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ABSTRACT

The performance of adaptive filtering can be enhanced by incorpo-
rating prior system knowledge. In this paper, we systematically con-
sider regularization strategies exploiting sparseness for the identi-
fication of acoustic room impulse responses specifically for multi-
channel systems. Due to the additional dimensions in the multichan-
nel case, a structured regularization appears to be a natural choice.
Based on this concept, we present a generic regularized Newton-
type algorithm. This generic formulation allows us to discuss vari-
ous properties specific to the multichannel case and forms a valuable
basis for the future development of efficient algorithms.

Index Terms— multichannel adaptive filtering, structured regu-
larization

1. INTRODUCTION

Full-duplex communication in a hands-free communication scenario
with multichannel setup (M loudspeakers) requires acoustic echo
cancellation (AEC). AEC aims at canceling the acoustic echoes
from the microphone signals. Figure 1 shows a block diagram of
multichannel AEC with M reproduction channels and a single mi-
crophone channel in the receiving room (’near-end’). The signals
of the M reproduction channels originate from speech- or audio
sources at the far-end. To cancel the echoes arising due to the acous-
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ĥ
1

ĥ
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Fig. 1. Block diagram of multichannel acoustic echo cancelation.

tic path in the near-end the reproduction signals xm are filtered
with the adaptively estimated coefficients ĥ, i.e., a replica of the
actual acoustic multiple-input single-output (MISO) system. The
resulting signal ŷ(n) is subtracted from the near-end microphone
signal y = h

T
x, with x(n) = [xT

1 (n),x
T
2 (n), · · · ,x

T
M (n)]T,

xm(n) = [xm(n), xm(n − 1), · · · , xm(n − L + 1)]T, n de-
notes the time instant, and L the filter length. ĥ(n) denotes the
estimated MISO coefficient vector composed from M subfilters,

ĥm = [ĥm,0, ĥm,1, · · · , ĥm,L−1]
T. If the estimated filter co-

efficients ĥ are equal to the true transfer paths h, all disturbing
echoes will be canceled from the microphone signal. Note, that the
multiple-input/output (MIMO) case can be considered as a series
of independent MISO systems for each microphone channel [1].
Hence, the consideration of a MISO system in the near-end room is
sufficient in the context of this work. Most of the popular adaptive
filtering algorithms are based on least-squares error minimization

J
(
ĥ(n)

)
:= Ê{e2(n)} = Ê

{(
y(n)− ĥ

T(n)x(n)
)2

}
, (1)

and aim at the so-called Wiener solution [2]. Ê{·} denotes an es-
timate of the expectation, typically a weighted sum over time. It
is known that for optimization problems in adaptive filtering based
on the least-squares criterion the recursive least-squares (RLS) al-
gorithm is the optimum choice in terms of convergence speed [2].
For multichannel adaptive filtering, the important feature of RLS-
type algorithms is that they explicitly take all autocorrelations and
also all crosscorrelations between the filter input signals x1, . . . ,xM

into account for the adaptation process [3, 4]. However, one major
problem of the RLS algorithm is the potential numerical instability
caused by ill-conditioning due to correlated input signals. The single
channel AEC problem must be regarded as ill-conditioned when the
system to be identified is badly excited. This is the case if the in-
put signal xm is autocorrelated. The ill-conditioning becomes even
worse in the multichannel case, e.g., with stereo reproduction sys-
tems. In this case the excitation is highly intra- and inter-channel
correlated. Strategies to cope with the mentioned ill-conditioning
problem aim either at enhancing the conditioning by manipulating
the input signals xm, as long as the manipulation can be perceptu-
ally tolerated [4, 5], or at regularizing the problem to determine an
approximate solution that is stable under small changes in the ini-
tial data. Regularization incorporates supplementary prior solution
knowledge into the ill-conditioned problem. A very popular regu-
larization scheme is the energy-based regularization in the spirit of
Tikhonov which can be understood as adding a constraint on the �2-
norm of ĥ(n). The resulting cost function reads [6]

J
(
ĥ(n)

)
:= Ê

{(
y(n)− ĥ

T(n)x(n)
)2

}
+ λ

∥∥∥ĥ(n)∥∥∥2

2
, (2)

λ denotes the Lagrange-multiplier. From a probabilistic point of
view, regularization is strongly related to the maximum a posteriori
criterion (MAP) which reads

ĥopt = argmax
ĥ

p(ĥ|x, y), (3)

where p(·) denotes a probability density function. Note that we dis-
carded the time dependency for clarity of presentation. p(ĥ|x, y)
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denotes the a posteriori probability distribution and is given by the
Bayesian rule [6],

p(ĥ|x, y) ∝ p(y|x, ĥ) · p(ĥ). (4)

The constraint in Eq. (2) corresponds to a prior multivariate normal
distribution with zero mean and variance Σĥ = σ2

ĥ
I

p(ĥ) =
1√

(2π)ML|Σĥ|
e
− 1

2
ĥ
T
Σ

ĥ
−1

ĥ
, (5)

where |Σĥ| denotes the determinant of Σĥ. It is easy to see that
maximizing the a posteriori log-likelihood is equivalent to minimiz-
ing the cost function in Eq. (2).
Acoustic room impulse responses characterize the reverberant struc-
ture of a room. The presence of walls can be modeled by image
sources which mirror the actual source and all other images with
respect to the walls [7]. Moreover, the decay of the impulse re-
sponses motivates the assumption of sparseness of typical room im-
pulse responses in the time domain, i.e., only a small percentage of
their components has significant magnitude while the rest is close to
zero. In other words the filter taps in each channel exhibit a super-
gaussian distribution. Nonadaptive identification of sparse systems
was the subject of several recent studies, e.g., [8, 9]. In this pa-
per we consider online adaptation to allow tracking the slowly time-
varying system. So far, many studies presented different techniques
for sparse adaptive filtering in the single-channel case. E.g., propor-
tionate normalized least mean squares (PNLMS) and exponentiated
gradient [1, 10] are efficient gradient based algorithms that exploit
the decaying structure of the acoustic impulse response in the time
domain. A frequency-domain formulation of a sparse adaptive filter-
ing approach has been developed in [11]. In the multichannel case
interchannel correlations are present in addition to the intrachannel
signal correlation which makes the ill-conditioning problem more
challenging. It has been shown that multichannel acoustic impulse
responses can be regarded as sparse in suited transform domains,
such as the frequency or wave domain [12, 13]. In this paper we
focus on a spatio-temporal regularization in the time domain and
present a rigorous derivation of a Newton-based algorithm for adap-
tive filtering which takes explicitly the spatio-temporal probability
distribution of the multichannel system into account. Furthermore,
we discuss some special cases and present simulation results.

2. STRUCTURED REGULARIZATION

As mentioned before, the subfilters of a full-duplex multichannel
acoustic communication system are typically sparse in the time do-
main. Therefore, it is desirable that a space-time regularization strat-
egy exploits this time sparsity. The most simple and popular choice
for supergaussian prior is the Laplace distribution. Incorporating
this prior information in the MAP estimatior leads to a constraint on
the �p-norm, with p → 1 of the subfilters. Prior knowledge about
the spatial structure of the impulse responses can be understood as a
prior distribution of the norms of every channel. It can be related to
a �q-norm constraint on a vector with components being composed
from the �p-norms of the individual channels. E.g., in many cases
one could intuitively assume the �p-norms of the channels to be nor-
mal distributed.
Hence, the concept of structured regularization [14] seems promis-
ing for MISO adaptive filtering. This aims at minimizing the �p,q-

norm which is defined as

‖ĥ‖p,q :=

(∑
m

‖ĥm‖
q
p

) 1

q

=

⎛⎝∑
m

(∑
l

|ĥm,l|
p

) q
p

⎞⎠ 1

q

. (6)

Please note, that the traditional �p-norm can be regarded as the spe-
cial case of taking the �p,p-norm.

3. �p,q-NORM CONSTRAINED ADAPTIVE FILTERING

The sparseness of room impulse responses offers us the possibility to
transform the traditional minimization process in the AEC problem
into a constrained optimization problem. Hence, the cost function
from Eq. (1) can be modified using the Lagrange multipliers formu-
lation into

J
(
ĥ(n)

)
= Ê

{(
y − ĥ

T(n)x(n)
)2

}
+ λ

∥∥∥ĥ(n)∥∥∥q

p,q
. (7)

A minimum of the cost function can be found by setting its gradient
w.r.t ĥ to zero.

∇
ĥopt

J
!
= 0. (8)

The gradient of the cost function is

∇
ĥ
J = −2Ê

{
x(n)

[
y(n)− ĥ

T(n)x(n)
]}

+ λ∇
ĥ
‖ĥ‖qp,q

= Ê {−2x(n) · e(n)}+ λ∇
ĥ
‖ĥ‖qp,q . (9a)

It can be easily verified that the entries of the vector ∇
ĥ
‖ĥ‖qp,q are

given as

∂‖ĥ‖qp,q

∂ĥm,l

= q‖ĥm‖
q−p
p

|ĥm,l|
p

ĥm,l

. (9b)

Determining the zeros of∇
ĥ
J can be done iteratively with the New-

ton algorithm,

ĥ(n) = ĥ(n− 1)− (∇
ĥ
∇T

ĥ
J(ĥ(n− 1)))−1∇

ĥ
J(ĥ(n− 1)).

(9c)

The main advantage of Newton-type adaptation algorithms is their
quadratic convergence rate compared to the linear convergence rate
of the gradient-based algorithms. Newton type algorithms require
the computation of the Hessian matrix [15]

∇
ĥ
∇T

ĥ
J(ĥ(n− 1)) = Rxx + λ · ∇

ĥ
∇T

ĥ
‖ĥ‖qp,q︸ ︷︷ ︸

:=G

. (9d)

Usually, the correlation matrix is estimated iteratively using

Rxx(n) = α Rxx(n− 1) + x(n)xT(n), (9e)

where α denotes a forgetting factor. Hence, in our special case the
Hessian reduces to an estimate of the regularized correlation matrix.
The entries of the G are given by differentiation of Eq. (9b) and we
derive after several straightforward calculation steps

∂2‖ĥ‖qp,q

∂ĥm,l∂ĥm′,l′
=δmm′ q(q − p)‖ĥm‖

(q−2p)
p

|ĥm,l|
p

ĥm,l

|ĥm,l′ |
p

ĥm,l′

+δmm′δll′ q(p− 1)‖ĥm‖
(q−p)
p

|ĥm,l|
p

ĥ2
m,l

, (9f)



hereby, δmm′ denotes the Kronecker delta.
Hence, the regularization matrix can be decomposed into the sum of
two matrices, one block-diagonal matrix Gbdiag with entries given
by the first summand of the right hand side of Eq. (9f), and one
diagonal matrix Gdiag reflected by the second summand.

4. DISCUSSION OF SPECIAL CASES

From Eq. (9f) it can be deduced that for cases where the norm �p,q
with p = q is considered, the matrix Gbdiag becomes a zero-matrix
and the regularization can be described by adding a diagonal matrix
to the correlation matrix. Moreover, for the choice p = q = 2 we
get for G the unity matrix multiplied by a scalar which is consistent
with the known Tikhonov regularization.

4.1. Multichannel sparse adaptive filtering

In the following we discuss the special case of setting p = q. Study-
ing this case offers insights into the properties of the sparseness
based regularization in the context of multichannel adaptive filter-
ing and as we will see this choice of the norm parameter leads to an
efficient implementation strategy since the regularization matrix G

becomes diagonal as discussed above. By this p, q configuration the
gradient (9b) simplifies to

∂‖ĥm‖
p
p

∂ĥm,l

= p|ĥm,l|
(p−1)sgn(ĥm,l), (10)

hereby, sgn(·) = |·|
·

stands for the sign function.
The entries on the main diagonal of G according to the second term
of (9f) are then given as

∂2‖ĥm‖
p
p

∂ĥ2
m,l

= p(p− 1)|ĥm,l|
(p−2)

. (11)

For the limiting case p = 1 we derive the sign function for the first
derivative, and hence, the following update equation

ĥ(n) = ĥ(n− 1) +
(
λ · diag

{
δ(ĥ(n− 1))

}
+Rxx(n)

)−1

·
(
−λ · μ · sgn(ĥ(n− 1)) + x(n)e(n)

)
, (12)

where μ is a weighting factor for the gradient of the norm that takes
into account the different estimation approaches in practical imple-
mentations for the Hessian and the gradient. The Hessian is usu-
ally estimated in a recursive way in contrast to the estimation of the
gradient which is mostly done by taking the instantaneous value of
the vector Ê{xe}. δ(·) denotes a component-wise Dirac impulse.
Hence, once some of the filter coefficients converged to zero, the
algorithm can change their values only slowly. This results in rela-
tively bad tracking properties of the adaptive filter. This statement
clarifies why most well known single channel sparse adaptive filter-
ing approaches are strongly related to minimization of the �p-norm
for p ∈]1, 2[. For instance, the IPNLMS algorithm [16, 17].

4.2. Efficient computation of the regularized inverse

As stated in Eq. (8) the optimization process requires the inversion
of an ML ×ML matrix in each iteration. This results in very high
complexity. The following observation leads to a reduction of the
computational complexity.

Since the correlation matrix is estimated iteratively using Eq. (9e).
Let assume R

−1
xx (n− 1) to be known and(
Rxx(n− 1) + x(n)xT(n) +G(n)

)−1

is required. Since G := ∇
ĥ
∇T

ĥ
‖ĥ‖pp is diagonal, a unitary matrix

U and Λ can be efficiently computed representing the eigensystem
of a diagonal plus rank-1 matrix [18, 19]

x(n)xT(n) +G(n) = UΛU
T
. (13)

Preliminary experiments of the authors have shown that the rank k,
i.e., the number of nonzero eigenvalues is much smaller than ML.
Applying the inversion lemma leads to

(Rxx(n) +G(n))−1 = R
−1
xx (n− 1)−R

−1
xx (n− 1)

·U
(
Λ
−1 +U

T
R
−1
xx (n− 1)U

)−1

U
T
R
−1
xx (n− 1). (14)

Hence, only the inversion of the much smaller matrix

A :=
(
Λ
−1 +U

T
R
−1
xx (n− 1)U

)−1

, (15)

with the size k × k is needed.

5. ILL-CONDITIONING IN MULTICHANNEL ADAPTIVE
FILTERING AND SPARSENESS CONSTRAINT

An advantage of the regularization due to a �2-constraint is that the
�2 regularization aims at adding the same value to all eigenvalues
of an ill-conditioned system. This has the positive effect that all
eigenvalues are prevented from becoming zero, hence, they can be
inverted and an inversion of the resulting regularized system is en-
sured. But the resulting system could still have eigenvalues with
high multiplicity. Hence, the inversion of the resulting matrix is not
unique. In contrast, �p→1 regularization aims at adding large values
to the diagonal of the ill-conditioned system at the positions cor-
responding to the unknown parameters which are likely to become
zero. Adding large regularization (r → ∞) for p = 1 to the i-th el-
ement of the diagonal of Rxx results in zeroing out the i-th column
and i-th row of R−1

xx . Hence, to measure the resulting misalignment
[12] we should adapt its definition to

μmin := 10 log

(
σ2
ν

σ2
x

)
(1− α)2

‖h‖22
κ{R1/2

xx }, (16)

κ{R1/2
xx } =

∑
{η:tη<T}

∑
{η′:t−1

η′
> 1

T
}

tη(tη′)
−1

.

where tη,η′ denotes eigenvalues of Rxx and κ the condition num-
ber. Since the condition number considers a smaller matrix it is al-
ways smaller or equal to the condition number of the original matrix.
Therefore, smaller misalignment could be expected.
It should be noted that the non uniqueness [4] is still not solved.
The correlation of the loudspeakers signals leads in general to vio-
lation of the convexity assumption on the search space. However,
simulations have shown that the sparseness constraint enhances the
tracking ability of the algorithm, see Sect. 6, and the adaptive sys-
tem manages the identification with significantly less preprocessing
effort such that improved perceptual quality could be expected.
Moreover, using structured regularization �p→1,2 for estimating mul-
tichannel systems with sparse subvectors leads only then to reason-
able estimations when the �p→1-norm of the subvectors are in as-
similable dimensions otherwise, minimizing the �p→1,2-norm would
converge to a solution that equalizes the �p→1-norms of the subvec-
tors in the �2-sense.
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Fig. 2. (a) Achieved enhancement by considering constraints on the
�2, �1.3, and �1.3,2-norms, L = 256, M = 2. (b) Tracking properties
of the presented algorithm. Constraints on the �2, �1.1, and �1.1,2-
norms for sparse system of length L = 64, M = 2. Note that the �2-
norm corresponds to the original RLS with Tikhonov regularization.

6. EXPERIMENTS

To illustrate the properties of the developed algorithms, an AEC ap-
plication scenario is considered. The simulation aims at a proof of
our concept. More efficient implementations for complex scenarios
can be obtained by considering a block formulation for the presented
algorithm in a similar manner to the approach in [15].
Due to the very high complexity of O

(
(ML)3

)
of the straightfor-

ward implementation of Eq. (9c) the near-end room is a small room
with a reverberation time (T60) of approximately 20ms containing
two loudspeakers, spaced by 1m. In a distance of 1.5m an omni di-
rectional microphone is placed. The filter length is L = 256 at a
sampling rate of fs = 8kHz. Noise with a level of approximately
-60dB with respect to the echo was added to the microphone sig-
nals, in order to simulate microphone and other noise sources at the
near-end. The far-end is a stereo system rendering a virtual source
of white noise randomly located between the two loudspeakers. The
virtual sources were positioned during the simulation at three differ-
ent points (position changes after 1s and 1.5s). The stereo signals
were preprocessed, as suggested in [4] with a nonlinearity rate of
only 0.1. The forgetting factor α is set to 0.99, the Lagrange multi-
plier λ = 0.15, and μ was set to 3·10−6. The update (9c) was imple-
mented using the pseudoinverse. The red, blue, and green curves in
Fig. 6(a) depict the achieved system distance of the estimated MISO
system by using a constraint on the �2, �1.3, and �1.3,2-norms respec-
tively. The simulations show the achieved enhancement of the con-
vergence rate by using a sparseness constraint. To show the tracking
performance of the presented algorithm systems we give a second
example with filter length L = 64 and very similar scenario but here
we simulated a system change after 1s, by changing the microphone
position. Again we simulate a stereo system with one microphone
but here each simulated acoustic impulse response is zero except at

ten random points. The simulation scenario is suitably adopted for
the chosen short filter length by taking a sampling frequency of 1kHz
and the virtual source movements in the far-end is done by delay-
ing one of the loudspeaker signals, we preprocessed the loudspeaker
signals with a non-linearity rate of 0.05. The position changes in
the far-end were now after 0.5s, 0.75s, 1.5s, and 1.75s. All other
simulation parameters are the same as in the first experiment. The
simulations demonstrate the relation between the sparseness degree
of the system and the suitable norm constraint. In Fig. 6(b) the artifi-
cially generated system is sparser than the measured one in Fig. 6(a)
hence, a constraint on the �1.1,2 offered the best results.

7. CONCLUSION

In this paper we presented a rigorous derivation of a Newton-based
algorithm for adaptive filtering which takes explicitly the spatio-
temporal probability distribution of the multichannel system into ac-
count. Furthermore, we discussed some special cases. Future work
should focus on a block formulation of the presented algorithm for a
more efficient implementation in the frequency domain. Exploiting
the well known link between the NLMS and the Newton-based algo-
rithms allows the derivation of efficient algorithms with sparseness
constraint as special cases of the presented algorithm.
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