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1. INTRODUCTION

The problem of separating convolutive mixtures of unknown time
series arises in several application domains, a prominent exam-
ple being the so-called cocktail party problem, where we want to
recover the speech signals of multiple speakers who are simulta-
neously talking in a room. The room may be very reverberant due
to reflections on the walls, i.e., the original source signals sq(n),
q = 1, . . . , P of our separation problem are filtered by a multiple
input and multiple output (MIMO) system before they are picked
up by the sensors xp, p = 1, . . . , P . An M -tap mixing system is
thus described by

xp(n) =
P�

q=1

M−1�
κ=0

hqp(κ)sq(n − κ), (1)

where hqp(κ), κ = 0, . . . , M − 1 denote the coefficients of the
filter from the q-th source to the p-th sensor.

In blind source separation (BSS), we are interested in finding
a corresponding demixing system, where the output signals yq(n),
q = 1, . . . , P are described by

yq(n) =

P�
p=1

L−1�
κ=0

wpq(κ)xp(n − κ) =

P�
p=1

x
T
p (n)wpq. (2)

where

xp(n) = [xp(n), xp(n − 1), . . . , xp(n − L + 1)]T

is a vector containing the latest L samples of the sensor signal xp

of the p-th channel, and where

wpq = [wpq,0, wpq,1, . . . , wpq,L−1]
T

contains the current weights of the MIMO filter taps from the p-th
sensor channel to the q-th output channel. Superscript T denotes
transposition of a vector or a matrix.

In order to estimate the P 2L MIMO coefficients wpq,κ, we
consider in this paper only approaches using second-order statis-
tics. It has been shown that on real-world signals with some time-
structure, second-order statistics generates enough constraints to
solve the BSS problem in principle, by utilizing one of the follow-
ing two signal properties [1]:

• Nonwhiteness property by simultaneous diagonalization of
output correlation matrices over multiple time-lags,

• Nonstationarity property by simultaneous diagonalization
of short-time output correlation matrices at different time
intervals, e.g., [3, 4].

While there are several algorithms for convolutive mixtures utiliz-
ing nonstationarity, both in the time domain and in the frequency
domain, there are currently very few approaches taking the non-
whiteness property into account. Although in theory, each of these
properties is known to be sufficient, it has recently been shown that
in practical scenarios, the combination of these criteria can lead to
improved performance [5, 6].
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In the following, we present a more general class of algorithms
based on a matrix formulation for convolutive mixtures that in-
cludes all time lags. The approach utilizes both, the nonwhiteness
property and the nonstationarity property and is suitable for on-line
and off-line algorithms by introducing a general weighting func-
tion allowing for tracking of time-varying environments. For both,
the time-domain and frequency-domain versions, we discuss links
to well-known algorithms as special cases of our framework.

2. A GENERIC BLOCK TIME-DOMAIN BSS
ALGORITHM

In order to rigorously introduce multiple time lags in the cost func-
tion below, we define the following N × L block output signal
matrix by incremental shifts of each column by one sample

Yq(m) =

�����
�

yq(mL) · · · yq(mL − L + 1)

yq(mL + 1)
. . . yq(mL − L + 2)

...
. . .

...
yq(mL + N − 1) · · · yq(mL − L + N)

� ����
� ,

with m being the block time index, and N ≥ L being the block
length. When combining all channels, this leads to

Y(m) = [Y1(m), · · · ,YP (m)]. (3)

Furthermore we define the short-time correlation matrix

Ryy(m) = Y(m)H
Y(m) (4)

and introduce the following cost function as a generalization of
[3]:

J (m) =
m�

i=0

β(i, m) {log det bdiag Ryy(i) − log detRyy(i)} ,

(5)

where β is a normalized window function �	� m

i=0 β(i, m) = 1 

allowing off-line and on-line implementations of the algorihms
(e.g., β(i, m) = (1 − λ)λm−i leads to an efficient on-line ver-
sion allowing for tracking in time-varying environments). The
bdiag operation on a partitioned block matrix consisting of sev-
eral submatrices sets all submatrices on the off-diagonals to zero.
In our case, the block matrices refer to the different signal chan-
nels.Since we use the matrix formulation (3) for calculating the
short-time correlation matrices Ryy(m), the cost function in-
herently includes all time-lags of all auto-correlations and cross-
correlations of the BSS output signals. The cost function becomes
zero, if and only if all block-offdiagonal elements of Ryy, i.e., the
output cross-correlations over all time-lags, vanish.

In [2] it was shown that after deriving the natural gradient of
(5) we obtain the following update rule:

∆W(m) = 4

m�
i=0

β(i, m)W {Ryy − bdiag Ryy} bdiag−1
Ryy,

(6)



where the block-time index m of the correlation matrix is omit-
ted for simplicity. W is a 2LP × LP matrix consisting of
2L×L Sylvester submatrices, which contain the L unmixing filter
weights (see [2] for details).

To analyze the generalized update (6), and to study links to
some known algorithms, we consider now the case P = 2 for
simplicity. In this case, we have

∆W(m) = 4
m�

i=0

β(i, m)

· � W12Ry2y1
R

−1
y1y1

W11Ry1y2
R

−1
y2y2

W22Ry2y1
R

−1
y1y1

W21Ry1y2
R

−1
y2y2 � , (7)

where Rypyq
, p, q ∈ {1, 2} are the corresponding submatrices of

Ryy.
In [5, 6], a time-domain algorithm was presented that copes

very well with reverberant acoustic environments. Although it was
originally introduced as a heuristic extension of [3] incorporating
several time lags, this algorithm can be directly obtained from (7)
by approximating Ryqyq

in (7) as diagonal matrices with their di-
agonals consisting of the output signal powers. Using this approx-
imation, the remaining products of Sylvester matrices and Toeplitz
matrices in the update equation (7) can be efficiently implemented
by a (fast) convolution as was done in [6].

3. GENERIC FREQUENCY-DOMAIN BSS

Frequency-domain BSS is very popular for convolutive BSS since
all techniques originally developed for instantaneous BSS can be
applied independently in each frequency bin, e.g., [1, 4]. Unfor-
tunately, the permutation problem, which is inherent in BSS, may
then also appear independently in each frequency bin so that extra
measures have to be taken to avoid this internal permutation.

It was shown in [2] that the matrix formulation introduced for
the time-domain allows a rigorous derivation of frequency-domain
algorithms which can be linked explicitly with their time-domain
counterparts. The derivation is based on the principle that the
Toeplitz matrices Y in (5) can be expressed by circulant matrices
which are then diagonalizable by the discrete Fourier transform.
This can be efficiently realized by using the fast Fourier transform.
Deriving the gradient of the frequency-domain cost function with
respect to W leads to the following update equation [2]:

∇WJ (m) = 4

m�
i=0

β(i, m)SxyL(LH
SyyL)−1

L
H

· {Syy − bdiag Syy}Lbdiag−1 (LH
SyyL)LH

, (8)

where L denotes a 4LP×LP constraint matrix (see [2] for details)
and

Sxy = SxxW; Syy = W
H
SxxW

Sxx = (G4LP×4LP )H
X

H
G4L×4LXG4LP×4LP .

with G4LP×4LP and G4L×4L being window matrices of dimen-
sion 4LP × 4LP and 4L × 4L respectively. The matrices Xp

and Wpq denote the frequency-domain reprensentation of the in-
put signals xp and the filter weights wpq , respectively:

Xp(m) =

diag{F4L×4L[xp(mL − 3L), . . . , xp(mL − 1),

xp(mL), xp(mL + 1), . . . , xp(mL + L − 1)]T }, (9)

i.e., to obtain Xp(m), we transform the concatenated vectors of
the current block and three previous blocks of the input signals

xp(n) by means of the Fourier matrix F4L×4L.

Wpq = diag{F4L×4L[wpq,0, . . . , wpq,L−1, 0, . . . , 0]T }.

Two types of constraints appear in the gradient (8):
• Matrix L introduces joint diagonalization over all time-lags.
• The matrices G··· are mainly responsible for preventing the

internal permutation among the different frequency bins.
Current frequency-domain BSS algorithms do not take the non-
whiteness property into account. By neglecting matrix L in (8) we
obtain a simplified algorithm utilizing only the nonstationarity of
the source signals.

By additionally removing the constraints G···, i.e., approxi-
mating G··· by scaled identity matrices, all the submatrices in (8)
become diagonal matrices. Only in this case (8) can be decom-
posed into independent update equations for each frequency bin
ν = 0, . . . , 4L − 1. With an additional approximation, this up-
date equation corresponds to that derived in [4]. In contrast to Sxy

and Syy in (8) which are 4LP × 4LP matrices each, the corre-
sponding matrices S

(ν)
xy and S

(ν)
yy are only of dimension P × P .

While this is computationally more efficient than (8), the known
measures (e.g. [4]) to avoid internal permutation have to be taken.
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Fig. 1. Comparison of off-line implementations of the approx-
imated versions of (7) and (8) for the 2 × 2 BSS model (L =
512 taps). Reverberation time T60 = 150 ms
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