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Abstract—In this paper we discuss efficient approaches for a robust
computation of the spatio-temporal Kalman gain in the context of
adaptive multichannel systems. We apply the given approaches to the
multichannel acoustic echo cancellation problem as representative for
the class of system identification problems. Moreover, we provide a
complexity and performance analysis of our approaches and compare
the results to the conventional spatio-temporal Kalman gain computation
methods.

I. INTRODUCTION

A fundamental building block of adaptive filters for system identifi-
cation (in the least squares sense) is the computation of a numerically
stable Kalman gain. The computation of the Kalman gain requires,
in principle, an inversion of a correlation matrix. In a straightfor-
ward realization, this inversion in single-channel adaptive filtering
problems has a complexity of O(L3), where L is the filter length,
which is typically equal to the temporal processing block-length in
block-by-block adaptive processing. However, using the Woodbury-
identity (the so-called matrix inversion lemma) reduces the inversion
complexity to O(L2). Moreover, when a transform domain is known
a priori where the correlation matrix is diagonal, a matrix inversion
in such a domain can be done in linear time. But here, the complexity
of the transformation into this domain has to be taken into account.
Advanced adaptive filtering algorithms, such as Fast-RLS reach an
overall complexity of O(L). This can be done by exploiting the FIR
structure of the temporal signal model.
Advanced audio reproduction and capturing systems, e.g., systems
based on wave field synthesis and analysis (WFS/WFA) [1], require
closely spaced arrays of a large number of loudspeakers and/or
microphones to achieve a high spatial resolution. The number of
loudspeakers can lie up to several hundreds emitting, in general,
highly correlated signals. It has been shown that treating adaptive
filtering problems for such broadband massive multichannel systems
in spatio-temporal transform domains is a powerful approach [2], [3].
Spatio-temporal transform-domain techniques for multichannel adap-
tive systems aim at decoupling the signal correlation matrix both in
the temporal and in the spatial dimensions [2], [3]. Therefore, the
decoupling process consists of two steps: (1) temporal decoupling
based on the discrete Fourier transform (DFT) and (2) a spatial
decoupling using a unitary transform. When the spatial decoupling
matrix is a priori known, the computation complexity of the Kalman
gain is dominated by the transformation complexity. Since the spatial
transformation can be done by a matrix-vector multiplication [4], the
complexity will be in O(L · P 2), where P is the number of the
adaptive system input channels (loudspeakers).
When the decorrelating spatial transformation domain is not a priori
known the complexity of a straightforward computation will be in

O(L·P 3). In [5] an approach is proposed for an efficient Kalman gain
computation (in O(L ·P 2)). This approach is based on the inversion
lemma. But since the inversion lemma holds only for matrices
with full rank and the input signals of the adaptive systems are
usually spatially correlated, the autocorrelation must be regularized.
Unfortunately, the estimation of the regularization parameters poses
a challenge for real-time applications.
In this paper we discuss two efficient methods for dealing with
computational complexity and the numerical stability of the Kalman
gain. These two possibilities exploit the additive update process of
the hermitian correlation matrix.

• The first method we investigate is to use the theory of rank-
one modification of the eigenvalue problem [6]. For an efficient
computation we exploit the approximation given in [7] based
on the interleaf theorem. Subsequently, we apply a dynamic
regularization for a stable inversion of the eigenvalues.

• Another discussed method in this paper is using the generalized
inversion of modified matrices as proposed in [8] for our
purposes.

Both approaches are then applied in the context of massive multi-
channel acoustic echo cancellation (AEC) as a representative for the
class of system identification algorithms.
Fig. 1 shows a block diagram of multichannel AEC with P repro-
duction channels and Q microphone channels in the receiving room
(’near end’). The signals of the P reproduction channels originate
from speech- or audio sources in a transmission room (’far end’).
To cancel the echoes arising due to the reflections in the near end,
an adaptation algorithm estimates the matrix H of acoustic impulse
responses from the loudspeakers to the microphones. The estimated
coefficients matrix Ĥ denotes the PL×Q MIMO coefficient matrix
composed by P · Q subfilters, ĥpq = [ĥpq,0, ĥpq,1, · · · , ĥpq,L−1]

T .
The reproduction signals xp(n), where n denotes a time instant, are
filtered with the estimated coefficients Ĥ(n), the resulting signals
are subtracted from the near-end microphone signals yq(n). If the
estimated filter coefficients Ĥ are equal to the true transfer paths H,
all disturbing echoes will be removed from the microphone signals.

II. TRANSFORM DOMAIN ADAPTIVE FILTERING

Single channel adaptive filtering problems are often considered in a
convenient transform domain, namely, the discrete Fourier transform
domain. The motivation to choose this transform domain originates
from the fact that the Fourier basis functions are eigenfunctions of
linear time invariant (LTI) systems. Therefore, the filtering of the
input signal with the filter coefficients of the adaptive filter can be
performed efficiently as fast convolution in the frequency domain
by exploiting the efficiency of the fast Fourier transform (FFT).
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Fig. 1. Block diagram of multichannel acoustic echo cancellation as a
prominent example for adaptive MIMO filtering.

On the other hand, under the assumption of stationary signals, the
covariance matrix of the input signals is approximately diagonalized
by the discrete Fourier transformation (DFT). Hence, this domain
allows a computationally efficient inversion of the covariance matrix
by considering only the elements on the main diagonal. In this way,
it is possible to efficiently take all temporal correlations into account.
For multiple input/multiple output (MIMO) systems analogous con-
siderations can be made. The temporal component can be treated
similarly to the single channel case. Hence, the intra-channel auto-
correlation matrix can be diagonalized by the DFT. Additionally, the
spatial component should be taken into account, thus the channels
have to be combined into suitably chosen modes by a domain
transformation.
The strategies for the spatio-temporal transform-domain adaptive
filtering can be classified into two groups depending on the a-priori
knowledge on the MIMO system. These two groups are briefly
reviewed next.

A. Spatio-temporal transform-domain adaptive filtering with respect
to the system

A-priori knowledge about the system can be obtained from the
physics underlying the system under study. An example of exploit-
ing such a-priori knowledge about electro-acoustic systems is the
approach of wave domain adaptive filtering (WDAF)[2], [4].
Acoustic wave propagation from a source to a point in the space
can be understood as multidimensional system which is characterized
by the inhomogeneous wave equation with respect to the present
boundary conditions. A major problem of this approach is that
the eigenfunctions are analytically only available for rather simple
geometries (e.g. sphere, box) and boundary conditions. The basic
concept of WDAF is to use analytic eigenfunctions that only ap-
proximately decouple the system and perform the adaptive filtering
in the eigenspace by transforming the input and output signals. The
coefficients of the transformation filters can be derived from sampling
the eigenfunctions. The free-field solutions of the wave equation in
suitable coordinate systems have shown good performance.

B. Spatio-temporal transform-domain adaptive filtering with respect
to signal statistics

In the general case of acoustic echo cancellation scenarios a-priori
system knowledge is absent and the system is poorly excited. The
excitation can be considered as poor when the eigenvalue spread
or the ratio of maximum to minimum eigenvalue of the data auto-
correlation matrix is large [9]. This occurs, e.g., when the number
of the rendered uncorrelated sources is smaller than the number of
the loudspeakers. It has been shown that cross-correlations between
the loudspeaker signals let the adaptive filter converge to a solution
that depends on the characteristics of the loudspeaker signals. Any
movement of the sound source in the transmission room results in a
breakdown of the echo cancellation performance and requires a new
adaptation of the cancellation filters[10]. Therefore, a preprocessing
stage to decorrelate the transmitted signals for a unique identifiability
of the echo paths is required to ensure robustness to sound source
movements. Preliminary experiments of the authors have shown that
massive multichannel reproduction systems, e.g., WFS, are very
sensitive to most of the known preprocessing techniques, especially at
low frequencies. Therefore, it is desirable to avoid any manipulations
of the loudspeaker signals as far as possible in terms of maintaining
the desired auditory event. Hence, regularization is required, e.g.,
dynamical noise injection as suggested in [5] is a powerful strategy
of regularization for multichannel system identification problems.
Unfortunately, the estimation of the regularization parameters for
massive multichannel system poses a challenge.
Therefore, we recently introduced approaches for the adaptive filter-
ing in a spatial transform-domain depending on the signal statistic
[3], [11], [12]. These techniques become related to the subspace
adaptive filtering when the transform domain is constrained to be
unitary. However, our approaches differ from conventional subspace
adaptive filtering in the subspace tracking strategy. E.g., subspace-
tracking in [13] is based on classical bi-iteration technique for
slowly varying signal subspaces. Another efficient approach for the
subspace-tracking is the deflation-based projection approximation
subspace tracking (PASTd) algorithm [14]. In our case an immediate
update of the subspace basis is required when changes in the source-
domain occur to overcome the non-uniqueness problem stated above.
Otherwise, the actual estimation process will be additionally delayed
by the estimation process of the signal subspace and the overall
performance of the echo canceler could be rated as unacceptable
by the user.

III. BLOCK-BASED TRANSFORM DOMAIN ADAPTIVE FILTERING

For a practical implementation block-based algorithms are favorable.
A block formulation is derived by combining L consecutive samples
into blocks [3], formulating the error signal in terms of blocks and
minimizing the error.

xp(n) = [xp(n), xp(n− 1), · · · , xp(n− L+ 1)], (1)

x(n) = [x1(n),x2(n), · · · ,xp(n)]. (2)

In this formulation the MIMO system is decomposed into a sum of
MISO systems and the convolution of the input signals with each
MISO system is represented by combining the input signals into a
matrix with block Toeplitz structure and multiplying this input matrix
with the MISO filter vector. A Toeplitz matrix can be transformed
into a circulant matrix by doubling its size and a circulant matrix can
be diagonalized using the 2L × 2L DFT matrix F2L with elements
e−j2πνn/(2L)(ν, n = 0, . . . , 2L− 1). This results in an overlap save
formulation of the convolution by incorporating window functions.



The time-domain block error signal e(m) for a block length of L
samples is defined as

e(m) = [e(mL), e(mL+ 1), · · · , e(mL+ L− 1)]T , (3)

where m denotes the block index. The microphone signal y(m) is
defined in a similar fashion as e(m). In order to derive an algorithm
that requires only DFTs of size 2L, the error and microphone signals
are zero padded before transformation into the frequency domain1

e(m) = F2L

[
01×L, e

T (m)
]T

, (4)

and similarly for the microphone signal. The loudspeaker signals in
the frequency domain are given as

Xp(m) = diag
{
F2L[xp(mL− L), · · · , xp(mL+ L− 1)]T

}
,

(5)

X(m) = [X1(m), . . . ,XP (m)]. (6)

The generic frequency-domain adaptive filtering algorithm (FDAF)
for MISO systems can then be summarized as follows[5]

Sxx(m) = λSxx(m− 1) + (1− λ)XHG1X(m), (7)

the Kalman gain reads

K(m) = (1− λ)S−1
xx (m)X(m), (8)

e′(m) = y′(m)−G2X(m)ĥ
′
(m− 1), (9)

ĥ
′
(m) = ĥ

′
(m− 1) +G3K(m)e′(m), (10)

where λ denotes the forgetting factor and ĥ
′
(m) the zero padded

vector of estimated filter coefficients which is defined as

ĥ
′
(m) = G10

2LP×LP ĥ, (11)

where G10
2LP×LP denotes a window matrix that performs the zero

padding. It is defined as follows

G10
2LP×LP = Bdiag

{
G10

2L×L, . . . ,G
10
2L×L

}
, (12)

G10
2L×L = F2L [IL×L, 0L×L]

T F−1
L , (13)

where I is the unity matrix. In the FDAF algorithm the finite block
length is explicitly accounted for by the constraint matrices G1, G2

and G3. These are defined as

G1 = G2 = F2LBdiag {0L×L, IL×L}F−1
2L , (14)

G3 = Bdiag
{
G10

2L×2L, . . . ,G
10
2L×2L

}
, (15)

G10
2L×2L = F2LBdiag {IL×L,0L×L}F−1

2L . (16)

The idea of the multichannel transform-domain adaptive filtering is

X(m) Sxx(m) S(ν)
xx (m) T(ν)

xx
(m)

t
(ν)
i

Fig. 2. Illustration of the covariance matrix and its representations for P = 2.
The dotted box in the illustration of X(m) represents X(ν)(m) for (ν) a
specific frequency bin.

to go one step further and diagonalize the block diagonal Fourier

1In this paper we use underlined symbols for frequency-domain quantities
and double-underlined ones for spatially transformed quantities.

transformed covariance matrix, see Fig. 2. This can be done by com-
puting the eigenvalue decomposition of the covariance matrix. The
spatio-temporal transformed autocorrelation matrix in a frequency bin
ν reads

T(ν)

xx
(m) := U(ν)(m)S(ν)

xx (m)U(ν)H(m),

hereby, U(ν)(m) is the unitary transformation matrix containing the
eigenvectors of the autocorrelation matrix.
Performing the adaptive filtering in the spatio-temporal transform
domain offers the ability to regularize the inversion spatially and
temporally frequency-bin selective. Hence, the powerful regulariza-
tion strategy proposed in [5] can be generalized to the spatio-temporal
domain. A regularized autocorrelation matrix in frequency bin (ν)
reads

T̃
(ν)

xx
(m) = T(ν)

xx
(m) + diag{δ(ν)i }, (17)

δ
(ν)
i = δmax · [e−t

(ν)
1 /t0 , · · · , e−t

(ν)
P

/t0 ]T , (18)

i ∈ {1, . . . , P} denotes a spatial mode, t0 and δmax are scalar pa-
rameters that should be chosen according to the (estimated) disturbing
noise level in the desired signal y(n).
Since the input signals are spatially non-stationary, the signal sub-
space will not be constant in general and therefore, the transform
domain should be updated in each block [3]. To illustrate this
circumstance, suppose the identification algorithm has converged in
the time block (m − 1) to ĥ

′
(m − 1). In terms of updating this

solution in the transform-domain of the block m, the filter should be
transformed into the updated transform domain. This can be done as
follows [3]

ĥ(m− 1) = GUĥ
′
(m− 1), (19)

GU := U(ν)H(m)U(ν)(m− 1). (20)

IV. ITERATIVE EIGENVALUE DECOMPOSITION

The complexity of computing the Kalman gain in the spatio-temporal
transform domain can be reduced by exploiting the nature of the
autocorrelation estimation in the transform domain

T′(ν)
xx

(m) = λT(ν)

xx
(m− 1) + (1− λ)X′(ν)H(m)X′(ν)(m), (21)

X′(ν)(m) := X(ν)(m)U(ν)(m− 1). (22)

The estimation is based on a rank-one modification of a diagonal
matrix. Usually, the problem of determining the eigenvalues of such
modified matrices is initially deflated in terms of reducing the com-
plexity of the problem. Interesting cases are, e.g., if the modifications
do not influence the eigenspace of the estimated autocorrelation
matrix or if only few eigenvectors are modified, a list of the possible
deflation cases can be found in [7].
Additionally, the dimension of the system to be identified shrinks
from PL×Q to kL×Q, k is the number of the nonzero eigenvalues.
This provides a potential complexity improvement in massive multi-
channel systems, where the number of sources is often much smaller
than the number of loudspeakers. E.g., in a conventional hands-free
teleconferencing scenario the number of speakers in a far-end room
is less than the number of loudspeakers which may lie up to several
hundreds. It has been shown in [6] that the eigenvalues of T′(ν)

xx
(m)

are the zeros of the function

w(t) := 1 + (1− λ) ·
P∑

i=1

x′2
i

λt
(ν)
i (m− 1) − t

, (23)

[x′
1
. . . x′

i
. . . x′

k
] := X(ν)(m)U(ν)(m− 1),



w(t) = 0 for t ∈
{
t
(ν)
i (m) | t(ν)i (m) is an eigenvalue

of the modified matrix T′(ν)
xx

(m)
}
.

The zeros of w(t) can be found iteratively. However, the convergence
of the search process is quadratic and good initial estimates can be
obtained due to the interleaf theorem [7].
Once the eigenvalues are computed, the eigenvectors of the modified
spatio-temporal transformed autocorrelation matrix GUi of T′(ν)

xx
(m)

can be explicitly computed by

GUi =
X′(ν)(m)T′(ν)−1

xxi
(m)∥∥∥X′(ν)(m)T′(ν)−1

xxi
(m)

∥∥∥ , (24)

T′(ν)
xxi

(m) := T(ν)

xxi
(m− 1)− t

(ν)
i (m) · Ik×k. (25)

Please note, that the matrix with the eigenvectors of the modified
autocorrelation matrix is identical to the update matrix in Eq. (20)
because

U(ν)(m) = U(ν)(m− 1)GH
U. (26)

V. PSEUDO-INVERSION LEMMA

The inversion lemma reduces the complexity of the inversion of a
P×P autocorrelation matrix to O(P 2). The requirement for applying
the inversion lemma on a matrix is the regularity of that matrix.
We propose generalizing the inversion-lemma to the pseudoinversion
lemma in terms of an iterative computation of the Kalman gain from
rank deficient autocorrelation matrices. The use of the Moore-Penrose
pseudoinverse can be interpreted as inherent regularization. This can
be illustrated by the relation of the singular value decomposition to
the Moore-Penrose pseudoinverse and the truncation of the singular
values.
In [8] a rigorous mathematical derivation of the pseudoinversion
lemma can be found.
For clarity we introduce some predefinitions for the computation of
the pseudo-inverse

f (ν) := X(ν)(m)S(ν)†
xx (m− 1), (27)

v(ν) := X(ν)(m)
(
I− S(ν)

xx (m− 1)S(ν)†
xx (m− 1)

)
, (28)

β(ν) := 1 +X(ν)(m)S(ν)†
xx (m− 1)X(ν)H(m), (29)

X(ν)†(m) :=
X(ν)H (m)∥∥X(ν)(m)

∥∥ . (30)

In our case the matrix to be pseudo-inverted is a symmetric positive
semi-definite matrix. Therefore, a proper iterative computation of
the pseudoinverse of the autocorrelation matrix differentiates the two
following cases depending on v(ν) which represents the projection
of X(ν)(m) onto the kernel of S(ν)

xx (m− 1)

• the new data vector is not in the column range of the autocor-
relation matrix i.e.,

X(ν)(m) /∈ R
(
S(ν)
xx (m− 1)

)
⇔ v �= 0. (31)

Here the pseudo-inverse can be computed with the formula [8]

S(ν)†
xx (m) = S(ν)†

xx (m− 1)− 2 · v(ν)†f (ν) + β(ν)v(ν)†v(ν)H†,
(32)

• the update data vector is in the column range of the autocorre-
lation matrix i.e.,

X(ν)(m) ∈ R
(
S(ν)
xx (m− 1)

)
⇔ v = 0. (33)

In this case the iterative computation of the pseudoinverse is
equivalent to the inversion lemma namely,

S(ν)†
xx (m) = S(ν)†

xx (m− 1)− 1

β(ν)
f (ν)H f (ν). (34)

Unfortunately, the decision with a hard threshold could fail to
detect real subspace changes. Therefore, a regularized inversion
in the spatio-temporal transform domain as in Eq. (17) when∥∥∥v(ν)

∥∥∥ is greater than a predefined threshold is recommended.

VI. COMPLEXITY CONSIDERATIONS

The inversion of a diagonal matrix has a complexity in O(L · P ),
where P is the number of loudspeakers. Therefore, the computational
costs of the first proposed approach in this paper are dominated by the
complexity of the eigenvalue decomposition of the modified matrix.
This has a computational cost of O(L · P3). However, if the signal
subspace is of the rank k the modified eigenproblem can be deflated
and it can be shown, that the complexity of the update process will
be in O(L · k · P 2). Moreover, since this approach provides the
eigenvectors of the signal correlation matrix, it allows performing
the adaptive filtering in the signal subspace, which is often smaller
than the system space.
The second approach performs a recursive update to the Moore-
Penrose pseudoinverse similarly to the matrix inversion lemma, but
in addition, it requires the computation of the correlation matrix as
an auxiliary operation. However, no explicit inversion is required
and, hence, the resulting complexity of the inversion is reduced to
O(L · P 2).

VII. EXPERIMENTS

To illustrate the properties of the proposed Kalman gain compu-
tation approaches, a multichannel AEC application scenario will be
considered. The simulation setup consists of a circular array with
56 omni-directional loudspeakers and a radius of 1.5m and a rigid
spherical array with 64 microphones and a radius of 0.075m, see
Fig. 3. Both arrays are located in a room acoustically modeled by
the image source method with an acoustic reflection factor at the
walls of ρ = 0.9 and the dimension [6m 6m3m].
Rendering of the moving point source, in terms of simulating the far
end room, is done by wave field synthesis (WFS, impulse responses
are nearly Dirac impulses with different, suitably chosen delays and
amplitudes). The point source is emitting white noise. Note that in
these simulations we did not apply any pre-processing.
The performance of the algorithms is evaluated by means of the echo
return loss enhancement (ERLE), see Fig. 4.

• The dotted green curve depicts the performance of the transform-
domain adaptive filtering with recursive computation of the
spatial transformation domain.

• The red curve is produced by reinitializing The estimation of
the autocorrelation matrix when subspace changes are detected.
It shows that the algorithms converges in this case to a local
minimum due to the non-uniqueness problem.

• The blue curve shows the performance of the echo cancellation
when the Kalman gain is computed by applying the pseudo-
inversion lemma with regularization in the spatio-temporal trans-
form domain when subspace changes are detected.

VIII. CONCLUSION

In this paper we presented two approaches for an efficient compu-
tation of the Kalman gain for multichannel adaptive filtering. The
approach deals with the ill-conditioning of the spatial autocorrelation



Fig. 3. Simulated echo cancellation scenario.
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matrix in multichannel systems and the computational complexity of
multichannel adaptive filtering algorithms. The first approach bases
on the rank-one modification of the eigenvalue problem. The second
approach generalize the inversion lemma to ill-conditioned matrices
by using a pseudoinversion lemma. The simulations have proved that
the presented approaches offer the ability for rapid tracking of the
signal subspace changes and high complexity reduction.
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