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ABSTRACT

For hands-free man-machine audio interfaces with multi-channel
sound reproduction and automatic speech recognition (ASR), both
a multi-channel acoustic echo canceller (M-C AEC) and a beam-
forming microphone array are necessary for sufficient recognition
rates. Based on known strategies for combining single-channel
AEC and adaptive beamforming microphone arrays, we discuss
special aspects for the extension to multi-channel AEC and pro-
pose an efficient system that can be implemented on a regular PC.

1. INTRODUCTION

Acoustic echo cancellation (AEC) is one of the key technologies
for hands-free full duplex communication systems where feedback
of loudspeaker signals to a microphone occurs (see receiving room
in Fig. 1). Classical applications are telephony or teleconference
systems (suggested by pos. (A) of the switch in Fig. 1). With
slight modifications this technology can also be adopted as a signal
preprocessing unit for automatic speech recognizers in multimedia
systems with sound reproduction (pos. (B) in Fig. 1). Even during
high volume sound output, sufficient recognition rates can be ex-
pected with this system. The fundamental idea of any P-channel

Transmission Room

...

w   (k)

+ +

P w  (k)1

x  (k)

e(k)

y(k)

P

x (k)
1

y  (k)
P
^ y (k)

1
^--

h   (k)P h  (k)1

+ +

Receiving Room

g (k)
1

g  (k)P ...

......

Automatic
Speech
Recognizer

A

B

Fig. 1. Conventional M-C AEC structure

AEC structure is to use adaptive FIR filters with impulse response
vectors
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that identify the truncated (generally time-varying) echo path im-
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(Fig. 1). The filters �3�&���0	 are stimulated by the loudspeaker sig-

nals 4 � ���
	 described by vectors
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and, then, the resulting echo estimates?@ � ���
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are subtracted from the microphone signal @ ���0	 to cancel the echoes.

The specific problems of M-C AEC include all those known
for mono AEC (e.g. [1]), but in addition to that, M-C AEC has
to cope with high correlation of the different loudspeaker signals,
which in turn cause correlated echoes which cannot easily be dis-
tinguished in the microphone signal [2]. The correlation results
from the fact that the signals are almost always derived from a
common sound source in the transmission room (e.g. a TV studio,
Fig. 1). A straightforward extension of the mono AEC scheme
using �<���
	CB � 
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thus leads to very slow convergence of the adaptive filter towards
the physically true echo paths [1, 2]. If the relation between the
signals 4 � ���
	 is strictly linear, then there is a fundamental prob-
lem of non-uniqueness in the multi-channel case as was shown in
[2]. In general, convergence to the true echo paths is necessary,
since otherwise the AEC not only would have to track changes
of the echo paths in the receiving room but also any changes of
the crosscorrelation between the channels of the incoming audio
signal, leading to sudden degradation of the echo cancellation per-
formance [2]. The problem can be softened by some inaudible
preprocessing of the loudspeaker signals for partial decorrelation
of the channels, but sophisticated adaptation algorithms taking the
cross-correlation into account are still necessary for M-C AEC [1].

Moreover, in a real-life environment, there are some more dis-
turbances to the speech signal, apart from the interfering loud-
speaker signals. The reverberation of the speech signal, back-
ground noise and/or other speakers make large-vocabulary ASR
without any body-worn gear such as a headset still difficult. An
effective approach to partly overcome these problems is to replace
the personal microphone by a microphone array directing a beam



of increased sensitivity at the active talker. For the echo canceller
however, this scenario presents a MIMO (multiple input and mul-
tiple output) system identification problem with , inputs (loud-
speakers) and � outputs (microphones).

2. COMBINING M-C AEC WITH BEAMFORMING
MICROPHONE ARRAY

In [4] different strategies for combining AEC with a beamform-
ing microphone array are discussed. Here we focus on the multi-
channel case of AEC in conjunction with a steerable microphone
beam. Thereby we assume a filter and sum beamformer with arbi-
trary filters ��� ���
	 , � � (*��������� � for the microphone signals. All
the known fixed and adaptive beamforming approaches can be de-
rived from this structure. As noted in [4], the two generic concepts
for combining AEC and BF are either applying AEC separetely
for each microphone signal or placing only one AEC behind the
BF. The first concept obviously does not structurally differ from
the single-microphone case in terms of AEC performance, how-
ever the second concept (Fig. 2) promises great computational sav-
ings. Apart from the general tracking problems of the AEC, which
would become considerable in a straightforward implementation
of this structure with adaptive BF [4], does it introduce any addi-
tional problems with M-C AEC? If no local speaker or background
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Fig. 2. Conventional M-C AEC structure and BF

noise is present, the error signal in Fig. 2 is� ���0	 � @ ���
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Assuming that the loudspeaker signals are obtained from a com-
mon source � ���0	 via different acoustic paths � � ���0	 in the sending
room, we have
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Together with Eq. (7), this finally leads to

� ���
	 � � ���0	�
 � E
� � ����� 	
 ��� � � � ���
	�
>/ � � ���
	��=7
7�� � ���0	&	�
 � � ���
	! �� (9)

Thus, we see that for minimizing � 
 � � ���0	�� !� independently of � ���
	
and the sending room (i.e. � � ���0	 ), the weights � � ���
	 of the AEC
ideally have to model FIR systems according to
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If the coefficients ��� ���
	 are time-invariant, then Eq. (10) replaces

the goal of identifying the true room impulse responses [2] for the
system in Fig. 2.

In order to circumvent time-variant BF in the echo path of
the AEC, decomposition of the BF into time-invariant and time-
variant stages have been proposed [4]. In order to allow beam-
steering, a set of #%$&� fixed beam signals is generated using the� microphone signals (Fig. 3). The fixed beams cover all poten-
tial sources of interest. A time-variant weighted sum of the beam
signals (voting) [3] is then moved behind the echo cancellation.
An additional advantage of the structure is that external informa-
tion of the speaker position via audio, video or multimodal object
localization can be easily incorporated.
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Fig. 3. AEC integrated into cascaded beamforming

The reduction of the number of M-C AECs from � to # may
be significant. However, considering the fact that most algorithms
for M-C AEC are already very complex with only one microphone,
identifying the electro-acoustic ,(' # MIMO system, described
by ,D� # impulse responses Eq. (10) seems to be a computationally
very demanding task.

In the following section we show how an efficient solution to
this problem becomes possible for real-time systems.

3. COMPUTATIONALLY EFFICIENT M-C AEC FOR
THE BEAM SIGNALS

3.1. A Separation Approach for MIMO System Identification

The total complexity of the AEC can be greatly reduced without
detrimental effects on their convergence behaviour by decompos-
ing the M-C AEC algorithms into parts that can be shared among
all beams and other parts that have to be computed separately for
each beam. The considerations are of course also applicable to
the structure in which AEC is applied to each of the � original
microphone signals.

The recursive least squares (RLS) algorithm is regarded as up-
per reference for convergence speed and other adaptive algorithms
can be seen as an approximation to it [5]. Despite of its high com-
putational complexity, it has been also considered for M-C AEC
due to the ill-conditioned nature of the problem [1]. The classical
form of the RLS coefficient update can be written as) ���
	 � * � �+�+ ���0	�5-���
	�� (11)�<��� ;=(�	 � � ���
	 ; ) ���0	 �-, ���
	�� (12)



It is known to be computationally very demanding due to the ma-
trix inversion for the Kalman gain vector in Eq. (11) with a com-
plexity of � �&��, � 9$	 ! 	 . From Eq. (11) we see that this main part
only depends on the input data, not on the microphone or beam sig-
nals. Once this vector is known, the beam-dependent part Eq. (12)
corresponds to an LMS algorithm. In the time domain the decom-
posed AEC in Fig. 4 consists of one Kalman gain calculation and# LMS algorithms. The Kalman gain can be efficiently calculated
by Fast RLS algorithms (prediction part), which reduce the com-
plexity of the RLS algorithm to � � 9 , where ����� depends on
the FRLS realization, but is � ��, ! 	 . Similar considerations can be
made for other adaptive algorithms (e.g. FNTF, FAP) as well [5].
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The relative computational savings due to separation in case
of the FRLS algorithm are� � (�7 # ��� , 9 ;A� � 7��*, 	�9# � � 9� 	 (-7 (#�
 	 (-7 �*,��
 � (13)

As � � � ��, ! 	 , we see that 
 $ � $ ( increases along with the
number of beams # and loudspeakers , . It is interesting to note
that

�
is independent of 9 and therefore the same for the applica-

tion in frequency subbands1 .
Recently, frequency-domain adaptive filtering has been intro-

duced for M-C AEC [6] whose complexity is even much lower
than that of the LMS algorithm and good performance comparing
well with fast versions of high-order affine projection algorithms
(FAP) can be obtained. In some cases it is even rivaling the RLS
performance [1]. Note that obviously, the LMS complexity in the
time-domain cannot be further reduced by the described separa-
tion, however simple LMS adaptation only is not suitable for M-C
AEC.

3.2. Application to Frequency-Domain Adaptive Filtering

In contrast to the LMS, frequency-domain adaptive filtering allows
clear savings by the separation approach despite of the already
very low complexity of this technique. In this section we regard the
unconstrained two-channel version following [6, 1] as an example.
The algorithm is summarized in Table 1 in a separated form for #
beams. The impulse responses consist of � partitions of length �
each. � � denote regularization parameters, � is an overlap factor
[6].

1Analysis of � ������� by filter banks is also beam-independent, which
leads to additional relative savings.

Definitions�������! "��#
(number of loudspeaker channel)$ �� "�&%'%'%&��(

(number of beam)� �*)+�,%&%&%,��-/.0 (number of partition)1 ��2���354+687 9;:�<>=@?A:�<>=CB�DE �� F.HG
Beam-independent part
Loudspeaker signals:

1 I ����JK� ��2"�L3�4+6NMK7 � �O�PJRQ S .UT�VR �XW&W,W � ����JRQ S V0T � B " D
Power spectrum estimation:

2 Y ��� ZA�PJ[� �RG Y ��� ZA�PJ .\ � V E I ,� �PJK� I Z��PJ[� ,
where Y Z�� �O�]W � � Y ,��� Z �^W �

3 _Y ��� ���PJ[� � Y ��� �O�PJ[� V`2"�L3�4+687 a � W&W&W a ! Q � � B�D
4 b ��JK� �!7 c"d�=@<ed�=H..Ff ! Y , �&� ! ��JK� Y �&� ! �PJ[� 6 _Y �&� � �PJK� _Y ! � ! ��JK� D ��� B
5 Y �O�PJK� � _Y ��� �&�PJ[� b ��JK�

Beam-independent weights for filter updates:

6 g �&� h �PJ[� � Y � �� 7 I , � �PJ . ��� .Hf Y �&� ! _Y ���! � ! I ,! ��J . �A� B
7 g ! � h �PJ[� � Y � �! 7 I ,! �PJ . ��� .Hf Y ! � � _Y ����&� � I , � ��J . �A� B

Beam-dependent part
8 ij ��� k �PJK� �ml�n ���h � � I ���PJ . ��� io ��� h � k ��JK�
9 _pAk �PJ[� ��7 9;:�<>=Kq k ��JRQ S VR �XW,W&W q k ��JRQ S V\T � B " .. 1 M ��� 7 ij �&� k �PJ[� V ij ! � k �PJ[� B

10 _r k ��JK� �mM _p k ��JK�
11 io ��� h � k �PJ VR � � io ��� h � k ��JK� V@s k,t ��� h ��JK� _r k �PJ[�
12 p k �PJ[� � last Q S elements of _p k ��JK�
Table 1. � ' # -channel frequency-domain adaptive filtering

The complexity of this algorithm is clearly dominated by FFT
calculations. The number of real multiplications per output sample
is � 
 �Fuwv8x ! �^� � 	�;H�5y � ;Hz 
 ;{yA| �  �; � � # 
 �}uwv+x ! �^� � 	�;~��y � 7� ;�yA| �  and the number of real additions is � 
 � uwv8x ! �^� � 	-;( � � ; (Ny�;@�+| �  �; � � # 
 � uwv8x ! �^� � 	�;<( � � 7{��;@�+| �  , assum-
ing that FFT is carried out by the split radix algorithm and several
quantities in Tab. 1 are real for real data. Fig. 5 illustrates the total
number of floating point operations (i.e. sum of real MULs and
ADDs) per output sample for FRLS and LMS in the time domain
(a) and the mentioned approach in the frequency domain (b) for� ��y . For all curves, , ��� ( � ���5� for two-channel FRLS
[1]) and 9:��y 
+� � is assumed. Solid lines stand for the separated,
dashed lines for the original approach. The same relations between
the curves as in (a) are also valid for the FRLS in frequency sub-
bands. Let us assume e.g. # � � , � � ( 
 �5y , � ��y (i.e.9 ��y 
+� � ), � ��y . With these parameters, the described algo-
rithm (separated, 50% additional savings) is for 7 beams about 4
times as efficient as the LMS algorithm with a single microphone
and thus provides also enough scope for necessary double-talk de-
tection for the AEC. The entire system can be realized on a regular
Intel-based computer (1GHz, Linux) with a multi-channel sound-
card at a sampling frequency of 12kHz.

4. EVALUATION WITH ASR

4.1. Setup for Evaluation

In order to verify the effectiveness of the combined approach, we
apply our system to a large-vocabulary continuous ASR (dictation
system Dragon Naturally Speaking). The ASR was trained with
our system in the actual receiving room. Texts for evaluation and
for speaker/setup adaptation were non-overlapping, however, the
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Fig. 5. Computational Complexity for Separated (solid), Orig.
(dashed) Approach with FRLS ( � ), LMS ( ; ), and Table 1 with
Different Block Lengths � : 256 ( ' ), 512 (

�
), 1024 ( � ), 4096

( � )

vocabulary of the dictated text for the evaluation was in an already
known context. For evaluations relevant to real-life situations this
is meaningful for large vocabulary dictation systems. Fig. 6 shows
the setup for the evaluation, which was carried out in two dif-
ferent environments (length � ' width � ' height): an anechoic
chamber (254cm ' 274cm ' 238cm) and in a real office room
(480cm ' 350cm ' 350cm) with reverberation times of

� 
�� � ���
and 	8
+

� � ��� , resp. For the fixed beamforming, a nested line ar-
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Fig. 6. Setup for Evaluation

ray of 11 first order differential microphones and a delay-and-sum
beamformer was used. The spacing for the lower frequency range
( ��y 

��� 7 � � �*� ��� ) is � � � and for the higher frequency range
( � � ��7`z � z*� ��� ), it is y � � . Loudspeakers and microphones are lo-
cated at the same height. For the loudspeaker signals, we chose the
solo music prelude in c major(piano). Solo music with a spatially
fixed instrument is known to be demanding for M-C AEC, however
the two channels were separately encoded using a psychoacoustic
model, which reduces the cross-correlation [1]. M-C AEC adapta-
tion was carried out as described in sect. 3.2 with a stepsize control
based on [7]. The distance between speaker and microphone was� � . Speaker and loudspeaker signals had the same level; the local
interference (white noise) level was � 

�"# below the speaker level.

Interference Single BF Single BF
Mic. Mic.+AEC +AEC

no interf. 84% 91% 84% 91%
local interf. 65% 86% 65% 86%

local interf+echoes 48% 61% 63% 85%

Table 2. Word Recognition Accuracies in the Anechoic Chamber

Interference Single BF Single BF
Mic. Mic.+AEC +AEC

no interf. 62% 84% 62% 82%
local interf. 58% 81% 58% 80%

local interf+echoes 36% 50% 56% 80%

Table 3. Word Recognition Accuracies in the Office Room

4.2. Recognition Results

Tables 2 and 3 summarize the measured word recognition accu-
racies obtained in the respective environment. Note that without
echoes the AEC adaptation was halted.

5. CONCLUSIONS

In this paper, a computationally efficient concept and an example
system for M-C AEC in conjuntion with a steerable beamforming
microphone array has been presented. It was compared in terms of
complexity and word accuracies of a large vocabulary speech rec-
ognizer, which are considerably improved by the system compared
to a single microphone or BF/AEC only. By further processing the
input of the baseline ASR (residual disturbances), additional gains
can be expected.
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