit
relatively strong variability, which practically means a lack of identifiability if at the same time the
natural presence of the car noise is considered. Regarding the quality of electro-acoustic transducers, at
least in the high-end product range, we may assume only a minor degree of nonlinearity of the system.
As a result, the linear state-space echo path model and the respective model-based optimum filtering
approaches as described in Section 4.30.2 were found to best address this environment. In order to reach
out for the limits, here, we evaluate the advanced implementation of the frequency-domain adaptive
Kalman filter as proposed in [27].

In order to allow for reproducibility of the presented results, while maintaining strong relationship
with the real-world situation, we make use of a time-varying echo path that is generated directly by
the Markov model in (30.34). The variability is chosen such that the echo attenuation of a perfectly
adjusted echo canceler would drop to about 0 dB within 2–3 s after the adaptation of the filter is halted.
The echo path vector h(n) contains 512 coefficients, which corresponds to 64 ms echo path duration
at 8 kHz sampling frequency. To setup the test signals for the adaptive algorithm, we use real speech
input on both the far-end and near-end side of the communication. The employed speech material
consists of 8 phonetically balanced sentences (male and female) of about 5 s duration each [153]. We
then consider a wide range of signal-to-echo ratios SERy = σ 2

s /σ 2
d at the hands-free microphone. The

SERy = 0 dB simulates a hard double talk situation, SERy = −40 dB corresponds to remote single
talk, and SERy = 40 dB finally represents near-end single talk. The background noise level at the
hands-free microphone is adjusted such that the signal-to-noise ratio of the near-end speech is 10 dB,
while the received signal from the far-end speaker is almost clean speech with a signal-to-noise ratio of
40 dB—a situation that often exists in car hands-free communication.

The echo attenuation after echo canceler and postfilter, cf. (30.28) and (30.29), can be
evaluated in terms of the echo return loss enhancements ERLEw1 = σ 2

d /σ 2
b and ERLEw12 = σ 2

d /σ 2
b′ .

Here, b = d − d̂ refers to the residual echo after echo cancellation and b′ = w2∗b represents the total
echo attenuation after both filters, e.g.,[2,58]. The resulting speech quality is evaluated by means of
the resulting signal-to-echo ratio SERe = σ 2

s /σ 2
s−e after the echo canceler and SERŝ = σ 2

s /σ 2
s−ŝ at

the system output, i.e., after the postfilter. The ERLE and SER measures described here are suitable to
characterize the overall performance of echo canceler and postfilter, including the adaptive algorithm
with its tracking performance and robustness against observation noise.

When echo canceler and postfilter and the adaptive algorithm (i.e., the frequency-domain adaptive
Kalman filter) are implemented with a block frame-shift (i.e., algorithmic delay) of 8 ms and a DFT
size of 512 (corresponding to 64 ms echo path impulse response length), and when the time-constant
of the Kalman filter is matched to the dynamical echo path model, we obtain the results in Figure
30.18. The ERLEw1 by the echo canceler ranges from 0 to 20 dB, depending on the input SERy .
The saturation of ERLEw1 at low SERy is due to the time-varying echo path and the fact that the
echo canceler for time n is determined by the “incomplete” data available up to time n − 1. For
high SERy , ERLEw1 asymptotically reaches zero, since extremely noisy observations do not allow
the identification of the time-varying echo path at all. The total echo attenuation ERLEw12 by echo
canceler and postfilter ranges from 0 to 50 dB. This performance matches the industrial requirements
for acoustic echo controllers: More than 40 dB ERLE is indeed recommended during remote single talk
[78,84]; in noisy double talk situations our experience is that 15–20 dB ERLE is sufficient to achieve
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FIGURE 30.18

ERLE and output SER for different input SER.

the required end-user quality; and during near-end single talk an echo attenuation is of course not
required.

The speech quality improvement by the echo canceler can then be expressed analytically: SERe =
SERy +ERLEw1 , thus SERe > SERy . The situation is not so straightforward in case of the postfilter, but
from Figure 30.18 we observe another consistent improvement in the output SER, i.e., SERŝ > SERe.
For very low input SERy , a surprisingly high output SERŝ ≈ 0 dB is attained, simply because the entire
microphone signal is strongly attenuated. For high input SERy , the output SERŝ approaches the input
SERy since the microphone signal remains nearly unprocessed. For SERy = 0 dB, i.e., during double
talk, we have SERŝ ≈ 14 dB. However, together with the effect of perceptual masking, the perceptual
signal quality (“the perceived SER”) is much better than SERŝ ≈ 14 dB.

4.30.6.2 Desktop conferencing
Based on computers connected to the Internet, a widespread hands-free telecommunication application
is desktop conferencing. To set up a desktop conference call, one only needs a computer connected to the
Internet, a loudspeaker, a microphone (and potentially a camera for display) as shown in Figure30.19.
In order to allow hands-free calls, the computer requires a software carrying out echo control. Some
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A general desktop conferencing environment.

operating systems have the required software application already pre-installed. Otherwise, users can
easily download from the Internet any available conferencing software.

The variety of computers and hardwares (loudspeakers, microphones, sound cards, etc.) makes
the design of the echo control software a challenging task. Indeed, the echo control software has to
work despite the various possible computer architectures and operating systems, speaker sizes and
efficiencies, microphones types and sensitivities, etc., and even further, the various and uncontrollable
user environments. In order to cope with these numerous unknowns, a robust acoustic echo suppression
(AES) system as described in Section 4.30.3 can be used. It offers a viable solution, since it does not
require an exact identification of the impulse response hn , but models parametrically the echo path with
a delay τ and a single real-valued gain Ĝ(m, ν) at each frequency bin of short-time spectra as shown
by Eq. (30.59). Therefore, AES yields robust insurance against movements of the microphone or other
changes in the acoustic environment.

Another important feature of the AES is that the phase information of the signal spectra is discarded in
the algorithm, making the AES performance independent of any phase changes or distortions introduced
by the components in the acoustic echo path. In the specific desktop conferencing environment, the two
most common distortions are:

• Sampling rate mismatch: Leading to time drift, which typically arises when the loudspeaker signal
and the microphone signal are captured using different soundcards or A/D converters.

• Random loss of audio samples or frames of samples due to transmission over the IP network or due
to drop outs during playback.

As already illustrated in Figure 30.6, the described AES implementation is robust against such common
issues. The estimate of the echo estimation filter (EEF) function Ĝ(m, ν) is computed directly from
power spectra with temporal fluctuations instead from complex spectra, which not only makes the
estimate insensitive towards phase distortions, but also makes it independent to the background noise
on the near-end side as seen from Eq. (30.71).

Eventually, the concept of AES, based on a spectral subtraction of the echo estimate from the
microphone spectrum, enables to compute “aggressively” the final echo suppression filter (ESF) F(m, ν)

such that no residual echo remains. This can be achieved by choosing a long reverberation time constant
αRT in Eq. (30.72) to match the room size and suppress the late echoes, or by intentionally over-estimating
the echo power spectrum with a large β parameter in Eq. (30.74). Because the ESF can be adjusted to
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perform more aggressive echo suppression, independent from the estimation of the EEF, a tuning point
can be found where the AES also provides a certain insensitivity against non-linear behavior of the echo
path.

In summary, for the specific desktop environment, AES provides a flexible approach to perform
echo control. It is a practical solution to cope with the variety of possible hardwares and related system
uncertainties.

4.30.6.3 Living room
In order to demonstrate the potential of multichannel acoustic echo cancellation (MCAEC), as described
in Section 4.30.4, in applications such as home theater, virtual reality, or advanced teleconferencing,
we chose the acoustic environment of a typical living room and consider a surround sound scenario
with P = 5 reproduction channels. The sampling rate of the loudspeaker signals and the preprocessing
stage is 44.1 kHz, while the microphone signal and the echo cancellation is downsampled by a factor
of 4 as typical for speech recognition applications. The length of the echo cancellation filters were set
to N = 1024, covering the reverberation time in the receiving room. Our evaluation mostly relies on
the MCFDAF algorithm [26], which aims to exploit all cross-correlations between the reproduction
channels. Besides the iterative processing in time, our implementation performs 10 offline iterations
within each block of samples according to [55,56]. In all simulations, the echo-to-background noise
ratio in the receiving room was set to 30 dB and the regularization of the MCFDAF algorithm was
adjusted so that stability is provided for all preprocessing methods under investigation.

At first, we discuss the convergence of the adaptive filter coefficients to the true echo path coeffi-
cients in terms of the multichannel coefficient error norm

∑P
i=1‖hi − ĥi (n)‖2/

∑P
i=1‖hi‖2 over time

with different preprocessing methods. We chose a somewhat critical test scenario of reproducing a nar-
rowband high-quality male speech signal with alternating spatial positions in the transmission room (see
Figure 30.11). In order to reflect the surround sound scenario and the inherent level imbalance problem
in MCAEC appropriately, it is important to choose a realistic recording scenario, ours being inspired
by the so-called Decca Tree and surround microphones [154]. Figure30.20 then shows the correspond-
ing coefficient convergence for baseline approaches without any preprocessing (curve label “without
preproc.”) and with conventional nonlinear preprocessing after [115] (nonlinearity parameter α = 0.5,
label “NL”), as well as for the perceptually tuned frequency selective phase modulation method [120]
(label “Pmod_fs”) and the addition of uncorrelated audio coding noise after [128] (labeled “mp3_48”).
As it can be seen from the data, convergence without any preprocessing is extremely slow, while pre-
processing results in a significant convergence boost. The parameters of all preprocessing methods
considered here were chosen such that they yield similar convergence characteristics in order to provide
a common basis for subjective listening tests, such as the MUSHRA in Section 4.30.4.3.

Secondly, by choosing the phase modulation method as a fixed preprocessor, we illustrate the effect
of taking into account the cross-correlations between the loudspeaker channels in the AEC coefficient
update (see also Figure 30.12 in Section 4.30.4.2). We again apply the MCFDAF algorithm for P = 5
loudspeaker channels with the same parameters and the same data as above and then draw the com-
parison with a standard FDAF algorithm in each and every channel, specifically, the unconstrained
fast least mean-square (UFLMS) algorithm. The results in Figure 30.21 clearly confirm the signifi-
cant convergence improvement regarding ERLE and coefficient error norm by taking into account the
cross-correlations into the adaptation process.
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Comparison of MCAEC processing methods, P = 5.
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Effect of taking cross-correlations into account, P = 5 channels. (a) ERLE convergence, (b) coefficient error
norm.

Author’s personal copy



4.30.6 Application to Realistic and Real Systems 865

4.30.6.4 Mobile phones
In Section 4.30.5, we discussed nonlinear echo path models and adaptive filter structures which require
only little a priori knowledge about the audio hardware employed in telecommunication devices. If
moderately-sized loudspeakers represent the only source of nonlinear distortion, then second-order
Volterra filters are generally recommended to model their frequency-dependent nonlinear behavior. In
case of memoryless nonlinearities included in the echo path, as common with nonlinear amplifiers
or miniaturized loudspeakers of mobile phones, the nonlinear cascaded structures including truncated
Taylor series expansions or, alternatively, power filters are better suited. In this section, we explore
the suitability of all these approximations when modeling the real acoustic echo path comprising the
miniature electro-dynamic loudspeaker of a mobile phone.

For recordings of audio signals, the loudspeaker has been mounted in the handset, while the micro-
phone has been separated from it to avoid undesired vibration effects due to physical coupling of the
loudspeaker and the microphone. During the measurements it has been assured that there is no nonlinear
distortion introduced by overloading of the amplifier, i.e., the nonlinearity in the acoustic echo path is
mainly caused by the miniature loudspeaker. In order to focus on the nonlinear behavior of the setup,
the recordings have taken place in a room with low reverberation. The input signal has been wide-sense
stationary correlated Gaussian noise, which has been generated by passing a white Gaussian noise signal
through a second-order recursive filter.

First, we evaluate the suitability of the different nonlinear structures for modeling the nonlinear
behavior of the loudspeaker. The behavior is examined by applying three different input levels to five
different adaptive structures. The considered structures are: A linear filter, a third- and fifth-order orthog-
onalized power filter, and a second- and third-order Volterra filter in DCR, respectively. All approaches
have been implemented in the DFT domain to improve the convergence properties for correlated input.
Since the input signal used for the measurements is known in advance, a fixed orthogonalization of the
channel inputs can be used for the power filters. The memory length of the linear filter and the linear
channel of the nonlinear approaches has been N1 = 300 taps, which sufficiently models the linear
component of the echo path. The filters associated with the nonlinear channels of both, third-order
and fifth-order power filter have been implemented with a length of Np = 100 taps. Accordingly, the
memory lengths of the nonlinear kernels of second- and third-order Volterra filters have been set to
N2 = N3 = 100. Accounting for the cascaded structure of the acoustic echo path, the widths of the
quadratic and cubical kernels have been reduced to R2 = R3 = 10.

The evaluation of the different approaches is based on the maximum ERLE that is achieved after
convergence of the echo canceler. The resulting final ERLE values obtained for different input variances
are summarized in Table 30.1. The first column corresponds to the case where there is only a low level
of nonlinear distortion in the echo path. This is reflected by the fact that the linear adaptive filter
shows approximately the same performance as the nonlinear counterparts. Thereby, we notice that the
achievable ERLE values are generally not so large. This can be explained by the fact that the relatively low
sound level of the miniature loudspeaker allows not more than 30 dB SNR at the recording microphone.
In the first row of the table, the ERLE obtained for the linear adaptive filter is reduced by approximately
5–6 dB when the input signal level is increased to 5.4σ 2

m,x and 9σ 2
m,x , respectively. This confirms the

nonlinear behavior of the loudspeaker for high excitation levels.
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Table 30.1 Achievable ERLE of Several Adaptive Structures Obtained for Different Input Levels.
The Nonlinear Distortion is Introduced by the Loudspeaker of a Mobile Phone

Variance of the input σ2
m,x (dB) 5.4σ2

m,x (dB) 9σ2
m,x (dB)

Linear filter 27.2 22.3 21.1
Third-order power filter 28.4 25.4 24.4
Fifth-order power filter 28.3 25.4 24.5
Second-order Volterra filter 26.9 22.2 22.1
Third-order Volterra filter 25.9 25.6 25.4

The second-order Volterra filter does not yield noticeable improvements compared to the linear
filter. This indicates that the memoryless model for the miniaturized loudspeakers of the mobile phone
is sufficient. By extending the second-order Volterra filter to a cubical kernel, the echo attenuation
of the linear filter is surpassed by approximately 3–4 dB for the input variances 5.4σ 2

m,x and 9σ 2
m,x ,

respectively. This shows that the nonlinearity of the loudspeaker is at least of third order. Note that
the considered third-order kernel requires 5170 coefficients. Additional simulations have shown that
the memory length of the nonlinear kernels can be reduced to N2 = N3 = 64 without changing the
maximum achievable ERLE. However, this reduction of the region of support of the third-order Volterra
kernel still requires 4070 coefficients. This large number of coefficients and the related difficulty of
accurate adaptive identification also explains the performance loss of the third-order Volterra filter that
is observed for the lowest input level σ 2

m,x . Regarding that the ERLE gain is at most 4.3 dB for the
highest input variance, there is no reasonable relation between performance improvement and increase
in computational complexity when applying third-order Volterra filters instead of linear filters.

When the region of support of the third-order Volterra filter only includes the main diagonals of
each kernel, it is simplified to a third-order power filter. As can be seen from Table 30.1, this enormous
reduction of the region of support barely affects the achievable echo attenuation. This result again
supports the assumption that the miniature loudspeaker can be considered as a memoryless nonlinearity.
One might expect that increasing the order of the power filter, and thus its nonlinear modeling ability,
should then lead to yet more echo attenuation. Unfortunately, an extension of the power filter to fifth
order does not yield further improvements over the third-order case in our practical experiments. Our
understanding is that the misadjustment of the linear and the cubical channels inhibit the convergence
of channels with yet higher orders—in conjunction with the fact that higher order channels of our EOS
(equivalent orthogonal structure) are hardly excited.

From the results presented in Table 30.1 we conclude that the modeling capabilities of the considered
polynomial filters are not completely satisfying. From a practical point of view, the best compromise with
respect to achievable echo attenuation and computational complexity is provided by the orthogonalized
third-order power filter. This configuration is therefore used in the following experiment, where we look
at the performance of the adaptive EOS of a third-order power filter with real speech input.

Except for the speech input, the experimental setup now is the same as before.The variance of the
speech signal has been adjusted such that its amplitude values lie in the same range as the amplitudes
of typical sample functions of the correlated noise signal with variance 9σ 2

m,x as used above. A white
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ERLE obtained for the adaptive EOS of a third-order power filter and a corresponding linear approach together
with the speech input.

Gaussian noise signal has been added to the recording of the microphone signal in order to simulate a
background noise level corresponding to an SNR of 30 dB with respect to the acoustic echo. Since an
algorithmic delay is not desirable in mobile phones, we now consider the time-domain implementation
of the EOS, where the memory length N1 = 256 for the linear channel and N2 = N3 = 100 for
both, the quadratic and cubical channel has been chosen. The orthogonalization of the channel inputs
has been performed signal-adaptively, where the required moments are estimated recursively with a
time-constant of about 10 ms.

In Figure 30.22, the echo cancellation performance of the adaptive EOS of the third-order power
filter is compared to a linear approach which corresponds to the linear channel of the power filter. As
can be noticed, the performance of the linear adaptive filter is remarkably limited due to the nonlinear
distortion introduced by the loudspeaker. The third-order power filter succeeds in improving the level of
echo attenuation during almost the whole simulation period. Especially for speech segments that exhibit
high excitation levels, the local increase of the ERLE even exceeds the expectations which would have
been predicted from Table 30.1. While this ERLE gain is observed, note that due to the short filters in
the nonlinear channels, the computational complexity of the considered orthogonalized power filter is
only two times higher than that of the linear filter.

4.30.7 Links to codes and recommendations
Echo control solutions have been developed over years and used in many telecommunication appli-
cations. Therefore the portfolio of existing solutions is large and includes various implementations as
the ones described in Sections 4.30.1–4.30.5 , or all possible combinations to match the application
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specifications and requirements. Most of the solutions are thus specific and proprietary meaning that
available free implementations or data sets are rare and not designed to address diverse applications.
Prominent examples of free implementations are:

• An acoustic echo canceler with postfiltering is part of the Speex speech codec ( http://www.speex.org).
• The OSLEC line echo canceler (http://www.rowetel.com/ucasterisk/oslec.html).

While implementations of echo control solutions are often proprietary, common knowledge is
listed in standards and recommendations referenced by applications and fields of use. The Inter-
national Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T at
http://www.itu.int/ITU-T) defines for a wide range of possible telecommunication appli-
cations a number of recommendations and standards for related echo control solution implementations.
For instance:

• ITU-T G.131: Talker Echo and its Control [1].
• ITU-T G.164: Echo suppressors [75].
• ITU-T G.165: Echo cancelers [76].
• ITU-T P.832: Subjective performance evaluation of hands-free terminals [81].

The international recommendations produced by the ITU-T can become mandatory once they are
adopted as part of a national law to regulate telecommunication applications. Many others standardiza-
tion organizations have been created to define specifications for echo control solutions in specific fields
of use. For examples the 3rd Generation Partnership Project (3GPP at http://www.3gpp.org/) or the
German Automobile Industry (VDA at http://www.vda.de/en/index.html), [84], are two organizations
writing standards for mobile networks and car applications, respectively.

4.30.8 Conclusions, open issues, future trends
Acoustic echo control for hands-free communication has been actively researched in the area of signal
processing since the 1970s. Here, we first reviewed the most popular solutions based on adaptive
algorithms according to deterministic least-squares design, with realizations in time- or frequency-
domain, and combined with various possible control strategies.

Based on this brief status, our chapter then mainly reported the comprehensive extensions of the
state-of-the-art according to research work beyond 2000. This includes statistical methods for adaptive
algorithm design, e.g., the unification of adaptive filtering and adaptation control based on statistical echo
path modeling and Bayesian estimation, the echo suppression technique based on power spectral echo
path modeling, and the TRINICON framework to incorporate statistical signal properties. Furthermore,
we highlighted the particular issues of multichannel and nonlinear adaptive systems and the respective
developments.

Those new directions in adaptive systems research were triggered by the common need for fast
and robust solutions in real-world applications in which we often face a lot of uncertainty regard-
ing the electroacoustic environment and the specific usage of hands-free systems. On these common
grounds, however, the new technologies have been conceived and pursued somewhat independently by
different researchers in different applications and in different organizations. In this chapter, we have
sought a presentation with unified notation, but there remains a lot of work towards a unified and fully
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comprehensive theory. Nonetheless, our chapter has proven the usability of the presented algorithms in
practical single-channel applications, such as desktop and car environments, while the perspective for
the realization of systems with multiple reproduction channels and nonlinear characteristics has been
demonstrated in the research environment.

Acoustic echo control continuous as a research topic to serve as the enabling technology in modern
configurations of hands-free communication with full duplex ability. Future trends include a shift of
the acoustic echo control unit from mobile devices into the core of a cellular network in order to save
processing power on the mobile device [155,156], the development of multichannel echo cancellation
frameworks for systems with massive multichannel reproduction of spatial audio [157], and the evolution
of nonlinear adaptive signal processing beyond the established polynomial modeling [158]. In all the
cases mentioned here, the derivation of fast and robust adaptive algorithms for the respective structure
and system model at hand represents an interesting topic for future research activities.

Glossary

Acoustic echo control the term generalizes the acoustic echo cancellation to further include
echo suppression and postfiltering

Double talk a situation in which the talkers at both ends of a communication system
(or reproduction unit and user of a speech dialog system) are active
simultaneously; echo and target input signal are thus superimposed and
recorded together at the microphone

Duplex ability it describes to which degree the simultaneous transmission in reproduc-
tion and acquisition direction is preserved by a hands-free system, despite
possible attenuations by signal processing

Echo path this terms describes the undesirable electroacoustic coupling between
loudspeaker input and microphone output of a hands-free communica-
tion system; most of the times, we describe the echo path in terms of
an acoustic impulse response or frequency response comprising loud-
speaker unit, acoustic coupling, and microphone

Echo cancellation refers to a family of techniques, where the echo path is mimicked by
an (adaptive) digital filter in order to regenerate and ideally subtract the
echo from the observed microphone signal

Echo suppression in contrast to echo cancellation, this refers to a family of techniques which
discard (i.e., not mimic) the phase of the echo path; the echo suppression
is then performed in the form of statistical echo reduction based on the
echo power transfer function

Multichannel echo
cancellation most of the times, this term refers to the problem of echo cancellation

for multiple reproduction channels, e.g., stereophonic echo cancellation
Nonlinear echo cancellation most of the times, this term refers to the problem of echo cancellation

in the presence of a nonlinear power amplifier or nonlinear loudspeaker
within the echo path
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Postfiltering it describes echo suppression techniques when they are employed in
conjunction with echo cancellation

Power filter a multi-input/single-output, adaptive echo cancellation filter structure
with higher-order polynomial representations of the reproduction signal
at the multiple inputs; represents a quasi-linear expansion of echo paths
with memoryless nonlinearity

Relevant Theory: Signal Processing Theory

See Volume 1, Chapter 3 Discrete-Time Signals and Systems
See Volume 1, Chapter 4 Random Signals and Stochastic Processes
See Volume 1, Chapter 6 Digital Filter Structures and Their Implementation
See Volume 1, Chapter 7 Multirate Signal Processing for Software Radio Architectures
See Volume 1, Chapter 9 Discrete Multi-Scale Transforms in Signal Processing
See Volume 1, Chapter 12 Adaptive Filters
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