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ABSTRACT

In this paper, we give a study on reducing the coefficients to be esti-
mated in an adaptive sparse multichannel system identification prob-
lem. We present an approach to perform the adaptation in a com-
pressed representation of the sparse system without requiring prior
knowledge about the dimensions in which the system has significant
components. The presented technique exploits the ability of sparse
systems to be compressed offering a reduction of the adaptive filter
coefficients in addition to high convergence rates.

1. INTRODUCTION

Linear adaptive filters have found applications in diverse fields in-
cluding communications, control, robotics, sonar, radar, seismics
and biomedical engineering to name but a few [1]. The main classes
of adaptive filtering problems (forward problems, inverse modelling,
and prediction) share a structure in which a cost function is mini-
mized iteratively. Hence, insights gained by studying one class of
adaptive filtering problems can be used for other classes. In this
study, we will concentrate on the system identification problem as a
forward problem of adaptive filtering. System identification finds ap-
plication in such diverse fields as layered earth modelling and acous-
tic echo cancellation (AEC) [1].

As can be expected intuitively , a systematic incorporation of prior
knowledge about the system or the signals leads to a significant im-
provement of the adaptive filter performance. Typical examples of
given prior knowledge about the systems could be a given distribu-
tion of its coefficients or a sparse structure of the system (i.e., only
a small percentage of their components has significant magnitude
while the rest is close to zero). In particular the decay of a typi-
cal single channel acoustic impulse responses or the structure of a
system modelling the earth layers where only few peaks are differ-
ent from zero (or being close to zero) motivates the assumption of
sparseness of such impulse responses in the time domain [2, 3, 4].
For the multichannel case, an approach was presented in [5] to in-
volve the prior knowledge about the spatio-temporal structure of a
multichannel systems in the adaptive filter. It has been shown that by
choosing suitable regularization strategies, high convergence rates
can be achieved even for ill-conditioned problems, especially by ex-
ploring the sparsity of a system.

It has been shown in [6, 7, 8] that a spatially sparse representation
can be enforced in multichannel acoustic systems by means of trans-
formations into suitable subspaces where the multichannel system
can be considered to be decoupled or diagonalized . A decoupled
system acts on the independent modes at its input separately such
that an input mode has influence on one single output mode and all
other cross channels can be disregarded. Hence, these techniques to
achieve a sparse structure of a multichannel systems give a hint on

the position of the dimensions in which the transformed multichan-
nel system has significant components. The identification reduces
in theses techniques to estimate the system components in particular
dimensions that are obtained from prior knowledge about either the
system or the excitation signal.

In a more general case, the system could have some sparse represen-
tation however the knowledge about the relevant dimensions might
be inaccessible a priori. Compressed sensing is a technique to com-
press and optimally reconstruct sparse signals regardless of the par-
ticular relevant dimensions of the signal. In the following, we will
exploit insights from compressed sensing research on sparse signals
to the multichannel system identification problem of sparse systems.
For illustration we choose the setup of multichannel AEC as a promi-
nent example of the system identification problem. Full-duplex com-
munication in a hands-free communication scenario with multichan-
nel setup (P loudspeakers) requires AEC. This aims at canceling
the acoustic echoes from the microphone signals. Fig. 1 shows a
block diagram of system identification scenario as it is e.g., in multi-
channel AEC with P reproduction channels and single microphone
channel in the receiving room (‘near-end’, denoted more generally
as ’plant’ in Fig. 1). The signals of the P reproduction channels
originate from speech- or audio sources in a transmission room (’far-
end’). To cancel the echoes arising due to the reflections in the near
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Fig. 1. Block diagram of multichannel adaptive system identifica-
tion.

end the reproduction signals z,, are filtered with the adaptively esti-
mated coefficients h, i.e., a replica of the actual acoustic multiple-
input single-output (MISO) system, and the resulting signals are
subtracted from the near-end microphone signals y = hTx, with
x(n) = [x1 (n),x3 (n),--,xp(n)]", xp(n) = [2p(n),zp(n —
1), -+ ,zp(n — L + 1)]", h(n) denotes the PL MISO coefficient
vector composed by P subfilters, h, = [hp.0, Ap1, - 5 hpr_1]T
and n the time instant. If the estimated filter coefficients h are equal
to the true transfer paths h, all disturbing echoes will be removed
from the microphone signals. Most of the popular adaptive filtering



algorithms are based on least-squares error minimization and aim at
the so-called Wiener solution of the filter coefficients [1]. Typically,
the cost function reads

J (fl(n)) =E&{*(n)y =& { (y(n) - lAlT(n)x(n))Q} , (D)
where £{-} denotes an estimate of the expectation.

2. SUBSPACE-BASED APPROCHES AS SPECIAL CLASS
OF COMPRESSIVE DOMAINS

2.1. General considerations

We call an M-dimensional subspace of an L-dimensional space
(M < L) a compressed domain, if the subspace is dense, i.e., any
vector in the original space is concentrated in a lower dimensional
subspace or if it can be fairly approximated in a lower dimensional
subspace basis. From information theoretical point of view the con-
dition for an ideal compression domain is to have maximal mutual
information between a vector h and its compressed representation E
in the considered subspace [9]. The mutual information between the
signal and its compressed version is given by

I(h,h) = H(h) — H(h/h). 2

The conditional entropy, H (h|h), can be assumed to be zero when
h is completely determined by the value of h. Hence, the mutual
information is maximal if and only if the entropy of h is maximal
[10].

2.2. Illustration using second order statistics

To illustrate how a concrete compressive domain could look like, we
give an example based on second-order statistics (SOS) with given
correlation matrices Ryn 1= &€ {hhT}. It is well known that the
principle component analysis maximizes the mutual information be-
tween a high dimensional vector and a vector with lower dimension-
ality under a gaussian signal model [10]. Hence, the entropy of the

compressed signal E := ®h given by
H(h) = — &{logpn(h)}, 3)

where £{-} denotes the expectation. For ease of representation, we
assume here the systems to be zero-mean. Hence, we have
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and the entropy (3) is maximal if the rectangular compression matrix
® of the size M x L, M < L, contains the eigenvectors correspond-
ing to the M largest eigenvalues of Rup.

In the following we show that the least-squares minimization of the
AEC problem in such compressive domains leads to an approxima-
tion of the solution of the normal equation in the uncompressed do-
main. Therefore, we define

pr(h) =

9(n) == h" (n)®" ®x(n), 5)

x(n) := ®x(n). (6)

Minimization of the cost function in the compressive domain

2 (Bm)) =& { (v(m) - 5(m)° } . ™

leads to the least-squares solution, known as Wiener-Hopf equation
(1]
Ruxh

XX =Zopt

with rxy(n) = E{x(n)y(n)}, Rux(n) = E{x(n)x"(n)}.
Eq. (8) can be reformulated as

— ®)

PRxx® ®h — Bry, = 0, ©)
with Ty (n) 1= E{x(n)y(n)} and Rux(n) := E{x(n)xT(n)}. As
mentioned, ® is computed by PCA. This technique aims at minimiz-

—~ 12
ing the least-squares error epca = H (h— <I>T<I>h)‘ , hence we can
2

write for epca — 0
PRxxh — Pry, =0, (10)
P (Rxxﬁ - rxy) = 0. an

if (Rxxﬁ — rxy) is not in the null space of ®, which is in general

fulfilled by satisfied excitation, then we obtain again the Wiener-
Hopf equation

~

Ryxch = . (12)

Therefore, we can conclude h = hgy.

3. COMPRESSIVE DOMAINS FOR SPARSE SYSTEMS

Recent studies on compressive sensing state, that a sparse signal,
e.g., h, can be perfectly reconstructed from its undersampled version

~

= ®h (13)

=)

with ® a random observation matrix [11]. The originality of the
theory of compressed sensing bases on its implicit statement that
a subspace spanned by M = O(K log(L/K)) uncorrelated white
vectors is dense in the space of K -sparse signals of length L [12].
The mentioned statement of compressive sensing motivates us to ask
for the possibility of adaptive filtering for sparse systems in compres-
sive domain analogously to the discussion in Sect. 2 but with random
compression matrices and without an explicit knowledge about the
relevant dimensions of the sparse systems.

3.1. Adaptation in compressive domains for sparse systems

To answer the mentioned question about the adaptation in random
compressive domains for sparse systems, we aim at formulating the
cost function for the MISO system identification similarly to the
formulation in (7) optimization problem in a compressive domain.
Since the compression matrix is not given by an explicit eigenspace
of the sparse system, we cannot assume a minimum reconstruction
error by using the hermitian transpose of the compression matrix,
as we assumed to conclude (11) and subsequently an optimal filter-
ing in the compressive domain given by the system subspace. An
optimal reconstruction by a transformation matrix can be obtained
from the typical compressed sensing cost function which is based on
exploiting the sparsity of the system

7 (5) =]+ [~ o5 a0



where A denotes the Lagrange-multiplier. A minimum of the cost
function can be found by setting its gradient w.r.t h to zero.
With
~ 3T~
HhH — sgn {h} h, (15)
1

hereby, sgn{-} stands for the sign function. Hence, the gradient reads

VeJ = 2)\sgn {ﬁ} — 28" (n) [E(n) - qa(n)ﬁ(n)] ., (16)
the sign function can be approximated by

sgn{ﬁ}:E—lﬁ, with E::diag{‘ﬁ—i—e‘}, a17)

where € is a parameter that prevents a division by zero. For an opti-
mum point we have the condition

Vﬁnp( J =0,

~ -1 ~

hop () = (/\E_l(n) n <1>Tq>) 3"h. (18)
Hence, we obtain a reconstruction matrix that we define as

&t (n) = (AE*l(n) +@T‘1>)71<1>T. (19)

Since h is a priori unknown, an iterative computation for the regu-
larization matrix E~* has to be performed

E(n) = diag{’fl(n —1)+e

} (20)

where E(0) is set to the unity matrix. Hence, the reconstruction
matrix can be understood as an adaptive back transformation ma-
trix from the the domain where the system has a compressed dense
representation to the domain where it is sparsely represented. This
back transformation matrix is adjusted to the sparse structure of the
system. Now, we can rewrite the cost function

I (B(m) =& {(wm) - 3m)*}, @
with the new definition
§(n) :==h" (n)@" @™ (n)x(n), (22)

here, @ (n) denotes the regularized inverse of ® which depends on

h(n — 1) as shown above, and
x(n) := &+ T (n)x(n). (23)

‘We obtain analogously to the known least squares solution but in the
compressed domain

h,,(n) =

Typically, the correlation matrix is estimated iteratively using the
formula

R,;,l (n)rxy(n). (24)

Ryx(n) = o Ryx(n — 1) + x(n)x " (n), (25)

a denotes a forgetting factor.
The uncompressed estimated filter is then given by

h(n) = ®" (n)h(n). (26)

The zeros of Vg J can be determined iteratively with the Newton al-
gorithm. The main advantage of Newton-type adaptation algorithms
is its quadratic convergence rate compared to the linear convergence
rate of the gradient-based algorithms [1].

Compared with algorithms that incorporate system prior knowledge
in the uncompressed domain such as the approach presented in [5],
the shown algorithm introduced here deals with reduced dimensions
of the signal autocorrelation matrix Rxx. A block diagram to illus-
trate the structure of the presented algorithm is presented in Fig. 2.

3.2. Approximations to avoid explicit estimation of the recon-
struction matrix for Newton based algorithms

As we have shown above, an adaptive computation of the reconstruc-
tion matrix is required for an optimal estimation of the sparse sys-
tem in the compressive domain. The computational complexity of
the back transformation matrix is relatively high compared with al-
gorithms aiming at estimating only a sparse signal out of incomplete
measurements, such as the message passing algorithms [13]. Hence,
it is desirable to combine the high convergence rate of the Newton-
type algorithms with the idea of a fast estimation of a sparse system
from incomplete measurements. Let us consider the update rule of a
Newton-type algorithm. This reads in the multichannel case [14]

~ ~

h(n) = h(n — 1) + Ry (n) - x(n)e(n), 27)
where the Kalman gain, k(n) is given as
k(n) := Rx (n) - x(n). (28)

By multiplying both equation sides of this equation by a measure-
ment matrix ® we obtain with (13)

~

(n) =h(n —1) +k(n)e(n), (29)

=)

where
k(n) := ®k(n). (30)

Assuming the input signal is white, we make the approximation of
the Kalman gain

t tT 1T
k(n) ~ (®'Rax(m)@’ ) - @7 x(n), 31)
where ® denotes an £ regularized inverse of ®. This is motivated
by the assumption that the input is normally distributed.
Hence, we obtain an approximate Newton type algorithm as

(n) = h(n — 1) + k(n)e(n). (32)

=)

Note that the error e(n) is given by the difference between y(n)
and the estimated output of the uncompressed system which can be
efficiently estimated e.g., by the message passing algorithms.

4. EXPERIMENTS

As a proof of concept for the compressive domain adaptive filtering
we have simulated in Fig. 3, a 2-channel MISO system identifica-
tion scenario. Here the system environment was simulated as 10
randomly weighted and separated pulses, the filter length L = 64.
Each channel was excited by uncorrelated white noise. To the cap-
tured signal, additive white noise was added to obtain an SNR of
60 dB. Five adaptation runs were simulated. As reference, the red
curve shows the system distance by non compressive adaptation by
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Fig. 2. Block diagram of multichannel adaptive system identification
in compressive domain.
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Fig. 3. Identification performance in compressive domains

simulating the recursive least squares algorithm (RLS). The brown
curve shows the reached system distance by adaptation in a com-
pressive domain obtained by the first 40 principal components of a
training dataset. The training dataset consisted of 15 randomly gen-
erated MISO systems, each channel has 10 randomly weighted and
separated pulses in the first 16 taps. Finally, the impulse response to
be identified was not part of the training dataset.

The blue curve was produced according to the results in Sect. 3.1, it
corresponds to a compression length of 40. The approximation given
in in Sect. 3.2 is reflected in dotted blue curve. The green curve is
the system distance can be reached by affine projection algorithm
(APA) with a projection order of 40. Note that the performance of
APA and the approximated compressive domain algorithm with a
fixed back transformation are similar. However the compressive do-
main algorithm converges faster. The black curve shows the system
distance when the estimation of the sparse system is done in a com-
pressed domain which is not necessarily the eigenspace of the sys-
tem and the back transformation is done by an unconstrained least
squares. The simulations have proven that the concept of compres-
sive domain adaptive filtering is technically realizable and it offers
acceptable convergence rates.

5. CONCLUSION

In this paper we gave a study on the multichannel adaptive system
identification in compressive domains. On the one hand, estimat-
ing a sparse system in a compressed domain can be understood as a
special subspace adaptive filtering algorithm where the back trans-
formation matrix is given by means of a constrained cost function.
On the other hand, subspace adaptive filtering itself can be under-
stood as a special case of sparse adaptive filters where the relevant
dimensions in which the compressed system has significant compo-
nents are known.
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