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THE SYNTHESIS OF SOUND FIGURES

Karim Helwani · Sascha Spors · Herbert Buchner

Abstract In this paper we discuss a novel technique to control the spatial distribution of
sound level within a synthesized sound field. The problem is formulated by separating the
sound field into regions with high acoustic level, so-called bright regions, and zones with low
acoustic level (zones of quiet) by time independent virtual boundaries. This way, the prop-
agating sound field obtains a static spatial shape, which we call sound figure. This problem
is treated with a generic approach for creating sound figures. We give an analytic solution
to the problem and highlight, how our findings can be applied using established sound field
synthesis techniques. We furthermore show the limitations of our approach, provide simula-
tion results to prove the concept and discuss some application areas.

Keywords Multichannel sound reproduction · Sound field synthesis · Quiet zones · Sound
figures

1 Introduction

Advanced multichannel sound reproduction techniques synthesize a sound scene for a large
listening area. Most prominent examples of analytical techniques are Wave Field Synthesis
(WFS) [5] and near-field compensated higher order Ambisonics (NFC-HOA) [11]. Here,
the physical synthesis of a sound field within a spatially extended region of control Λ with
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the boundary ΩΛ is considered. The region of control is included in the domain S bounded
by a distribution of secondary sources ΩS, where the term secondary source represents an
abstract concept of a spatially continuous sound source, in the discrete case a secondary
source refers to a loudspeaker. In figure 1 the synthesis setup is illustrated with the three
relevant boundaries ΩS for the distribution of the secondary sources, ΩΛ for the boundary
of the control region, and (as we will see later in this paper) ΩD, the boundary on which the
sound figure is desired to be synthesized.
The concept of WFS is based on the Kirchhoff-Helmholtz integral [31]. This states that at
any listening point within the source-free listening area ΩS the sound pressure is uniquely
determined if both the sound pressure and its gradient are known on the boundary enclosing
this area. Hence, in WFS the boundary ΩΛ and ΩS coincide.
NFC-HOA aims at an explicit solution of the wave equation, typically with Dirichlet bound-
ary conditions [13] using orthogonal representations of the respective sound fields.

A goal of some recent work [1,8,21,28] was to achieve spatial selectivity of a synthe-
sized sound field by defining closed regions with low acoustic level, so-called zones of quiet
or quiet zones, in the listening area. For instance, the technique of acoustic contrast control
[8,28] addresses maximum ratio of the acoustic energy in a region (its brightness) to the
input energy under the constraint of maximizing the contrast between the bright zone and
the quiet zone. The approach aims at finding an optimal solution at selected points in the
listening area. Hence, the optimization will converge to locally optimal solutions. In [1] an
approach for creating zones of quiet with circular loudspeaker arrays is described. The au-
thors propose using higher order spherical harmonics to cancel the undesirable effects of the
lower order harmonics of the desired sound field in the zone of quiet. This approach cannot
be applied for arrays with other geometries than circular ones. Moreover, the boundaries of
the resulting quiet zone have to be circular. In [21] the synthesis of sound fields with dis-
tributed modal constraints is considered. Unfortunately, the author in [21] does not provide
a discussion on the limits of the presented approach or a time domain treatment of the un-
derlying problem.
In this paper we discuss the synthesis of a desired spatial sound field with quiet zones hav-
ing arbitrary predefined shape. In contrast to the Chladni figures [27] that also define spatial
structures of sound fields in bounded resonant bodies, we are not interested in the interfer-
ence patterns of standing waves but rather in the simultaneous synthesis of time independent
spatial functions with traveling sound fields.
Moreover, we show in this paper how the obtained results can be applied with piecewise
linear arrays which are of great interest from a practical point of view.

The potential applications of such a technique are manifold. Besides possible artistic ap-
plications, it is often desired to provide the possibility of spatially selective sound in terms
of providing undisturbed communication. E.g., in a hands-free full-duplex communication
system it is desired to prevent acoustic echoes. This can be achieved by creating a quiet
zone in the region where the microphones are positioned [18]. Another application can be
the hands-free communication in public places where it is desired to supply a diversity of
uninterfered contents.

The paper proceeds as follows: In section 2 we briefly review the theory of the sound
field synthesis and introduce the notation.In section 3 which should be considered as the
central part of this paper, we introduce the mathematical formulation for the synthesis of
sound figures, highlight the conditions for the synthesis of sound fields with spatial struc-
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Fig. 1 Geometry of the posed problem in the 2-dimensional case. ΩS denotes the distribution of the secondary
sources, ΩΛ the boundary of the control region, and ΩD is the boundary on which the figure is desired to be
synthesized.

ture, and derive an analytical solution. In section 4, we show, how to apply the developed
synthesis approach to the synthesis of closed zones of quiet. Section 5 describes the synthe-
sis using planar and linear arrays. Section 6 provides a discussion of some practical aspects
and simulations to validate our concept and to emphasize the practical limits.

2 Synthesis of Sound Fields

Sound field synthesis techniques control the pressure profile on the boundary ΩS in order
to synthesize a desired sound field in the domain bounded by ΩΛ, that we will denote by Λ

throughout this paper. See Fig. 1. (We use the term domain as a generalization for a volume
or an area depending on the dimensionality of the problem).
Furthermore, as detailed later in Sect. 3, the third boundary ΩD in Fig. 1 will be used for
the definition of a sound figure within the synthesized sound field. The technique of wave
field synthesis [5] is based on the Kirchhoff-Helmholtz integral. This states that the pres-
sure P(x,ω) at any point x inside a domain which is bounded by a closed manifold1 ΩS is
uniquely given by the pressure and velocity on the bounding manifold. In WFS the bound-
ary of the control region ΩΛ is identical with the boundary defined by the secondary source
distribution ΩS. The Kirchhoff-Helmholtz integral reads [34]

P(x,ω) =
∮

ΩS

(
P(x0,ω) ·

∂

∂n
G(x|x0,ω)−G(x|x0,ω) ·

∂

∂n
P(x0,ω)

)
dx0, (1)

with

∂

∂n
P(x0,ω) = 〈n,∇P(x0,ω)〉, (2)

where n denotes the inwards pointing normal vector on ΩS, ∂

∂n the directional gradient taken
in direction n, and G(x|x0,ω) corresponds to the Green’s function which is the solution of
the inhomogeneous wave equation. Under free-field conditions, the Green’s function de-
scribes a monopole source. In this paper we use the term secondary monopole sources for
a distribution of monopole sources on ΩS. The directional gradient of the Green’s function
under free-field conditions can be seen as a dipole source. In a practical realization it is de-
sirable to synthesize the sound field using only monopole sources located on ΩS since they
can be approximated by loudspeakers. It can be shown that neglecting the dipole sources

1 A manifold of dimension n is a topological space that resembles an n−dimensional Euclidean space in a
neighborhood of each point [7].
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in the synthesis process generates a soundfield outside the region bounded by ΩS however,
inside ΩS the degradation of the synthesis can be reduced to a reasonable level by using a
secondary source selection criterion [29] that is motivated by a high-frequency approxima-
tion as shown in [35]. This is briefly be reviewed in the following. After eliminating the
dipole secondary sources the synthesis equation (1) reads [31]

P(x,ω)≈
∮

ΩS

−2a(x0)
∂

∂n
P(x0,ω)︸ ︷︷ ︸

:=D(x0,ω)

G(x|x0,ω)dx0, (3)

where a(x0) is a window function corresponding to the selection criterion

a(x0) =

{
1, if 〈IS(x0,ω),n(x0)〉> 0,
0, otherwise.

(4)

Here, IS(x0,ω) corresponds to the averaged acoustic intensity vector as introduced in [29].
D(x0,ω)|x0∈ΩS

denotes the frequency dependent weighting function which is typically called
driving function of the secondary source distribution.

As alternative to WFS, in the NFC-HOA literature, e.g., in [12,14], the sound repro-
duction problem is considered as finding a solution of the wave equation with respect to a
Dirichlet boundary condition. The problem is well posed and the sound field within Λ is
uniquely defined by the pressure profile on ΩΛ for a given frequency ω if and only if ω does
not correspond to a Dirichlet eigenvalue.
For the synthesis of a desired sound field in Λ one uses the equivalent integral equation
to the wave equation with the Dirichlet boundary condition [12]. The resulting, so-called,
Fredholm integral equation of the first kind is of the form [3]:

P(x,ω) =
∮

ΩS

D(x0,ω)G(x|x0,ω)dx0. (5)

3 Analytical Solution to the Synthesis of Sound Figures

In this section, we develop the mathematical description for the synthesis of sound figures.
Furthermore, we discuss the conditions for the existence of a solution. Obviously, such a
discussion has also implications on the possible practical implementations. Furthermore,
we derive an analytic solution.

3.1 Problem Formulation

The term sound figure denotes a spatio-temporal distribution dω0(x, t), whose spatial com-
ponents are time independent and can be represented as a given continuous spatial function
f (x) on a predefined manifold ΩD (located whithin ΩS and ΩΛ, see Fig. 1). The temporal
component of a sound figure dω0(x, t) can be represented as harmonic oscillation with the
frequency ω0 as eiω0t . Hence, we write:

dω0(x, t) = f (x)eiω0t
∣∣
x∈ΩD

, (6)
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where i denotes the imaginary unit with i2 :=−1. As will become apparent, such a function
can define the boundary of a zone of quiet in a synthesized sound field.

Giving a closed non-overlapping manifold ΩD
2, we outline how to synthesize a desired

sound figure on this manifold, highlighting the conditions for the synthesis.
The considered sound field synthesis problem is related to solving the wave equation with
respect to boundary conditions that we give in the following.
The wave equation can be formulated in the frequency domain by considering its steady
state solutions yielding the Helmholtz equation [34]

∆P(x,ω)+
(

ω

c

)2
P(x,ω) = 0, (7)

with c denoting the speed of sound. The boundary conditions from (6) are

P(x,ω)|x∈ΩD
= f (x),

∂P(x,ω)
∂n

∣∣∣∣
x∈ΩD

= f ′(x), (8)

where ·′ denotes the spatial derivative. Note that the soundfield P(x,ω) at the boundary ΩD

is constant for all temporal frequencies ω and given by the spatial function f (x). Therefore,
the soundfield in the time domain p(x, t) is an impulse at the boundary ΩD. Due to the
discontinuity of the pressure along the normal direction n w.r.t. ΩD the second boundary
condition is usually split up into an exterior and an interior condition. The equivalent integral
equation to the wave equation with respect to these two boundary conditions is a Fredholm
equation of second kind [33]. The integral equation corresponding to the interior boundary
condition reads

P0(x,ω) = P−(x,ω)− k2
n

∮
ΩD

P(x0,ω)G(x|x0,ω)dx0, (9)

with P0(x,ω) denoting a predefined sound field that is desired besides the sound figure, kn ∈
R denoting the discrete eigenvalues of the wave equation under the two boundary conditions,
n ∈ N standing for the eigenvalue index, and P−(x,ω) denotes the sound field inside the
region bounded by ΩD. Analogously, the exterior boundary condition corresponds to

P0(x,ω) = P+(x,ω)+ k2
n

∮
ΩD

P(x0,ω)G(x|x0,ω)dx0, (10)

where P+(x,ω) denotes the sound field outside the region bounded by ΩD.
A sufficient condition for the existence of a solution for this integral equation is the orthog-
onality of P(x) to the independent solutions of the adjoint operator [10]. In next section we
give a constructive proof of the existence of a solution for our special problem.

3.2 Conditions for the Synthesis of Sound Figures

3.2.1 Preliminary Considerations

To illustrate the properties of the solution of the Helmholtz equation, let us for ease of pre-
sentation consider the subspace spanned by the eigenfunctions solving the wave equation in

2 A non-overlapping manifold Ω does not exhibit any nodes. This property is necessary for defining dif-
ferential operators on Ω.
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Fig. 2 Manifold on which the eigenvalues corresponding to the solutions of the homogeneous wave equation
are located on [25,24].

the 2-dimensional case corresponding to real eigenvalues of the Laplace operator in Carte-
sian coordinates. These are given as [34]:

P(ω,x) = A(ω)eikxT
. (11)

This function represents a general solution of the Helmholtz equation in Cartesian coordi-
nates, where A(ω) denotes the frequency dependent weighting factor, k is the wave vector
consisting in the 2-dimensional case of the two components k := [kx,ky], and x := [x,y] the
position. Introducing (11) to (7) results in

‖k‖= ω

c
:= k. (12)

Hence, the Helmholtz equation reveals a dependency between the spatial and temporal com-
ponents of the harmonic solutions of the wave equation. This relation is expressed by (12)
and is known as the dispersion relation [24,34,25]. In Fig. 2 we show the manifolds on
which the eigenvalues corresponding to the solutions of the Helmholtz equation are located
on. The components [kx,ky] are depicted in the horizontal plane and the temporal frequency
omega on the vertical axis of a Cartesian coordinate system. The manifold of the solutions
represents surface of a double cone. Hence, the solutions of the wave equation for a single
temporal frequency lie on a circle with radius k.

It can be shown, that the validity of (12) can be extended to different coordinate systems
in RM , with 1 ≤ M ≤ 3, in which the Laplace operator can be separated into M variables.
The Helmholtz equation poses a dependency between the spatial components of its non-
trivial solutions. It is not obvious if it is possible to obtain solutions of the form of (6) on a
manifold of the dimensionality M−1 which is embedded in RM . Therefore, we will discuss
in the following how to obtain such solutions of the homogeneous and inhomogeneous wave
equation.
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3.2.2 Functions on Closed One-Dimensional Manifolds as Solutions of the Homogeneous
Wave Equation

For ease of presentation we consider in this subsection only 1-dimensional manifolds em-
bedded in R2, the generalization to 2-dimensional manifolds can be done in a straightfor-
ward manner.

The wave equation can be solved using the technique of separation of variables in suit-
able coordinate systems, such as cylindrical or spherical coordinates. The solutions of the
two-dimensional wave equation ψn(x) in cylindrical coordinates span a subspace which we
denote by

Rψ :=

{
f (x)| f (x) =

∞

∑
n=0

anψn(x), x ∈ R2, an ∈ R

}
. (13)

The eigenfunctions ψn(x,y) have spatial dimensionality of one since the solutions of the
wave equation have to fulfill the dispersion relation. For fixed ω this states a dependency of
the two spatial components of a traveling wave.
Suppose there exists a coordinate system for the Euclidean space with a locally invert-
ible transformation from a set of Cartesian coordinates, Ξ : (x,y)→ (ξ1,ξ2), such that a
parametrization of the manifold ΩD is given as

∀(ξ1,ξ2) ∈ΩD. ξ2 = const. (14)

The Laplace-Beltrami operator3 in this coordinate system, so-called curvilinear coordinates,
along ξ1 has a discrete spectrum since the coordinates are defined by a closed manifold
which is a compact boundaryless manifold [26]. Now assume we have the eigenfunctions
φn(ξ1,ξ2) of the Laplace-Beltrami operator defined on the manifold ΩD. Since ΩD is com-
pact, the set of eigenfunctions {φn(ξ1,ξ2)|n ∈ N,(ξ1,ξ2) ∈ΩD} defines a complete orthog-
onal basis for continuous functions defined on ΩD. We term the subspace spanned by these
basis functions as Rφ. Let us assume the function to be synthesized is spanned by the sub-
space Rφ0 ⊆ Rφ.
A sound figure can be seen as a solution of the Helmholtz equation if and only if it is in-
cluded in the range

RψΩD
:=

{
f (x)| f (x) =

∞

∑
n=0

anψn(x), x ∈ΩD, an ∈ R

}
. (15)

Hence, we obtain the first condition that has to be fulfilled for perfectly synthesizing a con-
tinuous function on ΩD

Rφ0 ∩RψΩD
= Rφ0 . (16)

In other words, the subspace in which the sound figure is embedded has to be a subspace of
the space spanned by the eigenfunctions of the Helmholtz equation.

3 In differential geometry, the Laplace operator can be generalized to operate on functions defined on
surfaces in Euclidean space and, more generally, on Riemannian and pseudo-Riemannian manifolds. This
more general operator goes by the name Laplace-Beltrami operator. The Laplace-Beltrami operator, like the
Laplacian, is the divergence of the gradient.
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3.2.3 Functions on Closed One-Dimensional Manifolds as Solutions of the Inhomogeneous
Wave Equation

In the following we consider the synthesis of sound figures that fulfill the above discussed
condition by considering the inhomogeneous wave equation.
Suppose we desire to synthesize a continuous function on a closed and non-overlapping
manifold ΩD embedded in a region bounded by a closed and non-overlapping secondary
source distribution on ΩS, see Fig. 1.
One prominent technique of solving the Helmholtz equation with one boundary condition
is by formulating the equivalent integral equation. It can be shown that the resulting ad-
joint integral operator, the so-called Fredholm Operator is compact [15], and so its spectrum
is discrete. Hence, diagonalizing the Fredholm operator in (5) is usually achieved by de-
composing the operator into orthogonal components [13,15,23]. Unfortunately, analytical
expressions for the eigenfunctions of the Fredholm operator are known only for few geome-
tries. Moreover, the eigenfunctions of this operator depend on the relative position of ΩD

in ΩS, hence, a change of the position of the desired zone of quiet could result in changing
the eigenfunctions. In this study we are interested in the boundaries of both, the secondary
source distribution as well as the boundary defined by the desired sound figure. The as-
sumption that these boundaries are constant due to the predefined geometry of the array
and the zone of quiet does not pose a strong constraint on the fixed position of the zone of
quiet. Therefore, we introduce two transformations corresponding to the bases defined by
the eigenfunctions of the Laplace-Beltrami operator on the source manifold ΩS as well as
on the destination manifold ΩD.
We define a transformation of the pressure on the destination manifold into the domain de-
fined by the eigenfunctions of the Laplace-Beltrami operator of ΩD by

P̃n(ω) =
∮

ΩD

P(x,ω)φ∗n(x,ω)dx, (17)

where we introduce the notation ·̃ to denote a spatial transformation. The corresponding left
transformation of the Green’s function is defined by

G̃n(x0,ω) =
∮

ΩD

G(x|x0,ω)φ
∗
n(x,ω)dx. (18)

Here we assume that the Green’s function does not exhibit singularities along ΩD. Analo-
gously, we define a transformation of the pressure profile on the source manifold into the
domain defined by the eigenfunctions of the Laplace-Beltrami operator of ΩS, ϒ(x) by

D̃m(ω) =
∮

ΩS

D(x0,ω)ϒ
∗
m(x0,ω)dx0. (19)

The corresponding right transformation of the Green’s function reads

˜̃Gn,m(ω) =
∮

ΩS

G̃n(x0,ω)ϒ
∗
m(x0,ω)dx0, (20)

where the notation ˜̃· emphasizes the double-sided transformation with respect to two bound-
aries. Again we assumed in Eq. (20) that the Green’s function does not exhibit singularities
along ΩS.
Assuming that the function f (x) to be synthesized on the manifold ΩD can be approximated
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with the eigenfunctions φn up to the order N and we aim at approximating the driving func-
tion D(x0,ω) using a limited number of eigenfunctions ϒm with m ≤ M we can set up a
system of equations

P̃(ω) = ˜̃G(ω)D̃(ω), (21)

with

˜̃G(ω) :=


˜̃G1,1(ω) . . . ˜̃G1,M(ω)
˜̃G2,1(ω) . . . ˜̃G2,M(ω)

...
. . .

...
˜̃GN,1(ω) . . .

˜̃GN,M(ω)

 , (22)

where D̃(ω) = [D̃1(ω), . . . , D̃M(ω)]
T and P̃ = [P̃1(ω), . . . , P̃N(ω)]

T. If the resulting system of
equations is square (N = M), there exists a unique solution if and only if the eigenvalues
of the equation system matrix do not degenerate. In the general case and for N 6= M the
necessary and sufficient condition for the solvability of the N×M system is that the left side
is orthogonal to all linearly independent solutions of the adjoint homogeneous system [20].
Note the equivalence of this condition to the condition for the existence of a solution for the
Fredholm integral equation of second kind [10].
A quasi-solution can be obtained using the least-squares optimization criterion and applying
an appropriate regularization strategy [33].

3.2.4 Note on Discrete Distributions of Secondary Sources

In practical realizations the number of secondary sources is usually finite and the mani-
fold ΩD is approximated by a finite set of points. Therefore, one might be interested in the
discrete formulation of the Laplace-Beltrami operator. A common structure used for a geo-
metrical approximation of manifolds embedded in the Euclidean space RM is a vertex graph
which is in turn defined as the topology (V,E) [9,19]. Hereby, V is a set of indices denoting
the sampling points, with cardinality |V | = N (i.,e., each index corresponds to a secondary
source or to a measuring point on ΩD). E is a set of pair of vertices and is symmetric. Typi-
cally, the set of edges is represented by a symmetric matrix, the so-called adjacency matrix
[9]. On the so defined graph the discrete Laplace-Beltrami operator is given as

L = C−W (23)

with C= diag{c}, c= [c1, . . . ,ci, . . . ,cN ] and ci =∑ j wi j. wi j are local averaging coefficients.
The computation of the averaging coefficients can be performed in different manners. For
our considerations of two-dimensional synthesis using distributions of loudspeakers on 1-
dimensional manifolds, the distance weights ∀(i, j) ∈ E, wi j := 1

‖x j−xi‖2 offers a good ap-
proximation [9]. Where xi denotes the coordinates of the i-th sampling point.
Note that in the spatially discrete case the computation of the subspace intersection can be
done in an efficient way based on determining the angle between the subspaces [16].
Moreover, the spatial spectrum of a signal in the discrete case is frequency dependent. As
first approximation a spatial discretization leads to spectral repetitions depending on the dis-
cretization scheme. Above a given temporal frequency the spectral components may overlap.
Hence, the spatial spectral transformation becomes ill-conditioned and a reconstruction of
the spatio-temporal signal from its spectrum is in general not possible any more.
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4 Synthesis of Closed Zones of Quiet

The concept of synthesizing sound figures on one- or two-dimensional manifolds can be
used to create bounded zones of quiet. The idea is to synthesize a pressure function on
the manifold ΩD that is equivalent to the pressure of a scattered field by a rigid boundary
coincident with ΩD. The sound field at a rigid boundary has to fulfill the condition

∂P(x,ω)
∂n

∣∣∣∣
x∈ΩD

= 0, (24)

which is known as the Neumann boundary condition. Note that this can be considered as a
special case of the Robin problem [17]. In this paper we restrict our considerations to the
rigid boundary condition.

In the following we outline how to derive the driving functions and give an example of
synthesizing a circular zone of quiet within a plane wave as depicted in Fig. 3.
The sound figure to be synthesized is a function of pressure on ΩD which is given by scat-
tering a plane wave on a closed rigid object which is infinite in the z−direction. Since the
boundary is rigid the directional derivative of the transformed overall pressure on the con-
sidered manifold ΩD should be identical to zero,

∑
n

∂

∂n
(
P̃inc,n + P̃scat,n

)
φn(x)

∣∣∣∣
x∈ΩD

= 0, (25)

where P̃inc,n and P̃scat,n denote the transformed incident and scattered plane waves on ΩD,
respectively. Due to orthogonality and completeness of the eigenfunctions, each term in this
sum should be zero so that

∂

∂n
P̃scat,n =−

∂

∂n
P̃inc,n, ∀n ∈ N. (26)

Once the directional gradient is given, the pressure can be computed straightforwardly by
exploiting the linear relation between them by employing the Euler equation. Substituting
this into (21) results in a system of equations involving the unknown driving functions.
Ideally, the system of equations is quadratic (N = M) and well conditioned or fulfills the
condition discussed in Sect. 3.2.3. Otherwise, an approximate solution can be obtained by
formulating a least-squares optimization problem and incorporating prior knowledge using
the Lagrange multiplier formalism to regularize the ill-conditioned problem. A prominent
regularization approach is the so-called Tikhonov regularization which constrains the `2-
norm of the vector-valued solution of the optimization problem [33].

In the following we give as an example the driving functions for a circular zone of quiet.
The sound figure to be synthesized is a function of pressure on a circle which is given as a
cross section of the infinite rigid cylinder at z = 0 with the radius a. The desired pressure on
this circle ΩD is given by scattering a plane wave on the rigid cylinder, see Fig. 3.

Approximation of the Driving Functions Based on the Kirchhoff-Helmholtz Integral
The synthesis of a scattered field can be done using the WFS synthesis equation, (3). In a
similar way as presented [30] for synthesizing the scattered field of a sound soft boundary,
the synthesis process can be summarized by the following steps

– compute the directional gradient of the sound field of the virtual source scattered by a
virtual object that encloses the local listening area ΩS,
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Fig. 3 Geometry for creating a circular zone of quiet within a desired plane wave. The vertical arrow stands
for the direction of incidence of the synthesized plane wave.

– time-reverse the computed sound field,
– select the required secondary sources,
– emit the time-reversed sound field by the active secondary sources, and
– in addition, emit the globally desired sound field (the desired sound field outside the

zone of quiet).

Analytical Derivation of the Driving Functions
The eigenfunctions of the Laplace-Beltrami operator on the unit circle are exponential func-
tions (Fourier basis). Hence, we set

φn(ϕ) = einϕ, (27)

with x = [x,y] = ‖x‖[cos(ϕ),sin(ϕ)]. Since ΩS is a circle with the same center as ΩD, see
Fig. 3, we set

ϒn(ϕ0) = einϕ0 . (28)

The scattered field on a cylinder of infinite length is given by [32]

Pscat(x,ω) =−
∞

∑
n=−∞

in
(

J′n(ka)H(2)
n (k‖x‖)

H(2)′
n (ka)

ein(ϕ−ϕs)

)
, (29)

where ϕs denotes the angle of incidence of the plane wave, Jn(·) the Bessel function of n-
th order and H(2)

n (·) corresponds to the Hankel function of the second kind and n-th order,
and the prime denotes the derivative with respect to the argument. Note that the scattered
wave can be regarded as a time reversed version of the Fourier transformation of its complex
conjugate function. Therefore, synthesizing the scattered part of the sound field has to in-
corporate a predelay to ensure the causality of the synthesis filters. The incident plane wave
can be expressed as

Pinc(x,ω) =
∞

∑
n=−∞

inJn(k‖x‖)ein(ϕ−ϕs). (30)
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Hence, the overall pressure is given by

P(x,ω) =
∞

∑
n=−∞

in
(

Jn(k‖x‖)−
J′n(ka)H(2)

n (k‖x‖)
H(2)′

n (ka)

)
ein(ϕ−ϕs). (31)

The transformation according to (17) offers the Fourier coefficients yields

P̃n(ω) = in
(

Jn(k‖x‖)−
J′n(ka)H(2)

n (k‖x‖)
H(2)′

n (ka)

)
e−inϕs . (32)

The point source solution of the two-dimensional inhomogeneous wave equation is given by
the Green’s function: [34]

Gn(x|x0) =
i
4

H(1)
0 (k‖x−x0‖). (33)

The Fourier series expansion of the Green’s function reads

G(x|x0) =
∞

∑
n=0

Jn(k‖x‖)H(1)
n (k‖x0‖)ein(ϕ−ϕ0), (34)

therefore, the left transformation according to (18) is given by

G̃n(x0) = Jn(k‖x‖)H(1)
n (k‖x0‖)e−inϕ0 . (35)

Since the Laplace-Beltrami operators for both manifolds ΩD and ΩS are identical, applying
a right transformation reveals that the system matrix in (21) is diagonal. The expression for
the left and right transformed Green’s function is given according to (20)

˜̃Gnn = Jn(k‖x‖)H(1)
n (k‖x0‖). (36)

Finally, the transformed driving functions are derived as

D̃n = in
(

1

H(1)
n (k‖x0‖)

− J′n(ka)H(2)
n (k‖x‖)

Jn(k‖x‖)H(1)
n (k‖x0‖)H(2)′

n (ka)

)
e−inϕs . (37)

In terms of illustrating the synthesis of a sound field with a closed zone of quiet we give a
simulation result using a 100 element circular loudspeaker array of radius 1.45 m for syn-
thesizing a plane wave with an angle of incidence of ϕs =

π

2 with a concentric circular zone
of quiet with a radius of a =30 cm. In Fig. 4 the synthesized sound field and its level distri-
bution is depicted at a frequency of 1 kHz. The time domain simulation is given in Fig. 5
and emphases the synthesis of the scattered part of the field with a suitably chosen predelay.

5 Linear Distribution of Secondary Sources as Limiting Case of a Closed Distribution

So far, we discussed the synthesis of closed zones of quiet using closed secondary source
distributions. In the following we state which assumptions have to be made to consider the
case of linear secondary source distributions as a specialization of the discussed results.
Studying the linear case gives an intuitive illustration of the presented framework due to
analogies to traditional and well known temporal signal processing techniques.



THE SYNTHESIS OF SOUND FIGURES 13

x    (m)

y
  

(m
)

 

 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−1

−0.5

0

0.5

1

x    (m)

y
  

(m
)

 

 

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−40

−35

−30

−25

−20

−15

−10

−5

0

Fig. 4 Simulated plane wave with a closed zone of quiet at 1000 Hz (left) and the achived level distribution
of the synthesized plane wave (right) in [dB] with a zone quiet of a radius of a =0.3 m using an array with
100 loudspeakers on a radius of 1.45 m.

5.1 Linear Secondary Source Distributions

Specializing the Kirchhoff-Helmholtz integral to a linear secondary source distribution leads
to the Rayleigh integrals [6]. Let us assume that the line ΩS0 in Fig. 6 coincides with the
secondary source distribution. Let us imagine a closed continuation as a part of a circle with
a radius r→ ∞ with the center at A. We are interested in determining the sound pressure
in A due to a virtual point source at B by measurements on ΩS0 . The contribution of the
Kirchhoff-Helmholtz integral over ΩS1 to the pressure in A vanishes if r goes to infinity due
to the Sommerfeld radiation condition [6]. Hence, the Kirchhoff-Helmholtz integral (1) may
be replaced by [6]

P(x,ω) =
∫

∞

−∞

(
P(x0,ω) ·

∂

∂n
G(x|x0,ω)−G(x|x0,ω) ·

∂

∂n
P(x0,ω)

)
dx0. (38)

Analogously, to the case of a closed distribution of secondary sources one omits the sum-
mand with the dipole sources in (38).

By similar argumentation as shown above, the explicit synthesis equation (5) can be
specialized to describe the synthesis process using a linear distribution of secondary sources
[2].

P(x,ω) =
∫

∞

−∞

D(x0,ω)G(x−x0,ω)dx0, (39)

here again D(x0,ω) denotes the driving function of the secondary sources. The secondary
source distribution is assumed to be along the x-axis thus x0 = [x0,0,0] and x = [x,yref,0]
defines a reference line on which the reproduction should be perfect. The secondary sources
are driven by the signal D(x0,ω). G(x−x0,ω) denotes the spatio-temporal transfer function
from a secondary source located at x0 to a point at x.

5.2 Arrays with Convex Geometries as Linear Arrays

Linear and planar arrays can only synthesize wave fronts traveling into the target half space.
E.g., with a planar array located in the x-z-plane, i.e., x0 = [x0,0,z0] the synthesis is targeted
to that part of the space which contains the positive y−axis. Hence, the synthesis of plane
waves with such arrays is only possible for waves in one half of the wave number space.
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Fig. 5 Time-domain simulation of a wave with a zone quiet of a radius of a =0.3 m using an array with 100
loudspeakers on a radius of 1.45 m.
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A

r→
∞

ΩS0

ΩS1

B

Fig. 6 Illustration of the derivation of the Rayleigh integral equation [6]. A stands for the center of the circle
with r→∞ that extends the linear array to a closed manifold, and B denotes the position of the virtual source.

This problem can be overcome and the synthesis can cover the entire wave number space if
the used secondary source distribution encloses the target volume.
The theory of wave field synthesis makes a convexity assumption on the geometry of the
enclosing distribution with respect to the target volume. Arbitrary convex secondary source
distributions are usually treated as locally planar (linear). This approximation originates
from the scattering theory and is known as Kirchhoff or physical optics approximation [4,
14] and holds for small wave lengths compared to the dimensions of the secondary source
distribution. Moreover, employing this approximation requires a rule for secondary source
selection. A secondary source is selected if the normal vector n of the secondary source and
the propagation direction of the plane wave npw form an acute-angle [29]. A preferred two-
dimensional secondary source distribution that encloses the target plane is the rectangular
distribution. Theoretically, such a distribution is treated as a combination of two comple-
mentary convex distributions, each of them is approximated by two local linear distributions
which can be treated by our consideration outlined in the previous subsection, see Fig. 7.

kpw

n

kpw

Fig. 7 Secondary source selection for a virtual plane with propagation direction kpw. Bold solid lines indicate
the active parts of secondary source distribution for the synthesis of the virtual plane wave.
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5.3 Example of the Synthesis of Sound Figures on a Line Using Linear Arrays

In the case of an infinitely long linear distribution of secondary sources it is well known, that
the eigenfunctions of the Laplace operator along one Cartesian coordinate are the exponen-
tial basis functions of the Fourier transform [34]. A common representation of sound fields
using the Fourier basis is the k-space representation. As outlined in Sect. 3.2.1, monochro-
matic traveling waves at frequency ω = k c can be represented as a circle with radius k, see
Fig. 8 that results as a cross-section of the double cone in Fig. 2. We show exemplary the
synthesis of a one-dimensional rectangular window as a sound figure using a linear array of
loudspeakers in the eigenspace domain.
The choice of this example is motivated by the fact that reproducing zones of quiet nearby
a desired sound field with linear secondary source distributions can be achieved by multi-
plying the desired wave field on a line which is parallel to the secondary source distribution
and that we will call reference line with a rectangular window.

In terms of considering sound figures on a line as a special case of the discussed sound
figures on closed manifolds we restrict our consideration on the periodic continuation of
a desired spatially finite sound figure. Periodic one- or two-dimensional functions have a
discrete spectrum and the eigenfunctions of these form the Fourier series basis. Hence, for
a one dimensional function we can set for each temporal frequency

ϒn(x) = φn(x) =
1

2π
einx. (40)

A plane wave which propagates along the x-y-plane is given as

p(x,y, t) = e−i(kpw,xx+kpw,yy−ωpwt), (41)

with [kpw,x kpw,y] =
ωpw

c [cos(θpw) sin(θpw)], where θpw denotes the propagation direction
of the plane wave in the x-y-plane.
Performing a Fourier transformation with respect to time and space along the x-axis leads to

P̃(kx,y,ω) = 4π
2
δ(kx− kpw,x)δ(ω−ωpw)e−ikpw,yy. (42)

A rectangular window is defined as

Π(x) =


0 if |x|> 1

2
1
2 if |x|= 1

2

1 if |x|< 1
2 .

(43)

The Fourier transform of a rectangular window with width (1/a) is given by [22]

Fx{Π(ax)} :=
1
|a|

sinc
(

kx

2a

)
, (44)

where Fx{·} relates a function to its Fourier transform with respect to x. The windowed
sound field PΠ(x,yref,ω) on the reference line in the kx-space is given by convolving the
desired plane wave with the transformed window function

P̃Π(kx,yref,ω) =
1
|a|

sinc
(

kx

2a

)
∗kx P̃(kx,yref,ω), (45)

=
4π2

|a|
sinc

(
kx− kpw,x

2a

)
e−ikpw,yyref δ(ω−ωpw), (46)



THE SYNTHESIS OF SOUND FIGURES 17

where ∗kx denotes a convolution with respect to kx. Note that we formulated the plane wave
using the complex exponential. Therefore, the spectrum of the convolution result will be
one-sided unless θpw =±π/2 because then the relation kx = k cos(θpw) = 0 will hold.
In practice, using real-valued signals, the following expressions of the spectra will be two-
sided. A convolution in the wavenumber domain kx causes a spectral spread. A complex
plane wave corresponds to a Dirac impulse in the wave number domain.
The spectrum of the convolution of such a Dirac impulse with a one dimensional, real valued
function with a cutoff frequency of kc,x is between kpw,x− kc,x and kpw,x + kc,x. The resulting
one-dimensional function has a time dependency only in its the amplitude. The proof of the
following lemma illustrate in a constructive manner the synthesis of one-dimensional sound
figures by incorporating traveling waves only.
Lemma: A windowed wave function of the form

dωpw(x, t) = f (x) · e−ikpw,xx · e−ikpw,yyref · eiωpwt (47)

can be written in terms of monochromatic traveling waves, if the one dimensional real val-
ued function f (x) has a cutoff frequency kg such that kpw,x + kg ≤ ωpw

c .

Proof: Since f (x) has been assumed to be bandlimited, it can be written as

f (x) · eikpw,xx︸ ︷︷ ︸
:= fmod(x)

=
1

2π

∫ kc+kpw,x

−kc+kpw,x

F̃(kx− kpw,x)eikxxdkx, (48)

where F̃(kx) denotes its Fourier transformation along the x-axis. For traveling waves, the
requirement is to excite only monochromatic plane waves with the temporal frequency ωpw

[34]. By exploiting the relation kx =
ωpw

c cos(θ), defining θ := arccos
(

k
ωpw

c

)
, and if kpw,x +

k ≤ ωpw

c , (48) can be reformulated as

fmod(x) =
1

2π

∫
π

−π

F̃ (k(cos(θ)− cos(θpw)))ei ωpw
c cos(θ)xd

(
ωpw

c
cos(θ)

)
. (49)

By substituting this integral in (47) we get the windowed wave on the reference line in terms
of traveling plane waves.
In Fig. 8 we illustrate the process of the back projection from the kx-space (the spectrum
of the one dimensional function is presented as a triangle4) onto the circle representing the
2-dimensional traveling plane waves with a specific k-number as performed by Eq. (49).

5.4 Sound Figures as Functions on Two-Dimensional Manifolds

The discussion of the synthesis of 1-dimensional sound figures can be straightforwardly
extended to cover the synthesis of periodic 2-dimensional figures of the temporal frequency
ω on a plane of interest, [x,y,0], using a 3-dimensional distribution of secondary sources
such as, spherical or enclosing piecewise planar arrays.
We assume the figure is periodic and band limited. Otherwise we consider its band limited
periodic continuation such that its spectrum is a discrete set {(kx,ky)|(kx,ky)∈R2,and k2

x +
k2

y < (ω

c )
2}. Analogously to Sect. 5.3, the cross section of a 3-dimensional plane wave with

4 Note that the triangle does not represent the dependency between kx and ky but should exemplary refer-
ence to the general complex amplitude of the spectrum.
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k_x

k_y

k

k_pwx

k_pwx+k_fg

Fig. 8 Illustration of the k−space. kpw denotes the wave vector of a traveling two-dimensional plane wave.
The cutoff frequency of the one-dimensional function is denoted by kg. kpw denotes the wave number of the
desired plane wave. Synthesizable traveling plane waves lie on the circle. The projection of the dotted arc
on the kx-axis is equivalent to the measured plane wave on a line that is parallel to the secondary source
distribution.

a wave number k = ω

c and angle of incidence [ϕ,θ] represents a 2-dimensional plane wave
with k = [kx,ky] = [k sin(θ)cos(φ),k sin(θ)sin(φ)]. See Fig. 9.
Hence, for each element (kx,ky) belonging to the spectrum of the figure we synthesize a
plane wave with angle of incidence according to

θ = arcsin

√k2
x + k2

y

k2

 , (50)

and we choose a ϕ ∈ [0,2π] such that

kx

k sin(θ)
= cos(ϕ) ∧ ky

k sin(θ)
= sin(ϕ). (51)

Figure 9 represents the k-sphere for fixed temporal frequency ω = k · c. The 2-dimensional
Fourier spectrum of a band limited two dimensional figure is exemplary restricted to an
octagon in the kx-ky-plane. Using Eq. (50) each point of the 2-dimensional spectrum is back
projected to a point on the k-sphere corresponding to a traveling plane wave with the wave
number k and a specific angle of incidence.

Hence, for the synthesis of a sound figure using a planar array, a 2-dimensional discrete
Fourier transformation (DFT) for the desired figure is performed and the spectrum is con-
volved with the desired monochromatic frequency. The convolution result is then interpreted
as a set of 3-dimensional plane waves with a single frequency but from different angles of
incidence. The driving functions can then be computed in the k-space as outlined above and
finally, an inverse two-dimensional Fourier transformation is performed to obtain the driving
functions of each loudspeaker. In Fig. 10 we present a block diagram of the overall system
for the synthesis of 2-dimensional sound figures.

6 Simulations and Discussion of Practical Aspects

To illustrate the theoretical derivations given so far, we present numeric simulations of the
synthesized sound fields. We simulated a linear array of 50 omnidirectional loudspeakers,
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φ

k θ

kz

kx

ky

Fig. 9 k-space illustration for the synthesis of 2-dimensional sound figure. This figure generalizes Fig. 8 to
the 3-dimensional case. Again, traveling plane waves are on the sphere, the projection of a point on the sphere
on the kx− ky-plane is equivalent to a 3-dimensional plane wave measured by a plane.

...

*

...
... ...

...

...

2D-

2D-
FFT

...

iFFT

...

2D-

...
co

m
pu

ta
tio

n

of
th

e
dr

iv
in

g
fu

nc
tio

ns

iFFT

FFT

FFT

co
nv

ol
ut

io
n

w
.r.

t.
sp

ac
e

(space)(time)

(time)(space)

Fig. 10 Block diagram of the proposed system for 2-dimensional sound figure synthesis using surrounding
planar arrays. The manikin represents a desired sound figure.

separated by 15 cm, the spatial window chosen as a Hann-window [22] and, the desired
sound field is a plane wave, whose angle of incidence is π/2 with respect to the x-axis. The
frequency is 800 Hz.

In Fig. 11 the real part of the synthesized sound field and its level distribution are
depicted. To show the frequency dependent performance of the represented approach we
computed the attenuation of the sound field at a point outside the desired sound field x =
[2m,1m,0] with respect to the point x = [0m,1m,0] over the frequencies 20 . . .2500 Hz.
The result is given in Fig. 12. The curve shows that the attenuation begins to decrease af-
ter passing a particular frequency which can be understood as the aliasing frequency of the
spatially discretized secondary source distribution.

In Fig. 13 we simulated a sound figure (tree leave) using a 3-dimensional setup of 6
planar arrays enclosing a volume of 6×6×6m. The depicted cross section of the simulated
sound field is the plane of interest (z = 0). Here again, we notice the high contrast achieved
between the zone of quiet and the bright zone with the boundary of a tree leave.
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Fig. 11 Linear array of 50 omnidirectional loudspeakers, separated by 15 cm synthesizing a windowed plane
wave at a frequency of 800 Hz. The achieved level distribution is represented in [dB] and is shown on the
right side.
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Fig. 12 Overall attenuation of the sound field synthesized by a linear array of 50 loudspeakers at two different
positions within and outside of the zone of quiet.
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Fig. 13 Synthesized sound field (left) and its level distribution in [dB] (right) using 6 planar arrays enclosing
the listening room. Each of the arrays has 40×40 elements with a spacing 15 cm.

6.1 Limitations on the Synthesis of Sound Figures

6.1.1 Reproduction in a Plane

As mentioned in Sect. 5.1 applying WFS or NFC-HOA on circular or WFS on rectangular
arrays offers the desired reproduction of plane waves only in the plane of the array. In real-
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world applications using one-dimensional arrays, the monopole sources approximated by
loudspeakers cannot be considered as two-dimensional monopole sources. On the other hand
they are used to synthesize a sound field in a plane. This is referred to as 2 1

2 -dimensional
synthesis [31]. Therefore, better results can be obtained, e.g., by using rectangular line or
spherical loudspeaker arrays. Rectangular arrays with line loudspeakers can be understood
as in-phase vertically layered rectangular arrays.The secondary sources of the different lay-
ers are identically driven according to Sect. 5.3. Such arrays extend the validity region of
the synthesis.
To illustrate this, we simulated a window function on a line which is parallel to the synthesis
array of 3-dimensional point sources as in Fig. 11 and in Fig. 14 we show the attenuation
with respect to the height z.
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Fig. 14 Achievable suppression depending on the z-coordinate and the frequency using a 50 elements linear
array of point sources (2.5 dimensional synthesis). The attenuation is relative to the level of the sound field at
the point [010]m.

6.1.2 Limitations due to Sampling Artifacts

Practical systems are realized by a finite number of loudspeakers. With increasing frequency
this spatial sampling introduces increasing artifacts similar to the aliasing known from sam-
pling a time signal. Hence, in order to keep the synthesis artifacts below a certain bound, the
controllability of the sound field is available only up to a given frequency.

6.2 Robustness Due to Practical Aspects

In real-world applications the loudspeakers employed in an array exhibit individual charac-
teristics which manifest amongst others in gain and phase mismatch. In the following we
show by simulations, the consequences of such mismatches.

6.2.1 Loudspeaker Positioning Inaccuracy

So far, the secondary sources were considered to be identical. Loudspeakers could exhibit
linear phase mismatch which is equivalent to a position mismatch such that in the case
of a linear array the loudspeakers are not ideally aligned. We simulated positioning errors
by introducing 2-dimensional normally distributed noise to the positions of the secondary
sources, see Fig. 15. In Fig. 16 we show the synthesized sound field and its energy dis-
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...

Fig. 15 Radius of positioning mismatch was modeled as a 2-dimensional normal distributed process.

tribution with the window function, as used in Sect.5.3, and a variance of the positioning
inaccuracy of

√
(5mm)2 +(5mm)2. To illustrate the influence of the positioning error over
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Fig. 16 Sound field and its energy distribution at 800 Hz for a linear array with a spacing of 15 cm. The
variance of the positioning tolerance is

√
(5mm)2 +(5mm)2. The achieved level distribution is represented

in [dB] and is shown on the right side.

the frequency we present in Fig. 17 the achieved relative suppression between the two points
used in Fig. 12. The simulations show that creating zones of quiet is highly sensitive to posi-
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Fig. 17 Achievable suppression over the frequency for different mismatch scenarios with a 50 elements linear
loudspeaker array with a spacing of 15cm.

tioning and phase mismatches which is a consequence of the implicit differential mechanism
employed in the synthesis.

6.2.2 Loudspeaker Gain Tolerance

The gain mismatch of the loudspeakers in a linear array was simulated by varying the gain of
the individual loudspeakers. It was modeled as normally distributed process with zero mean
and the variances 1/3 und 2/3 dB. The simulations in Fig. 18 show the sensitivity of the
analytically derived driving functions to gain mismatches and emphasizes the importance of
calibrating the loudspeakers used in an array for the synthesis of sound figures.
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Fig. 18 Achievable suppression over the frequency for different amplitude mismatch scenarios with a 50
elements linear loudspeaker array with a spacing of 15 cm. The mismatch was modeled as normal distributed
process with the variances 1/3 and 2/3dB.

7 Conclusions

In this paper, we presented a versatile analytic formulation for the synthesis of sound fields
with predefined areas of quiet. The approach stands to benefit from sound field synthesis
techniques and their ability to synthesize arbitrary sound fields. The presented approach can
be formulated in the frequency domain or time domain. Furthermore, it can be applied using
arbitrary distributions of secondary sources on closed manifolds. A specialization to linear
and arbitrary convex distributions is shown. The limitations of our approach are related to
known limitations of conventional reproduction techniques such as WFS and NFC-HOA,
namely, up to a predefined frequency the performance is limited by spatial sampling arti-
facts. The second limitation is referred to as the 2 1

2 -dimensional synthesis problem. To prove
our concept we performed numerical simulations including practical aspects, and have given
some important design rules.
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scènes sonores complexes dans un contexte multimédia. Ph.D. thesis, Université Paris 6 (2000)
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