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ABSTRACT

In this contribution we describe full-duplex communica-
tion systems in a general framework using linear ma-
trix formulations. Concentrating on the signal acquisi-
tion part echo cancellation, noise suppression and signal
separation are identified as prevalent challenges. This
framework is then extended to compensate for nonlin-
ear acoustic echo paths and an efficient DFT-domain
adaptive second-order Volterra filter based on partitioned
block techniques is presented.

1 INTRODUCTION

In speech dialogue systems, reliable automatic speech
recognition (ASR) for distant talkers in noisy and echoic
environments is one of the main challenges on the way to
seamless and natural human/machine interaction. Two
classes of approaches are common and often combined
for real systems: One class aims at enhancement of the
recorded acoustic signal, whereas the other class concen-
trates on removing detrimental effects on the feature level
and exploiting higher-level a priori knowledge to achieve
robust ASR performance.

We consider here acoustic signal enhancement for a
full-duplex human-machine interface after Fig. 1 where
we allow for multichannel reproduction using loudspeaker
arrays and for multichannel recording using microphone
arrays, respectively. While most other components can
be well modeled as linear systems, loudspeaker systems
often involve nonnegligible nonlinearities, e.g. caused by
overloaded amplifiers or nonlinearities in the electroa-
coustic transduction as common with low-cost loudspeak-
ers driven at high volume.

In this contribution, we first describe the fundamen-
tal problems for acoustic signal acquisition in a general
multichannel setup. Then, we extend this framework to
include nonlinearities of loudspeaker systems. This leads
to an efficient DFT-domain algorithm for acoustic echo
cancellation for nonlinear echo path models, which can
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well be integrated with other state-of -the-art techniques
for acoustic signal enhancement.

2 MULTICHANNEL (ACOUSTIC) INTER-
FACES

From Fig.1 it is obvious that, ideally, the full-duplex com-
munication system G processes the source signals u and
the sensor signals x such that w corresponds to a desired
sound impression wq at the listeners’ ears and such that
the output vector z consists of P < M desired signals, re-
spectively. Note that current speech recognition systems
disregard all but one element of z, which may change in
some future applications.

Assuming for now that the matrices Hwv, Hxv, and
H,s can be modeled as linear discrete-time systems, G
may also be linear and can be completely described by
linear convolutions® as

(3)=e+(3)=(G= & )(¥). o

where the submatrices Gvu, Gvx, Gzu, and G.,x describe
the signal processing between the respective signal vec-
tors. The elements of the matrices H. describe impulse
responses of the acoustic environment with usually large
numbers of filter taps (hundreds or thousands). We em-
phasize that, although we assume linear processing of the
signals x, u to produce z, the actual signal processing for
identifying the generally time-variant elements of G may
of course be highly nonlinear.

Using this matrix description, we can derive conditions
for the elements of G. With ASR in mind, we limit our-
selves here to the recording part, i.e., to signal processing
for obtaining the desired vector z. Thus, we disregard
the special problems of sound reproduction for providing
a desired acoustic impression to the local listener(s) (see
[1]) involving, e.g., wavefield synthesis, although this can

IThe linear convolution y = A % x between a column
vector x with elements z;(k) and a matrix A with time-
invariant impulse responses a;j(k) is defined by y;(k) =
Ej‘v=1 > or oo tij(k —mn)zj(n), where y;(k) is the i-th com-
ponent of y. The inverse A~ is defined to fulfill A~! x A =
I.4(k), where I is the identity matrix and where (k) is the
discrete-time unit impulse. If A is not invertible, then, A~1!
is the pseudoinverse of A.



also be relevant in applications of ASR, e.g., in interac-
tive gaming.

We note that the recorded signal vector capturing N
microphone signals, x, can be written as

X:Hxs*s+Hxv*v+n)n (2)

where Hyxy and Hxs describe the multiple-
input/multiple-output (MIMQ) systems between
the respective signal vectors, and nx represents the
components originating from undesired local interferers
and noise sources.
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Figure 1: Full-duplex communication system.

Multichannel sound recording aims at the extraction
of P desired signals z from x, which can generally be
described as output of a desired mixing matrix D,s with
the original M > P source signals s as input. With (1),
(2) we obtain

Z = Ggu*u+ Gux*Xx
Gizx * Hys s+ (Gau + Gax * Hyv # Gyu) *u
+Giax * Ny
2 Dyoxs. 3)

This formulation defines three signal processing prob-
lems: cancellation of acoustic echoes resulting from u,
suppression of noise and interference ny, and source sig-
nal separation and deconvolution to obtain D,s * s.

A major structural difference compared to a single-
channel recording setup is given by the fact that sam-
pling the acoustic wavefield by several microphones pro-
vides spatial information and allows spatially selective
filtering. This can be immediately exploited for separat-
ing or suppressing the corresponding signals if a priori
knowledge on the source signals is available.

2.1 Acoustic echo cancellation (AEC)

For compensating the feedback from the loudspeakers
to the microphones independently of the signals u, the
MIMO system G,y must ideally meet (see (3))

qu ; _sz * Hxv * Gvu . (4)

As the Gzx, Gvu are observable, only Hxy must be iden-
tified. With monaural sound reproduction, AEC has to
cope with long adaptive filters and the fact that the resid-
ual echo is not always observable as optimization error.
Aside from the further increased computational complex-
ity, the multichannel is even more difficult because of the
correlation between the signals in u [2].

2.2 Noise and interference suppression

For suppression of local noise and interferers, the condi-
tion

Gux *nx =0 (5)

must be fulfilled. Obviously, the signal-independent so-
lution Gzx = O prevents recording of the desired signals.
Beamforming methods, however, lead to spatial filtering
by Gzx so that diffuse noise and coherent interference nx
arriving from certain directions are suppressed, whereas
desired signals from other directions remain undistorted.
Moreover, adaptive beamforming can track changes of
directions of arrival and signal statistics [3].

2.3 Source separation and dereverberation

To extract the signals of interest s in the desired form,
the sensor signals need to be processed such that

sz*Hxs*séDzs*s, (6)
which requires
Gux = D,s x Hy, (7)

for signal-independent solutions. Asking for undistorted
source signals in z, Dzs can be written as a diagonal
matrix with P delayed unit impulses along the main di-
agonal. Then, (7) corresponds to a multichannel blind
inversion problem (’dereverberation’) for the elements on
the main diagonal and an interference suppression prob-
lem for the elements on the off-diagonals of Gzx * Hxs,
respectively.

Relaxing the requirements for D,s, blind source sepa-
ration (BSS) is able to extract coherent signals z =8 by
exploiting statistical independence or uncorrelatedness of
the sources in conjunction with non-stationarity and non-
whiteness assumptions [4]. Thereby, the off-diagonal el-
ements of Gzx * Hxs are minimized, while the elements
on the main diagonal are usually not just delays, so that
dereverberation is at best approximated.

3 NONLINEAR ACOUSTIC ECHO CANCEL-
LATION

With nonlinearities in loudspeaker systems, the perfor-
mance of linear AEC degrades, and high-level echo bursts
are distorting the ASR input during high-volume an-
nouncements [5]. Therefore, it is desirable to extend the
above concept to include nonlinear AEC. For clarity and
notational convenience, we consider (4) for the case of
monaural reproduction and acquisition (L = N = 1),
and disregard sound rendering and the signal enhance-
ment (Gyu = Gzx = 1). For a linear echo path (4) then



reads g;u = Geu = Gov = —hazv, and AEC has to form an
estimate Z(k) = gou * u to compensate hg, * u.

A common approach to modelling the nonlinear be-
haviour of loudspeakers is given by finite-length second-
order Volterra filters [5, 6]. Volterra filters can be con-
sidered as multiple-input/single-output (MISO) systems,
where the input signals result from products of samples
of u(k) taken at different time instants. Abbreviating
g ‘= gz.u, the output of the second-order Volterra filter
can be written as

B(k) = g * . ®)
where
g = [900), 9P kK), gPkk+1),...,
9P (k,k+ N —1)] )

contains the linear kernel g™ (k) with 0 < k < N and
the quadratic kernel ¢ (k, k') with 0 < k, k' < N,
The augmented input vector u’ reads

u = [u(k), u(k)u(k), uk)ulk - 1),...,
w(k)u(k — N + 1)]T . (10)

The compact form of (8) shows the relation to the gen-
eral linear system description (1): Including nonlinear
echo cancellation corresponds to an extension of the in-
put vector u, with the additional components being only
used for AEC. (The corresponding elements of the sound
rendering matrix Gy must be set to zero.)

For deriving a new efficient realization of such a second
-order Volterra filter, we rewrite (8) as

N g
k)= gV mulk—n) (11)
n=0
N@ _1 N2y

+ Z Z G (n1, n2)u(k — n1)u(k — n2),

n1=0 no=0

where 5P (n1,n2) = g®(n1,n2), for n1 = ng, and
3P (n1,m2) = 9@ (n1,n2), otherwise.

3.1 Partitioned Block Frequency Domain Adap-
tive Volterra filter (PBFDAVF)

Efficient DFT-domain adaptive filtering algorithms as-
suring fast convergence to the optimum solution and
sufficient robustness to cope with real-world scenarios
are known for multichannel linear acoustic echo cancel-
lation, adaptive beamforming, and blind source separa-
tion, respectively. For efficient combination, partitioned-
block versions with scalable overlap were developed so
that different FIR filter lengths are supported simultane-
ously for the different algorithms [7, 8, 9]. Correspond-
ingly, a DFT-domain realization of adaptive second-order
Volterra filters is desirable for its advantages regarding
computational complexity and convergence behaviour.
Known DFT-domain approaches [10, 11] suffer from
the inherent restriction that the memory length of the
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Figure 2: Illustration of the zero-padding in géf?bz (n1,m2)

(a) and the computation of )?,Slz?b%y(m) for M = 6 and
m = 3 (b).

Volterra kernels can not be chosen differently for dif-
ferent orders. However, for modeling the nonlinear be-
havior of loudspeakers using Volterra filters it has been
shown that the required memory length for the linear
kernel is much larger than that of the quadratic kernel
[5]- Therefore, we propose a new DFT-domain algorithm
based on partitioned-block modeling which allows a more
flexible choice with respect to the memory length of ker-
nels. This algorithm can be viewed as a generalization of
both, the frequency-domain adaptive Volterra filter [11]
and the partitioned block frequency domain adaptive fil-
ter (PBFDAF,GMDF) for linear systems [12].

8.1.1 Partitioned Block Frequency-Domain Volterra
Filter

We assume in the following that N*) and N® are integer
multiples of the so-called partition length N, i.e. NV =
BYN, N® = BN, where N, BV, B® e N First,
we define overlapping input signal data blocks of length
M according to

wiw(l) =u(re +1= i+ DN), 0S 1< M, (12)

where o is an overlap factor. Aiming at an efficient
overlap/save method [13] to compute the output of the
Volterra filter according to (11), we introduce zero-
padded versions of partitions of the linear and quadratic
kernels:

(1)
_(1) _ g’(n+bN), 0<n<N,
I A S S )
37, (n1,m2) =
§(2)(n1+b1N,n2+ng), 0<mni,n2 <N, (14)
0, N <ni,ns < M.

The definition of the zero-padded partitions g,ff by (121, 12)

according to (14) is illustrated in Fig. 2a for B® = 2
and by = b2 = 1. Note that only the shaded areas con-
tain nonzero coefficients. Introducing the signal blocks
and the kernel partitions (12), (13) and (14) into (11),



respectively, yields 7, (1) = 25" (1) + 2¢2 (1) with

BM_1Mm-1

200 = Y Y @ (mu(l—n), (15)
b=0 n=0
B2 _1 B3,

220 = 3 3 @O, 16
b1=0 by=0
M-1M-1

~(2 —(2
xf(n),bz, (l) = Z Z g151362(n1’n2)

n1=0n2=0

Upy v (I — n1)Upy » (I — n2). (17)
The DFT-domain representation of (15) reads
BM 1

> G (m)Usu(m), (18)

b=0

X(l) (m) =

where Us,, and C_v’,(,l)(m) denote the DFT of uy,,(I) and

g,E )( ), respectively. Following [14], the DFT-domain

representation of (17) can be written as

¥ (2)
Xb1 b2, v (

E Gb1b2 mi,m—mi)

m10

: Ubl,”(ml)UbQ,V(m_m1)7 (19)

where C_T',E?’b2(m1,m2) is the two-dimensional DFT of

géf?bz (ni,m2). The computation of X,El)b o (m) is illus-

trated in Fig. 2b for M = 6. The bin pairs (ml, m2) that

have to be considered for summation in (19) are marked

by e for m = 3, which shows that the summation in (19)

is performed along the line mi1+mso = m in the (m1, m2)-

plane Due to the linearity of the DFT, z5” (1) according
to (17) reads in the DF'T domain:

B2 _1B2)_

Xm)= 32 3 Xl m). (0)

b1=0 b2=0

The IDFT of X, (m) = fél)(m) + X2 (m) is denoted
by Z,(l). Finally, we obtain the output sequence Z(k)
according to (11) by applying the overlap/save method,
i.e., the first N elements of %, (l) are discarded and we
set

(k) = &, (k — vN + N), (21)

for uN <k < (v—1)N+ M —1, i.e., for the last M — N
elements of %, (1).

3.1.2 Adaptation of the PBFDAVF

Assuming that local noise ny and desired sources can be
disregarded, AEC aims at minimizing the power of the
residual echo e(k) = z(k) — Z(k), where e(k) = z(k) if
nz(k) = s(k) = 0. The update equations for the DFT-
domain kernel coefficients G( )(m) and Gb1 by (1, M2)
that are presented in the followmg preserve the time-
domain constraints on the kernel coefficients according

to (13) and (14). Analogously to the linear constrained
partitioned block FDAF [12] we define

%) = 0, 0<n<N,
2= 2 -2.(1), N<n<M

The DFT-domain representation of z,(l) is denoted by

(22)

Z,(m). Following [12] we introduce the time-domain up-
date term

AgsV(m) =rOm) Fp {Z(m)Us (m) ), (23)

where F;; {-} denotes the one-dimensional (1D) inverse
DFT. Furthermore, we have introduced the 1D window

function
m={ g

The DFT-domain update equation is then obtained by
the 1D-DFT of Ag{"(n), i.e.,

0<n<N,

N <n< M. (24)

i (m) = G (m) + nAGE ) (m),  (25)
with the step-size parameter ¢ > 0 and

AG{)(m) = Fip {AgiV(m)} (26)

Taking the results of [11] into account, we introduce a
time-domain windowed update term of the quadratic ker-
nel coefficients according to

Ay (n1,12) = (27)
1 — >3 * *
r®(ny, n2)M'7:2D1 {ZV(m)Ubl,u(ml)Ubg,u(mz)}7
where m = (mi + m2) modulo M. F; {-} denotes

the 2D-IDFT and r® (n1, n2) represents the 2D window
function

1, 0<ni,n2 <N,

T(Q)(nl,nz) = { 0, N < e s < M. (28)

The desired constrained update equation for the 2D-DFT
domain coefficients finally reads
Chpppr(miyma) = Gy, (mayma)  (29)
b1,ba,w+1 M1, M2 b1 ,ba,v 11, T2
+un AGbl by, ,,(ml, m2)
where

AGE,, ,(miyms) = Fan {Agi,, (n1,m2) ), (30)

and where Fop {-} represents the 2D-DFT. 2

2Note that for the special case B(1) = B(2) =1 (implying
N = N(®) the adaptation of the kernel coefficients accord-
ing to (25) and (30) simplifies to the approach [11].
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Figure 3: Comparison of different nonlinear approaches
and a linear NLMS for a realistic AEC scenario.

8.1.8 Simulation Results

Our evaluation of the above PBFDAVF is based on
recorded speech data from a low-cost loudspeaker placed
in an enclosure with low reverberation. As performance
measure we use the Echo Return Loss Enhancement
(ERLE) which is defined by

E {z*(k)}
ERLE = 101log,, E{c?(k)} [dB]. (31)
The parameters of the PBFDAVF have been chosen to
N = 64, M = 2N, B® = 1 and BY) = 6, respec-
tively, and an overlap factor @ = 4 has been used. The
resulting FRLE curve is compared to a time-domain
adaptive Volterra filter (TDAVF) with memory lengths
N® = BON and N® = BAN, applying a normal-
ized least mean square (NLMS) algorithm [15], and to
a linear time-domain echo canceler using NLMS adapta-
tion in Fig. 3. We notice that extending the linear AEC
to a second-order Volterra filter leads to an improved
performance if the nonlinear distortion in the echo path
is caused by loudspeakers and that the proposed PBF-
DAVF provides a faster convergence speed compared to

a corresponding time-domain approach.

4 Conclusion

We discussed the general configuration of multichannel
communication systems by using a compact linear ma-
trix representation. For the case that the echo path to
be modeled is nonlinear, we have extended the concept
by including adaptive second-order Volterra filters. An
efficient and fast converging DFT-domain algorithm for
the adaptation of a second-order Volterra filter has been
proposed. Simulation results have shown that the pro-
posed approach leads to an increased echo attenuation
compared to a linear AEC if the echo signal is corrupted
by nonlinear distortion due to loudspeaker nonlinearities.
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