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Abstract—Least-squares error (LSE) or mean-squared error
(MSE) optimization criteria lead to adaptive filters that are
highly sensitive to impulsive noise. The sensitivity to noise bursts
increases with the convergence speed of the adaptation algorithm
and limits the performance of signal processing algorithms, es-
pecially when fast convergence is required, as for example, in
adaptive beamforming for speech and audio signal acquisition or
acoustic echo cancellation. In these applications, noise bursts are
frequently due to undetected double-talk. In this paper, we present
impulsive noise robust multichannel frequency-domain adaptive
filters (MC-FDAFs) based on outlier-robust -estimation using
a Newton algorithm and a discrete Newton algorithm, which are
especially designed for frequency bin-wise adaptation control.
Bin-wise adaptation and control in the frequency-domain enables
the application of the outlier-robust MC-FDAFs to a generalized
sidelobe canceler (GSC) using an adaptive blocking matrix for
speech and audio signal acquisition. It is shown that the improved
robustness leads to faster convergence and to higher interference
suppression relative to nonrobust adaptation algorithms, espe-
cially during periods of strong interference.

Index Terms—Adaptive filtering, beamforming, doubletalk, fre-
quency domain, generalized sidelobe canceler, microphone array,
robust statistics.

I. INTRODUCTION

ADAPTIVE filters that are based on least-squares error
(LSE) or mean-squared error (MSE) optimization criteria

are highly sensitive to impulsive noise [1]. For applications such
as acoustic echo cancellation or adaptive beamforming, this
sensitivity to impulsive noise leads to a sensitivity to undetected
double-talk bursts and limits the performance of the system.
For acoustic echo cancellation, the need for robustness against
double-talk bursts due to the presence of a local disturbance
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was first discussed in [2]. An outlier-robust least mean-squares
(LMS) algorithm using the median of the error signal for
adaptation is proposed in [3]. Robust mixed-norm adaptive
filters using a weighted combination of and -norm cost
functions and a weighted combination of and -norm cost
functions are proposed in [4], [5], and [6], respectively. Using
robust maximum-likelihood type cost functions (so-called
“robust -estimates”) and an -contaminated Gaussian model
[1] for the residual error signal of the adaptive filter, robustness
against impulsive noise was obtained for a large variety of
adaptation algorithms. Using Huber’s so-called “least-infor-
mative distribution” [1], an outlier-robust frequency-subband
adaptive filter was proposed in [7]. Outlier-robust versions of
the normalized LMS (NLMS) algorithm, the proportionate
NLMS (PNLMS) algorithm, and the affine projection algo-
rithm (APA) are derived in [8], and outlier-robust recursive
least-squares (RLS) algorithms are proposed in [9] and [10].
A robust block-based adaptive filter based on sample matrix
inversion is presented in [11]. Robust RLS algorithms using
Hampel’s estimator [12] and a tanh-weighted cost function are
derived in [13], [14], and [15], respectively. A robust LMS
algorithm and a robust Kalman filter using linear combinations
of order statistics (“ -estimation”) [1] are derived in [16] and
[17], respectively. Using a likelihood ratio test for detecting the
presence of impulses and temporarily freezing the adaptation
of the adaptive filter is proposed in [18].

In recent years, adaptation algorithms in the discrete Fourier
transform (DFT) domain [frequency-domain adaptive filters
(FDAFs)] [19]–[25] became very attractive for acoustic echo
cancellation [26]–[32] and for adaptive beamforming [33]–[35]
since they 1) combine fast convergence with low computational
complexity; 2) can be realized such that sufficiently high
tracking capability and sufficiently low delay are obtained; and
3) generalize well to the multichannel (MC) case (MC-FDAF)
[27]–[29], [31]. Similar to RLS algorithms, the convergence
speed of FDAFs is nearly independent of the condition number
of the cross-correlation matrix of the input signals. In the
context of adaptive beamforming, the improvement of the
convergence speed of the MC-FDAF relative to single-channel
FDAFs is illustrated in [31] for the GSC. This is especially
important to assure fast convergence for highly auto- and
cross-correlated input signals, such as speech or music. Fur-
thermore, in combination with a DFT-bin-wise double-talk
detector and/or a DFT-bin-wise step-size control, adaptive
filters in the DFT domain allow for DFT-bin-wise adaptation.
This is especially advantageous for signals that are sparse in the
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time-frequency domain, since the step size can be adjusted for
each frequency bin independently. This possibility of a bin-wise
adaptation control also plays a major role in the present paper.

For better robustness against impulsive noise, such as double-
talk bursts, an FDAF based on robust -estimation and on
a Newton-type adaptation algorithm is derived and applied to
acoustic echo cancellation in [36], [37]. In contrast to the sub-
band robust adaptive filter [7], where a nonlinear cost function
is applied to each subband (“narrowband decomposition”), and
the error signal is minimized in each subband individually, [36],
[37] minimize the fullband error signal in the discrete-time do-
main. However, due to the time-domain optimization criterion,
[36] and [37] cannot be directly used for DFT-bin-wise adapta-
tion control, which is necessary for some applications of DFT-
domain adaptive filtering, such as adaptive beamforming using
GSCs with adaptive realizations of the blocking matrix [34].

To enable the usage of bin-wise adaptation control, we con-
sider in this work an outlier-robust cost function in the DFT do-
main based on a weighting according to Huber [1]. We present
an impulsive noise robust MC-FDAF for bin-wise adaptation
based on the Newton algorithm [multichannel bin-wise robust
FDAF (MC-BRFDAF)] and a discretized MC-BRFDAF using
a so-called “discrete Newton algorithm” [38] for linear mul-
tiple-input multiple-output (MIMO) systems. The discretization
of the Newton algorithm has the advantage of better stability
relative to the MC-BRFDAF leading to improved robustness
and slightly improved convergence speed relative to the nondis-
cretized MC-BRFDAF for multichannel interference cancella-
tion problems.

Using the MC-BRFDAF and the discretized MC-BRFDAF,
outlier-robust adaptive filtering is applied for the first time to
adaptive beamforming for multichannel speech enhancement
using microphone arrays. Using the example of a generalized
sidelobe canceler (GSC) with an adaptive blocking matrix
[39], it is shown in [34] that DFT-domain adaptive filtering in
combination with bin-wise adaptation control can be efficiently
applied to adaptive beamforming. It is further shown that the
bin-wise adaptation is necessary to solve the tracking problems
of GSCs with adaptive realizations of blocking matrices. Using
fullband adaptation, the performance of the GSC is highly
degraded especially during double-talk between the desired
speaker and interference or noise. The DFT-domain GSCs
using bin-wise adaptation are especially efficient for tackling
the challenges of beamforming microphone arrays, such as
robustness against reverberation and the physical tolerances of
the sensors, or the nonstationarity of the desired signal and of
interferers.

In this paper, experiments with the MC-BRFDAF and the dis-
cretized MC-BRFDAF show that robustness against double-talk
can be greatly improved, relative to the GSC using the nonro-
bust MC-FDAF [34], even with small-scale microphone arrays,
so that larger step sizes can be chosen for the adaptation. This
leads to faster convergence and to higher noise reduction, while
preserving the good output signal quality of the beamformer.
These results can easily be generalized to all GSC realizations.
Some parts of this paper are already published in [40] and [41].

This paper is organized as follows. The MC-BRFDAF and
the discretized MC-BRFDAF are derived in Section II. In

Section III, the robust MC-FDAFs are applied to the GSC.
Experimental results are given in Section IV.

II. IMPULSIVE NOISE ROBUST FREQUENCY-DOMAIN

ADAPTIVE FILTER

In this section, we develop the aforementioned adaptation
algorithms based on robust -estimation for a linear MIMO
system. The presentation is based on [27]–[29], [31], [37], and
[40]. Section II-A introduces the notation and describes the fil-
tering in the DFT domain using the overlap-save method. In
Section II-B, the optimization criterion for the robust adaptive
filter is defined. Section II-C derives the robust adaptive algo-
rithms using the Newton algorithm and the discrete Newton al-
gorithm and shows possible approximations. The computational
complexity is investigated in Section II-D.

Lowercase and uppercase bold font represent vector and ma-
trix quantities, respectively, and , , and stand for
complex conjugation, matrix or vector transposition, and con-
jugate transposition, respectively. Underlined quantities denote
DFT-domain variables and is the discrete time index.

A. Optimum Linear Filtering Using Overlap-Save

We start with formulating the adaptive filtering for a mul-
tiple-input single-output (MISO) system, and perform the gen-
eralization to MIMO systems in Section II-C3.

A MISO system with input channels is described by a
vector of size 1, which captures column vectors ,

, of length with filter coefficients ,
. That is

(1)

(2)

Accordingly, the input signals of the MISO system are
captured in the 1 vector as follows:

(3)

(4)

The output signal of the adaptive MISO system can thus
be written as

(5)

where is the reference signal of the adaptive filter. To
calculate the output signal of the MISO system in the DFT do-
main using fast convolution and overlap-save, we form blocks
of samples of , , and

(6)

(7)

(8)

which yields for (5) the expression

(9)

Next, we transform (9) into the DFT domain using block over-
lapping. For this purpose, we define a block overlap factor
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, where is the new number of samples per block, and in
(9) we replace the discrete time by the block time , which is
related to by . A block-diagonal data matrix of
size in the DFT domain is obtained by transforming
blocks of length of the filter input signals into the DFT
domain using the DFT matrix of size . That
is

...
(10)

(11)

The MISO system is transformed into the DFT domain as the
1 vector

(12)
where the windowing matrix

(13)

appends zeroes to the coefficient vectors in order to pre-
vent circular convolution. Here, is the identity matrix of
size , and is a matrix of size with all ze-
roes. We obtain for (9) the expression

(14)

where the windowing matrix

(15)

extracts a block of samples from . A block of
adaptive filter output samples is given by the last samples

of .
For deriving the DFT-domain adaptation algorithm, the

block-error signal is required in the DFT domain.
For this reason, we transform (14) into the DFT domain by
multiplying (14) with from the left, where

. This yields the 1 vector

(16)

where

(17)

(18)

(19)

In the following, the elements of are denoted by ,
. The are assumed to have zero

mean.

B. Outlier-Robust Cost Functions

To derive an outlier-robust recursive adaptation algorithm
based on robust -estimation, we start with a log-likelihood
cost function in the DFT domain

(20)

(21)

which is to be minimized subject to the vector of filter coef-
ficients . The quantity is a windowing function. The
function is the given probability density function of the
normalized error signal with zero mean and unit variance. The
divisor is a scale parameter for normalizing the zero-mean
error signal to unity variance. Note that this cost function
implies independence of the frequency bins of the error signal,
which is used later for adapting the adaptive filter independently
in the frequency bins. The cost function minimizes the
error signal , where the choice of the probability density
function defines the weighting of .

The fundamental idea of outlier-robust -estimation is to
find a density that yields an outlier-robust cost function

. In this paper, we consider the family of distributions
that is symmetric to the origin as follows:

(22)

where the constant is chosen such that , and
where is a weighting function defining the shape of the
probability density. The choice of an outlier-robust distribution

is thus reduced to the choice of the weighting rule .
In the following, we consider Huber’s least informative distri-
bution. Other outlier-robust weighting rules are, for example,
proposed in [12], [15], [42], and [43]. Our experiments showed
that for our application, these weighting rules give similar re-
sults to Huber’s least informative distribution, so they are not
discussed in the following.

The least informative distribution can be found by max-
imizing the asymptotic variance (or minimizing the Fisher
information) of the -estimator over a given set of distribu-
tions [1]. In our scenario, we choose as the -contaminated
normally distributed convex set

(23)

where is the normal distribution with zero mean and unity
variance, is the contaminating distribution belonging to the
set of distributions that are symmetric to the origin, and

is the outlier probability.
In [1], it is shown that the least informative distribution in

to estimate and scale , in the sense that the asymptotic
variance is maximized, can be obtained by

for

for
(24)
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Fig. 1. Huber’s outlier-robust weighting function � (jxj) (Huber) and con-
ventional quadratic cost function �(jxj) = jxj (nonrobust).

where the constant depends on and is chosen such that
. The subscript “ ” in stands for

Huber. It may be seen that the least informative distribution is
Gaussian in the center and Laplacian in the tails, leading to an

-norm and -norm minimization problem, respectively. By
correctly choosing the transition point , data samples that very
likely correspond to outliers are thus linearly weighted, while
non-outliers are quadratically weighted as for an ordinary LSE
criterion. The transition depends on and decreases with in-
creasing .

The nonlinear cost along with a conventional quadratic cost
is illustrated in Fig. 1.

C. Robust Adaptation Algorithm

One way to minimize the cost function is the use of
an iterative Newton algorithm [38], as in [8], [15], [36], [37],
and [40]. As shown in [37] for a real-valued error signal, the
nonquadratic cost for a complex-valued error signal can
be minimized for using a recursion of the
form

(25)

as a good approximation for computational efficiency, where

(26)

is the gradient of the cost function w.r.t. and where
is a diagonal matrix of size with step sizes
, on the main diagonal for

controlling the adaptation in the frequency bins separately.
The matrix is equal to the recursively averaged Hessian

evaluated for

(27)

The use of (25)–(27) leads to the MC-BRFDAF [40]. To assure
convergence, the Hessian matrix must be positive-definite.
While this condition is fulfilled for Huber’s cost function (24),
it is not necessarily the case for other robust cost functions, as,
for example, Hampel’s -estimator [12]. A common solution
to this problem is the use of the discrete Newton algorithm [38],

where the Hessian is approximated by a difference matrix, i.e.,
a matrix with finite differences as elements that approximate
the differential. This approximation then yields the discretized
MC-BRFDAF. The experimental results in Section IV show that
the approximation of the Hessian by a difference matrix not only
solves the problem of the nonpositive-definite Hessian but also
improves the robustness of the adaptation algorithm for Huber’s

-estimator. For , , and
, we obtain the MC-FDAF after [27]–[29],

[31] with RLS-like properties.
In Section II-C1, we determine the gradient .

Section II-C2 then derives the Hessian and intro-
duces the difference approximation. Section II-C3 summarizes
the adaptation algorithms and extends the MISO adaptation
algorithms to the MIMO case. In Section II-C4, an approxima-
tion is given for reducing the computational complexity.

1) Gradient of the Cost Function: To determine the gradient
in (26), we write one element of the error vector

as an inner product

(28)

where is a 1 vector of zeroes except for the th ele-
ment which is equal to 1. Using the chain rule, we can calculate
the gradient as follows:

(29)

where is the derivative of and where

(30)

(31)

Substituting (30) and (31) into (29) and defining a vector
of size 1 with elements

(32)

, we obtain

(33)

2) Hessian of the Cost Function and Discretization: The
Hessian matrix of size can be calcu-
lated from (33) using

(34)
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The derivative in (34) can then be calculated by
applying the chain rule as follows:

(35)

where is given by (31). For the MC-BRFDAF, we
expand the derivative w.r.t. [40], that is

(36)

With the , , captured in a diagonal
matrix of size , the Hessian matrix
can be written as

(37)
To obtain the discretized MC-BRFDAF using a dis-

crete Newton algorithm, we approximate the derivatives
at the origin by first-order difference equa-

tions. That is,

(38)

Noting that and substituting

, we obtain the approximation

(39)
The , , are captured in a diagonal
matrix of size so that the discrete approximation
of the Hessian matrix is finally obtained as

(40)
3) Generalization: A generalization of the adaptation algo-

rithm to MIMO systems

(41)

with input channels and output channels is straightforward
by repeating the algorithm for all output channels. In sum-
mary, one iteration of the discrete MC-BRFDAF can be written
for the MIMO case as follows:

(42)

(43)

(44)

The MC-BRFDAF is obtained when replacing in (43)
by . The adaptation step (44) requires the inversion of the
large Hessian matrix of size . For efficiently

calculating , the blockwise-diagonal structure of
after introducing the approximation in Section II-C4 can be used
to transform the matrix into matrices
of size . This reduces the complexity of the inversion of
a to matrices of size [29], [31]. In
addition to [37, Eq. (30)], the update (44) allows for bin-wise
operation with a bin-dependent step size and a bin-dependent
scale parameter. To estimate the scale parameter , we use
the outlier-robust -estimator for scale as presented in [8].

4) Approximation: The calculation of the averaged Hessian
matrix (43) requires the computation of DFTs. To
limit the computational complexity, an approximation of
is thus desirable for practical systems. Following [27]–[29], and
[31], we use the approximation for suf-
ficiently large , which leads to

(45)

and, when replacing by in (44), to the uncon-
strained MC-FDAF [27]–[29], [31].

D. Computational Complexity

We compare the computational complexity of the dis-
cretized MC-BRFDAF with that of the MC-FDAF in terms
of real-valued arithmetic operations per sample (OPS), i.e.,
the number of real additions and real multiplications. Due to
the minor complexity difference between the MC-BRFDAF
and the discrete MC-BRFDAF in the computation of (36)
and (39), we illustrate only the complexity of the discretized
MC-BRFDAF defined by (42) and (44), using the approxi-
mation of (45). The matrix inversion in (44) is carried out by
applying the matrix inversion lemma to (45) [31]. For the non-
robust MC-FDAF, the matrix is replaced
by the identity matrix . Each complex addition is
realized by two real additions, and each complex multiplication
is realized by two real additions and four real multiplications.
The symmetry of the DFT coefficients of real-valued sequences
is exploited. The Fourier transform of length is carried out
by real-valued arithmetic operations
[44]. Fig. 2 shows the computational complexity OPS of the
discretized MC-BRFDAF (solid lines) and the MC-FDAF
(dashed lines) as a function of the number of filter taps for
(a) , , 4, 8 and (b) , , 4, 8. For
MISO systems ( ), the computational complexity of the
discretized MC-BRFDAF relative to that of the MC-FDAF
decreases with an increase of the number of input channels

, while for single-input multiple-output (SIMO) systems
( ), the complexity difference increases with an increase
in the number of output channels due to the necessity to
calculate the inverse of the CPSD matrix for each of the
output channels .

E. Convergence Behavior in Impulsive Noise

To illustrate the convergence of the outlier-robust adaptation
algorithms, we consider a single-input single-output (SISO)
system identification task, which appears for example in mono-
phonic acoustic echo cancellation, with white noise input for

, block overlap factor , , and the
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Fig. 2. Comparison of the number of real-valued arithmetic operations
(sum of additions and multiplications) per sample (OPS) of the discretized
MC-BRFDAF (solid lines) and the nonrobust MC-FDAF (dashed lines) for
� = 1, (a) as a function of Q for P = 1 (MISO system) and (b) as a function
of P for Q = 1 (SIMO system).

Fig. 3. Comparison between the MC-FDAF, the MC-BRFDAF, and the dis-
crete MC-BRFDAF for a SISO system identification task (acoustic echo can-
cellation) with white noise input and presence of an impulse of 1-ms duration
(N = 2048, � = 2, sampling rate f = 12 kHz). (a) Reference signal.
(b) System error norm.

sampling rate kHz. The reference signal is dis-
turbed by an impulse with a duration of 1 ms at time s
[Fig. 3(a)]. For the outlier-robust adaptation algorithms, the
parameter is optimized for maximum robustness against
the impulsive noise while preserving maximum convergence
between and s. The unknown system is a mea-
sured room impulse response of an acoustic environment with
reverberation time ms truncated after 4096 taps.
Fig. 3(b) shows the coefficient error norm
obtained by the MC-FDAF, the MC-BRFDAF, and the dis-
crete MC-BRFDAF. The convergence for the outlier-robust
adaptation algorithms is significantly more robust than for the
nonrobust adaptation algorithm.

III. APPLICATION TO A ROBUST GENERALIZED

SIDELOBE CANCELER (RGSC) WITH DFT-BIN-WISE

DOUBLE-TALK DETECTION

To illustrate the robustness, we apply the proposed algorithms
to multichannel speech enhancement with a DFT-domain real-
ization of a GSC [34] using an adaptive blocking matrix [39],
which is refered to as robust GSC (RGSC) in the following.
(“Robust” here means robustness against desired signal cancel-
lation in reverberant conditions and the ability to suppress inter-
ference with nonstationary second-order statistics.)

Fig. 4. RGSC with adaptive blocking matrix after [39].

In Section III-A, an overview of the RGSC is given.
Section III-B describes the motivation for choosing an impul-
sive noise robust MC-FDAF for the adaptation.

A. Overview of the RGSC

According to Fig. 4, the RGSC consists of three blocks: a
fixed beamformer, an adaptive blocking matrix , and an in-
terference canceler . The blocking matrix and the in-
terference canceler are realized by systematically applying
the robust adaptation algorithms.

1) Fixed Beamformer: The fixed beamformer forms the ref-
erence path of the RGSC. It steers the sensor array to the position
of the desired source and enhances the desired signal relative to
the interference. For scenarios with little movement of the de-
sired source relative to the steering direction, the fixed beam-
former can be designed with a sufficiently broad mainlobe so
that the desired signal is not attenuated; otherwise, automatic
steering techniques may be necessary. Without loss of gener-
ality, we use a uniformly weighted delay-and-sum beamformer
in our case for simplicity.

2) Adaptive Blocking Matrix: The blocking matrix is
a spatial SIMO filter which suppresses the desired signal and
passes interference such that the output of provides ref-
erences for the interference. The adaptive blocking matrix is
realized by adaptive filters with the output signal of the fixed
beamformer as reference for the desired signal. In contrast to
a fixed blocking matrix , which does not perfectly suppress
the desired signal whenever there is a mismatch between the
spatial filtering of and the actual wave field of the desired
signal, an adaptive blocking matrix can track changes of the
wave field of the desired signal. This is especially important
in time-varying reverberant environments, where the desired
signal continuously leaks through the fixed blocking matrix and
leads to reduced robustness against cancellation of the desired
signal.

3) Adaptive Interference Canceler: The interference can-
celer is realized by an adaptive MISO filter and subtracts
the residual interference from the output of the fixed beam-
former using the blocking matrix output as reference for the
interference.
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4) DFT-Bin-Wise Adaptation Control: The RGSC requires
a carefully designed adaptation control. The adaptive blocking
matrix needs adaptation control for the following reason.

1) Due to the limited interference suppression of the fixed
beamformer, the output of the fixed beamformer not
only contains the desired signal but also the attenuated
interference. This estimate of the desired signal is used as
input signals of the adaptive filters of the blocking matrix.
Continuous adaptation of the filters of the blocking matrix
during presence of the desired signal and the interference
would thus not only cancel the desired signal but also the
interference. However, interference components that are
suppressed by the blocking matrix cannot be canceled by
the interference canceler, and, thus, leak to the output of
the RGSC [34], [39], [45]. To prevent suppression of the
interference by the blocking matrix, the blocking matrix
should therefore only be adapted when the signal-to-inter-
ference ratio (SIR) is high.

The interference canceler requires adaptation control for the fol-
lowing two reasons.

2a) Typically, the blocking matrix cannot completely sup-
press the desired signal so that the blocking matrix output
still contains desired signal components. These desired
signal components would be confused with the interfer-
ence and canceled by the interference canceler if the inter-
ference is adapted during presence of the interference. To
prevent cancellation and distortion of the desired signal,
the interference canceler should therefore only be adapted
if the SIR is low [39], [45]–[47].

2b) Assuming now that the blocking matrix totally suppresses
the desired signal, any interference that the fixed beam-
former still contains should be suppressed by the inter-
ference canceler. (In practice, the suppression of the de-
sired signal by the blocking matrix is between 15 and
25 dB.) However, the desired signal at the fixed beam-
former output can act as a noise source which is uncorre-
lated with the input signal of the adaptive filters. The pres-
ence of this uncorrelated noise source disturbs the adapta-
tion and may lead to instability of the adaptive filters just
as in a system identification task.

To exploit the sparseness of the desired signal and of interfer-
ence in the time-frequency domain and, thus, to allow a higher
tracking capability, the decision “adaptation of ” or “adap-
tation of ” should be made in separate frequency bins. It
is shown in [34] that such a bin-wise decision is even neces-
sary to obtain maximum performance in time-varying acoustic
conditions.

An activity detector for “desired signal only” [adapta-
tion of ], “interference only” [adaptation of ], and
“double-talk” (no adaptation) which operates in separate DFT
bins is presented in [34]. Using the directivity of a fixed
beamformer, the activity detector forms a biased estimate

of the ratio of the power spectral densities (PSDs)
SIR of the desired signal, ,
and of the interference, , and tracks the maxima and the
minima of in the th bin. The blocking matrix and the

Fig. 5. Histogram of SIR (r) averaged over frequency bins n and over block
time r: for all samples (SIR), for samples for which the blocking matrix is
adapted (BM), and for samples for which the interference canceler is adapted
(IC).

interference canceler are adapted whenever is close to
maximum or minimum, respectively.

B. Motivation for the Usage of Outlier-Robust Adaptive
Filtering

A statistical illustration of the adaptation control is depicted
in Fig. 5 for male-desired speech and orchestra music played
back by a loudspeaker. The experimental setup corresponds to
that of Section IV-A. Fig. 5 shows the histograms of SIR for
which the classifier detects “desired signal only” (dashed line)
and “interference only” (black line) along with the histogram of
SIR at the sensors (gray shaded surface). The histograms
are averaged over DFT bins and block-time for a signal seg-
ment of length 20 s with average SIR dB. Although the
centers of the histograms for “desired signal only” and “inter-
ference only” are located at high SIR dB and at low
SIR dB, respectively, “desired signal only” and “in-
terference only” may be wrongly detected for low SIR and
high SIR , respectively. Another illustration of the problem
of outliers of the RGSC is given in [40].

These outliers—potentially leading to divergence of the adap-
tive filters—may be prevented by reducing the step sizes of
the adaptive filters, or by reducing the adaptation thresholds
so that the adaptive filters are less likely to be adapted during
double-talk. However, both of these options reduce the tracking
capability and, thus, the interference suppression of the RGSC.
To avoid this tradeoff, we apply the outlier-robust adaptive fil-
ters to the blocking matrix and to the interference canceler.
From Fig. 4, it may be seen that the blocking matrix corre-
sponds to a single-input multiple-output system with
and and that the interference canceler corresponds to a
MISO system with and . Identifying the adap-
tive filters of the blocking matrix in (44) with ,

, and identifying the adaptive filter
with , , we can systematically use the out-

lier-robust adaptive filters for the adaptation of the RGSC. The
step sizes are determined by the adaptation control and
switched between 0 and frequency-independent constant values

and for the blocking matrix and the in-
terference canceler, respectively, for disabling and enabling the
adaptation.
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Fig. 6. Comparison of the RGSC interference rejection (IR) using MC-FDAF,
MC-BRFDAF, and the discretized MC-BRFDAF in the presence of interference
only (orchestra music). (f = 12 kHz, N = 256, R = 64, � = 0:97, k =
1:0. MC-FDAF: � = 0:7. MC-BRFDAF, discretized MC-BRFDAF: � =
1:3.)

IV. EXPERIMENTAL RESULTS

We applied the MC-BRFDAF and the discretized
MC-BRFDAF to the adaptation of the blocking matrix and of
the interference canceler and compared the performance with
the RGSC using MC-FDAFs. The bin-wise scale parameter

was replaced by a bin-independent scale parameter
since the dependency on DFT bins did not improve the

performance relative to a bin-independent scale estimate in our
experiments. We studied two extreme cases, the presence of in-
terference only in the absence of desired signal (Section IV-A),
and “continuous” double-talk consisting of desired speech and
various interference signals (Section IV-B).

A. Comparison Between MC-FDAF, MC-BRFDAF,
and Discretized MC-BRFDAF

Here, we study the transient behavior of the interference can-
celer after initialization using the discretized MC-BRFDAF, the
MC-FDAF, and the MC-BRFDAF without the presence of a de-
sired signal, documenting the convergence speed of the adaptive
filters in the undisturbed case.

A microphone array with a 12-cm aperture and
elements was placed in an office room with reverberation

time ms. The desired source signal (male speech)
arrived from the broadside direction from a distance of 60 cm.
The interference (orchestra music played back by a loud-
speaker) arrived from one of the endfire directions from a
distance of 1.2 m. The microphone signals were obtained by
measuring the room impulse responses and convolving the
clean source signals with the corresponding impulse responses.
The frequency range was 200 Hz–6 kHz. The parameters are
optimized by simulations to simultaneously maximize the inter-
ference suppression and minimize the desired signal distortion
after convergence of the adaptive filters.

In this experiment, the blocking matrix was first adapted until
convergence in the presence of desired signal only. Then, the
interference canceler was adapted in the presence of interfer-
ence only. The transient behavior of the interference canceler is
illustrated in Fig. 6, showing the interference rejection [IR ]
of the RGSC as a function of time. The interference suppression
was measured as a first-order recursively averaged estimate
of the variance of the interference at the beamformer output
relative to the variance of the interference at the sensors. The
parameters. shown in the caption. are optimized individually

Fig. 7. Comparison of the RGSC target rejection (TR) using MC-FDAF and the
discretized MC-BRFDAF for continuous double-talk of speech signals (f =
12 kHz, N = 256, R = 64, � = 0:97, k = 1:0. MC-FDAF: � = 0:7,
� = 0:2. Discretized MC-BRFDAF: � = 1:3, � = 1:0). (a) Desired
speech. (b) Interfering speech at theM=2th microphone. (c) Suppression of the
desired signal TR (k) by the blocking matrix.

for the discretized MC-BRFDAF, the MC-FDAF, and the
MC-BRFDAF for maximum convergence speed and maximum
interference suppression after convergence during a double-talk
situation. It can be noticed that the step size for the MC-FDAF
( ) is considerably smaller than those for the robust
adaptation algorithms ( ) due to the sensitivity of the
MC-FDAF to double-talk detection errors during adaptation.
This smaller step size necessarily leads to a slower convergence
of the interference canceler. Due to the improved robustness,
the discretized MC-BRFDAF performed slightly better than
the MC-BRFDAF. When the same step size is chosen for all
adaptation algorithms, the convergence speed of the MC-FDAF
is slightly higher than that of the discretized MC-BRFDAF
since the improved robustness is obtained by reducing the gra-
dient of the cost function, which leads to a reduced convergence
speed without the presence of outliers.

B. Adaptation During Double-Talk of Desired Signal With
Interference Present

In this section, the performance of the RGSC is studied
during double-talk of desired speech in the presence of inter-
ference. In Section IV-B1, the transient behavior is discussed.
Section IV-B2 investigates the steady-state performance after
convergence of the adaptive filters.

1) Transient Behavior: The transient behavior of the RGSC
is now studied using speech as the desired signal and as inter-
ference [Fig. 7(a) and (b)]. Experimental results for orchestra
music as used in Section IV-A and for car noise can be found
in [40] and in [41], respectively. Only the MC-FDAF and the
discretized MC-BRFDAF are considered here since the con-
vergence of the MC-BRFDAF is very similar to that of the
discretized MC-BRFDAF. The parameters are the same as in
Section IV-A.
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Fig. 8. Comparison of the RGSC using MC-FDAF and the discretized
MC-BRFDAF for continuous double-talk of speech signals, parameters as in
Fig. 7. (a) Suppression of the interference IR(k) by the RGSC. (b) Distortion
of the desired signal, SSNR(k).

The suppression of the desired signal [target signal rejection,
] by the blocking matrix as a function of time is de-

picted in Fig. 7(c). Here, is measured analogously to
IR . The convergence of the blocking matrix is only slightly
improved for the discretized MC-BRFDAF. The smaller differ-
ence of optimum step sizes (MC-FDAF: ; discretized
MC-BRFDAF: ) relative to the interference canceler
(MC-FDAF: ; discretized MC-BRFDAF: )
results from the inherent robustness of the adaptive blocking
matrix against signals from outside of the mainlobe of the fixed
beamformer [34, pp.123–125].

Fig. 8(a) and (b) shows the interference suppression IR
and the distortion SSNR of the desired signal by the RGSC,
respectively. Here, SSNR is the segmental SNR between the
output of the fixed beamformer and the output of the RGSC
for the desired signal only with data blocks of length 512, and
ideally SSNR . (Note that the interference canceler
dereverberates the desired signal to some extent. This effect
reduces SSNR , but is neglected in this context.) It can be
seen in Fig. 8(a) that the interference canceler converges no-
ticeably faster when using the discretized MC-BRFDAF since
a larger step size can be chosen due to the improved robust-
ness against double-talk. The improved interference suppres-
sion yields a slight increase of the speech distortion SSNR
[Fig. 8(b)].

In Fig. 9(a) and (b), the IR and the SSNR using the
MC-FDAF and the discretized MC-BRFDAF with the same step
sizes and are illustrated, respectively. When
using the MC-FDAF, instability cannot be efficiently prevented,
leading to reduced interference suppression [Fig. 9(a), e.g.,

s] and increased speech distortion [Fig. 9(b),
s].

2) Steady-State Performance: Finally, the interference sup-
pression and the speech distortion are studied after convergence
of the adaptive filters as a function of the SIR at the sensors for
speech and car noise as interference. Other experimental setup is
the same as in Section IV-A. To study the behavior of the adap-

Fig. 9. Comparison of the RGSC using MC-FDAF and the discretized
MC-BRFDAF for continuous double-talk of speech signals, parameters as in
Fig. 7 except with the same step size � = 1:0 for both MC-FDAF and the
discretized MC-BRFDAF. (a) Suppression of the interference IR(k) by the
RGSC. (b) Distortion of the desired signal, SSNR(k).

Fig. 10. Comparison of the steady-state performance of the RGSC using the
MC-FDAF, the MC-BRFDAF, and the discretized MC-BRFDAF for continuous
double-talk with speech as interference (parameters as in Fig. 7). (a) Suppression
of the interference IR by the RGSC. (b) Distortion of the desired signal measured
by the segmental SNR SSNR between the FBF output and the RGSC output.

tive filters after convergence, we used as desired speech signals a
subset of 30 utterances of the TIDigits database [48]. For speech
as interference, the reverberation time of the environment was

ms. For car noise as interference, the desired source
signal is convolved with impulse responses with ms
obtained by the image method [49] to simulate the passenger
cabin of a car. The car noise inside of the passenger cabin of
a moving car is recorded with a microphone array mounted on
one of the sun visors.

The results for speech as interference are depicted in Fig. 10
and in Table I. In Fig. 10(a), it can be seen that the RGSC using
outlier-robust adaptive filters yields improved interference sup-
pression relative to the nonrobust adaptive filter as already indi-
cated in the previous experiments. However, interference sup-
pression is increased at the cost of reduced SSNR [Fig. 10(b)].
The discretized MC-BRFDAF yields slighty better performance
of the RGSC than the MC-BRFDAF.

The results for car noise as interference are depicted in Fig. 11
and in Table II. In contrast to Fig. 10, the improvement of the
interference suppression of the RGSC by using outlier-robust
adaptive filters is restricted to high and medium SIR dB.
The discretized MC-BRFDAF performs slightly better than the
MC-BRFDAF.
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TABLE I
INTERFERENCE SUPPRESSION (IN dB) OF THE MC-BRFDAF AND OF THE

DISCRETIZED MC-BRFDAF FOR CONTINUOUS DOUBLE-TALK WITH SPEECH

AS INTERFERENCE. SEGMENTAL SNR SSNR(k) VALUES (IN dB) ARE FOR THE

DESIRED SIGNAL BETWEEN THE FBF OUTPUT AND THE RGSC OUTPUT

Fig. 11. Comparison of the steady-state performance of the RGSC using the
MC-FDAF, the MC-BRFDAF, and the discretized MC-BRFDAF for continuous
double-talk with car noise as interference (parameters as in Fig. 7). (a) Suppres-
sion of the interference IR by the RGSC. (b) Distortion of the desired signal,
SSNR.

TABLE II
COMPARISON OF THE INTERFERENCE SUPPRESSION (IN dB) OF

THE MC-BRFDAF WITH THE DISCRETIZED MC-BRFDAF FOR

CONTINUOUS DOUBLE-TALK WITH CAR NOISE AS INTERFERENCE.
SEGMENTAL SNR SSNR VALUES (IN dB) ARE FOR THE DESIRED

SIGNAL BETWEEN THE FBF OUTPUT AND THE RGSC OUTPUT

The experimental results showed that the improvement in in-
terference suppression using outlier-robust adaptive filters came
along with a decrease in the quality of the desired speech signal.
To evaluate this effect, we applied the RGSC as a front-end for
a large-vocabulary automatic speech recognition (ASR) system
which was trained on clean speech [50]. The results showed that
the gain in word accuracy of the MC-BRFDAF relative to the
MC-FDAF corresponds to the improvement of the SIR at the
ASR input due to outlier-robust adaptive filtering. However, an
influence of the reduction of the SSNR on the speech recogni-
tion performance could not be observed. This effect may be ex-
plained as follows. First, the improvement of the SIR has more
influence on the speech recognition performance than the de-
crease of the SSNR w.r.t. the desired signal alone, especially
since the SSNR is greater than 13 dB for the investigated range
of the SIR. Second, informal listening tests showed that the
degradation of the SSNR at the output of the RGSC could not
be perceived in the mixture of speech and interference. Further
details can be found in [50].

V. CONCLUSION

We have derived outlier-robust multichannel frequency-do-
main adaptive filters for bin-wise adaptation controls based
on a Newton algorithm and on a discrete Newton algorithm.
Huber’s least informative distribution was considered as a
nonlinear weighting rule for the error signal of the adaptation
algorithm. For MISO systems, the computational complexity
of both robust adaptive filters is slightly increased relative to
the MC-FDAF. For SIMO systems, the complexity relative to
the MC-FDAF increases with the number of output channels.
The robust adaptive filters were then applied to the RGSC.
After studying the necessity of outlier-robustness for this type
of adaptive beamformer, experimental studies showed that the
convergence speed and the interference suppression of the
RGSC could be considerably improved by using the discretized
MC-BRFDAF relative to the MC-FDAF. Furthermore, a slight
improvement could be observed for the discrete MC-BRFDAF
relative to the MC-BRFDAF algorithm. The application of the
RGSC to a hands-free large-vocabulary ASR showed that at
low SIRs, the gain in word accuracy of the ASR system due to
outlier-robust adaptive filtering at low SIRs corresponds to the
SIR gain at the ASR input.
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