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ABSTRACT

Generally, there are three types of approaches for blind source se-
paration (BSS) on time series: exploitation of the nonwhiteness,
the nonstationarity, and the nongaussianity of the source signals.
While methods utilizing the first two properties are usually based
on second order statistics (SOS), one needs higher order statistics
(HOS) to take into account nongaussianity. In this paper, we com-
bine all these three fundamental approaches (the three ‘Non’s’)
for convolutive mixtures to one generic framework, the TRINI-
CON algorithm (’Triple-N ICA for convolutive mixtures’). This is
done by introducing an appropriate matrix formulation, combined
with the use of multivariate probability densities for considering
the time-dependencies of the source signals. It can be shown that
our previously introduced generic SOS algorithm follows from the
TRINICON as the optimum SOS algorithm. For the general HOS
case, we introduce an efficient solution using models for corre-
lated spherically invariant random processes (SIRPs) which are
very well suited for a number of signals including speech. In this
paper, we consider exclusively time-domain algorithms, but the
framework can be extended to the frequency domain.

1. INTRODUCTION

The problem of separating convolutive mixtures of unknown time
series arises in several application domains, a prominent exam-
ple being the so-called cocktail party problem, where we want to
recover the speech signals of multiple speakers who are simulta-
neously talking in a room. The room may be very reverberant due
to reflections on the walls, i.e., the original source signals sq(n),
q = 1, . . . , Q of our separation problem are filtered by a multiple
input and multiple output (MIMO) system before they are picked
up by the sensors. In the following, we assume that the number Q
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Fig. 1. Linear MIMO model for BSS.

of source signals sq(n) equals the number of sensor signals xp(n),

p = 1, . . . , P (Fig. 1). An M -tap mixing system is thus described
by

xp(n) =
P�

q=1

M−1�

κ=0

hqp(κ)sq(n − κ), (1)

where hqp(κ), κ = 0, . . . , M − 1 denote the coefficients of the
filter from the q-th source to the p-th sensor.

In BSS, we are interested in finding a corresponding demixing
system according to Fig. 1, where the output signals yq(n), q =
1, . . . , P are described by

yq(n) =

P�

p=1

L−1�

κ=0

wpq(κ)xp(n − κ). (2)

It can be shown (see, e.g., [1]) that ideally, the MIMO demixing
system coefficients wpq(κ) can in fact reconstruct the sources up
to an unknown permutation and an unknown filtering of the indi-
vidual signals, where L should be chosen at least equal to M .

Different approaches exist to blindly estimate the P 2L MIMO
coefficients wpq(κ) by utilizing one of the following properties
[1]:

(i) Nonwhiteness property by simultaneous diagonalization of
output correlation matrices over multiple time-lags, e.g., [2]

(ii) Nonstationarity property by simultaneous diagonalization
of short-time output correlation matrices at different time
intervals, e.g., [3]-[5]

(iii) Nongaussianity property using higher order statistics for in-
dependent component analysis (ICA), e.g., [6]-[10]

Although it is commonly believed that each one of these proper-
ties is sufficient for separation, it has recently been demonstrated
for (i) and (ii) using SOS that in practical scenarios, the combina-
tion of these criteria can lead to improved performance [11, 12].
This contribution is a further generalization of our previous work
[13] combining all three properties into an efficient algorithm. The
resulting TRINICON algorithm can thus cope with any kind of
source signals (except stationary white Gaussian noise signals).

2. GENERIC HOS-BASED BSS ALGORITHM FOR
CONVOLUTIVE MIXTURES

2.1. Matrix notation for convolutive mixtures

To derive an algorithm for block processing of convolutive mix-
tures, we first need to reformulate the convolution (2) in the fol-



lowing matrix form:

y(m, j) = x(m, j)W(m), (3)

where m denotes the block index, and j = 0, · · · , N − 1 is a
time-shift index within a block of length N , and

x(m, j) = [x1(m, j), . . . ,xP (m, j)], (4)

y(m, j) = [y1(m, j), . . . ,yP (m, j)], (5)

W(m) =

��� W11(m) · · · W1P (m)
...

. . .
...

WP1(m) · · · WPP (m)

� �� , (6)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(7)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (8)

=
P�

p=1

xp(m, j)Wpq(m). (9)

D in (8) denotes the number of lags taken into account (c.f. prop-
erty (i)) as shown below. Wpq(m) denotes a Sylvester matrix that
contains all coefficients of the respective filter:

Wpq(m) =

������������������

wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0

� �����������������
. (10)

2.2. Cost function and algorithm derivation

A generic SOS algorithm for convolutive mixtures has been de-
rived rigorously from a cost function that explicitly contains cor-
relation matrices that include several time-lags (c.f. property (i))
under the assumption of short-time stationarity (c.f. property (ii))
[13]. For property (iii), higher order statistics have to be consid-
ered. Higher-order approaches for BSS can be divided into three
classes [1]: maximum likelihood (ML) estimation, minimization
of the mutual information (MMI) among the output signals, and
maximization of the entropy (ME/’infomax’). Although all of
these HOS approaches lead to similar update rules, MMI can be
regarded as the most general one [9].

Based on a generalization of Shannon’s mutual information
[14], we now define the following cost function taking into account
all three fundamental signal properties (i)-(iii):

J (m) = −
m�

i=0

β(i, m)

· 1

N

N−1�

j=0

{log (p̂D(y1(i, j)) · . . . · p̂D(yP (i, j)))

− log (p̂PD(y1(i, j)Λ1, . . . ,yP (i, j)ΛP ))} , (11)

where p̂D(·) and p̂PD(·) are estimated or assumed multivariate
probability density functions (pdfs) of dimensions D and PD, re-
spectively. Furthermore, D is the memory length, i.e., the number

of time-lags to model the nonwhiteness of the P signals as above.
Note also that the sequence of these pdf estimates completely de-
scribes any multichannel stochastic process with the assumption
of short-time stationarity over length-N blocks (this assumption
is reasonable for many real-world signals such as speech). The
expectation operator of the mutual information [14] is replaced
in (11) by short-time averages within these blocks. β is a win-
dow function that is normalized according to � m

i=0 β(i, m) = 1
which allows off-line, on-line, and block-online implementations
of the algorithms (e.g., β(i, m) = (1 − λ)λm−i leads to an ef-
ficient on-line version allowing for tracking in time-varying en-
vironments [15]). The matrices Λp, p = 1, . . . , P represent fil-
ters on the output signals to further improve the convergence for
nonstationary sources by removing magnitude constraints on the
output signals (so that the demixing matrix remains in its so-called
‘equivalence class’ containing all possible solutions due to the fun-
damental scaling indeterminacy of BSS) [10].

It can be shown (after a tedious but straightforward derivation)
that by taking the natural gradient [7] of J (m) with respect to the
demixing filter matrix W(m) [13],

∆W ∝ WW
H ∂J

∂W∗
, (12)

we obtain the following generic TRINICON update rule:

W(m) = W(m − 1) − µ∆W(m), (13)

∆W(m) = −
m�

i=0

β(i, m)

N−1�

j=0

W(i)

· � yH(i, j)Φ(y(i, j)) − Λ(i, j) � (14)

with the multivariate score function

Φ(y(i, j)) = 	 ∂p̂D(y1(i,j))
∂y1(i,j)

p̂D(y1(i, j))
, . . . ,

∂p̂D(yP (i,j))
∂yP (i,j)

p̂D(yP (i, j)) 
 . (15)

The constraint matrix Λ(i, j) is composed from the filters Λp(i, j).
For Λ(i, j) = I we obtain the so-called holonomic algorithm, and
Λ(i, j) = bdiag {yH(i, j)Φ(y(i, j))} yields the corresponding
generalization of the nonholonomic [10] algorithm with improved
convergence characteristics for nonstationary sources. Here, the
bdiag operator sets all channel-wise cross-terms to zero.

3. RELATION TO THE GENERIC SOS-BASED BSS
ALGORITHM

In [13] we presented a generic SOS BSS approach for convolu-
tive mixtures in the time-domain and frequency-domains based on
Oppenheim’s inequality. Several popular algorithms for convolu-
tive mixtures such as [5, 12] have turned out to be approximations
of this framework. Here, we consider only the time domain for
simplicity. The update in the case of two sources and two sensors
reads

∆W(m) =
m�

i=0

β(i, m)W(i)

· � 0 R12(i)R
−1
22 (i)

R21(i)R
−1
11 (i) 0 � ,(16)

where

Rpq(i) = Y
H
p (i)Yq(i), (17)

Yq(i) = [yT
q (i, 0), . . . ,yT

q (i, N − 1)]T . (18)
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It can be shown that this generic SOS-based BSS follows from the
TRINICON algorithm by assuming multivariate Gaussian pdfs

p̂D(yp(i, j)) =
1�

2πDdet(Rpp(i))
e−

1
2
yp(i,j)R−1

pp (i)yH
p (i,j).

(19)

As a result, we may now draw the important conclusion that
the algorithm in [13] is in fact the optimum SOS algorithm for
convolutive mixtures in the sense of minimum mutual informa-
tion or ML, which also implies asymptotic Fisher-efficiency [1].
Another interesting finding is that the SOS BSS algorithm turns
out to be nonholonomic for both, Λ(i, j) = I, and Λ(i, j) =
bdiag {yH(i, j)Φ(y(i, j))} confirming its good performance for
speech sources.

4. GENERIC BSS INCORPORATING MODELS FOR
NON-STATIONARY AND CORRELATED SPHERICALLY

INVARIANT RANDOM PROCESSES

The update rule (14) provides a very general basis for BSS of con-
volutive mixtures. However, to apply it in a real-world scenario,
an appropriate multivariate score function (15) has to be deter-
mined, i.e., we have to handle P high-dimensional multivariate
pdfs p̂D(yp(i, j)), p = 1, . . . , P . In general, this is a very chal-
lenging task, as it includes all corresponding higher-order cumu-
lants (including time lags).

Moreover, we want to retain the inherent normalization prop-
erty of the generic SOS BSS [13], as shown by the inverses of the
lagged autocorrelation matrices in (16), and also the nonholonomic
form of the update.

Fortunately, there is an efficient solution for these problems
by assuming so-called spherically invariant random processes
(SIRPs). These models are representative for a wide class of
stochastic processes. It has been shown that speech signals in par-
ticular can very accurately be represented by SIRPs [17].

4.1. Spherically invariant random processes

One of the great advantages arising from the SIRP model is that
multivariate pdfs can be derived analytically (c.f. Sect. 4.3) from
the corresponding univariate probability density function together
with the (lagged) correlation matrices.

The correlation matrices can be estimated from the data as in
the case of the generic SOS BSS, while for the univariate pdf, we
can assume one of the well-known functions for speech signals,
e.g., the Laplacian density.

The general form of correlated SIRPs of D-th order is given
with a properly chosen function fD(·) by [17]

p̂D(yp(i, j)) =
1�

πDdet(Rpp(i))
fD � yp(i, j)R

−1
pp (i)yH

p (i, j) �
(20)

As the best known example, the multivariate Gaussian can be
viewed as a special case of the class of SIRPs. To calculate the
score function for SIRPs in general, we employ the chain rule [16]

∂p̂D(yp(i,j))

∂yp(i,j)

p̂D(yp(i, j))
= � 1

fD(s)

∂fD(s)

∂s �� ��� �
:=φD(s)

yp(i, j)R
−1
pp (i), (21)

where s = ypR
−1
pp yH

p . For convenience, we call the scalar func-
tion φD(s) the SIRP score.

4.2. Incorporation of SIRPs into the generic BSS

Having derived the multivariate score function for the SIRP model
(21), we can now introduce it into the generic TRINICON update
equation (14). In the 2-by-2 case, this leads to the following ex-
pression for the nonholonomic TRINICON-SIRP update:

∆W(m) =
m�

i=0

β(i, m)W(i)

· � 0 R̃12(i)R
−1
22 (i)

R̃21(i)R
−1
11 (i) 0 � ,(22)

where the modified matrices R̃pq , p 6= q are given by

R̃pq(i) = −
N−1�

j=0

φD � yq(i, j)R
−1
qq (i)yH

q (i, j) �
·yH

p (i, j)yq(i, j) (23)

= Y
H
p (i)Λ̃q(i)Yq(i), (24)

Λ̃q(i) = −φD � diag � Yq(i)R
−1
qq (i)YH

q (i) � � , (25)

φD(s) =
f ′

D(s)

fD(s)
. (26)

The SIRP score function in (25) is applied element-wise to the
matrix in its argument.

From the update equation (22), we see that the inherent nor-
malization of the generic SOS algorithm is retained with the SIRP
model, and from (25) we see again the close relation to the SOS
algorithm, which is obtained by setting Λ̃q(i) = I.

4.3. Calculation of optimum SIRP score functions for separa-
tion of convolutive mixtures

To derive a TRINICON-SIRP realization using (26) we need an
analytical expression of the multivariate pdf (20). As noted above,
for SIRPs, this expression can actually be derived from the uni-
variate pdf [17].

To achieve this, a key observation is that a pdf of a certain or-
der must be a marginal density of a higer-order pdf. Thus, they are
related by an integral transformation. A simple and elegant way
to carry out this transformation is to employ Meijer’s G-functions.
Most elementary and non-elementary mathematical functions can
be expressed as G-functions (for their definition and specific nota-
tion, see, e.g., [17]). For practical purposes, symbolic calculations
with G-functions can be made using mathematical software, e.g.,
Maple. As shown in [17] the procedure is as follows:

1.) Express the assumed univariate pdf as a G-Function. Most
of the known models can be expressed in the following
form:

p1(y) = A · Gm n
p q

�
λy2 ���� ap

bq � .

For example, the laplacian pdf is given by b1 = 0, b2 =
1/2, A = 1/

√
2π, λ = 1/2.

2.) From this expression, the corresponding multivariate pdf
(20) can be directly given by the following rule:

fD(s) =
√

πAs(1−D)/2 · Gm+1 n
p+1 q+1

�
λs ���� ap, 0

D−1
2

, bq � .
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3.) Convert the multivariate pdf back to known functions (e.g.,
using a mathematical software).

Following this procedure, we obtain, e.g., as the optimum SIRP
score for a univariate Laplacian pdf:

φD(s) =
1

D −
√

2s
KD/2+1(

√
2s)

KD/2(
√

2s)

, (27)

where Kν(·) denotes the ν-th order modified Bessel function of
the second kind.

5. SIMULATION RESULTS

We conducted our experiments using speech signals from the
TIMIT database convolved with impulse responses of a real room
with reverberation time T60 ≈ 150 ms. Note that the reverbera-
tion time (or filter length) is not very critical here due to the in-
herent normalization property discussed in Sect. 4 and [13]. The
sampling rate was fs = 16 kHz. We used a two-element micro-
phone array with an inter-element spacing of 16 cm. We consider
in this paper only time-domain adaptation algorithms. For the fil-
ter adaptation (offline) we used both, the generic SOS algorithm
in the time-domain [13], and the proposed generic HOS algorithm
with SIRP model from the Laplacian pdf. We chose the follow-
ing parameters: L = 512, N = 1024, D = 512 (note that N
has to be chosen greater than D to get improved estimates in the
HOS case). To evaluate the performance, as shown in Fig. 2 we
used the signal-to-interference ratio (SIR), defined as the ratio of
the signal power of the target signal to the signal power from the
jammer signal. For Fig. 2, the stepsizes have been maximized up
to the stability margin.
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Fig. 2. Simulation results for two sensors and L = 512.

6. CONCLUSIONS

We presented a generic algorithm exploiting all three fundamental
statistical source properties for BSS, and an efficient solution in-
corporating a model for spherically invariant random processes. In
order to obtain computationally efficient real-time versions which
have not been considered in this paper, a corresponding frequency-
domain formulation can be derived as in [13].
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