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ABSTRACT

In this paper we introduce a novel adaptive beamformer which also
copes with incoherent background noise. After derivation of the
optimum filter based on a weighted time-domain least-squares er-
ror criterion we present an efficient realization by applying a multi-
channel frequency-domain algorithm exhibiting RLS-like conver-
gence. For the computation of this algorithm a simultaneous es-
timation of the power spectral density matrices of both, the noise
signal and the noisy speech signal is necessary. Hence, we propose
to use a novel approach based on minimum statistics to achieve
this simultaneous estimation. Furthermore, the necessary estimate
of a desired signal is generated by using single-channel spectral
subtraction. The musical noise is avoided in our approach due to
the inherent temporal and spatial averaging of our proposed beam-
former. Experimental results show that the algorithm is well-suited
for diffuse noise environments (e.g. car noise). Moreover, subjec-
tive listening tests confirm that a high speech quality can be ob-
tained.

1. INTRODUCTION

Using microphone arrays for the task of speech enhancement has
been a long-standing research interest in the signal processing
community. Good results are already achieved in the predomi-
nantly coherent noise case (e.g. [1]) but there is still much ongoing
research for diffuse noise environments (e.g. [2]).
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Fig. 1. LSE beamformer.
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In this paper we propose an optimization criterion which is, in
contrast to many traditional derivations, based on a time-domain
least-squares criterion. After formulating a least-squares error
(LSE) cost function with an exponential forgetting factor we can
derive the optimum filters wi by setting the gradient to zero. Fig. 1
shows the structure of the resulting LSE beamformer.

There are some problems to overcome when implementing
this optimum filter. In the formulation of the cost function we
assume the presence of a desired signal. As the clean speech sig-
nal is obviously not accessible, we have to use an estimate for the
desired signal. This estimate is generated by applying a spectral
subtraction based on minimum statistics [3, 4]. Due to the tem-
poral and spatial averaging the generation of musical noise in the
beamformer output is prevented. Therefore the spectral subtrac-
tion is tuned aggressively to obtain a high upper bound for the
achievable SNR which is given by the SNR of the desired signal.

Moreover, the derivation of the optimum filter leads to a multi-
channel adaptive algorithm where often extremely ill-conditioned
correlation matrices have to be inverted. As the input signals are
not only auto-correlated but also highly cross-correlated, recur-
sive least-squares (RLS) algorithms provide optimum convergence
speed as they explicitly take the cross-correlations into account. To
obtain a computationally feasible RLS algorithm, we apply a re-
cently derived [5] frequency-domain multichannel algorithm that
exhibits RLS-like convergence properties.

Additionally, to compute the optimum filter we have to esti-
mate the correlation matrices of the noisy speech signal and of
the noise signal simultaneously. As opposed to the approach in
[6] where a voice activity detector is used to distinguish between
speech and noise characteristics, we propose to use the minimum
statistics approach [4] in our frequency-domain realization. Thus,
we are able to simultaneously track the noise and noisy signal
power spectral density (psd). To obtain also the cross-power spec-
tral densities we detect the appearance of minima in each fre-
quency bin, i.e., the moment when only the noise signal is present
and hence we are able to estimate also the cross-power spectral
densities.

Results of using the proposed algorithm in real-world scenar-
ios are presented which show the capability of this method. More-
over, subjective listening tests confirm that a high speech quality
can be obtained.

The paper is organized as follows: First we derive the opti-
mum filter based on the least-squares error cost function. Sec-
ond we describe the RLS-like multichannel frequency-domain al-
gorithm. This is followed by a description of how to estimate



the cross-spectral density matrices and the desired signal by us-
ing minimum statistics. In the end we show some experimental
results.

2. OPTIMUM LEAST-SQUARES ERROR
BEAMFORMING

In this section we introduce the signal model and propose a least-
squares error (LSE) criterion for our beamformer setup as shown
in Fig. 1. In our notation lower case boldface and upper case bold-
face denote vectors and matrices, respectively. Superscripts T and
H denote vector or matrix transposition and complex conjugate
transposition. We assume the presence of a desired speech signal
s and a wideband noise signal n. Thus the sensor signals in each
channel i = 1, . . . , P may be written as

xi(k) = si(k) + ni(k). (1)

The output of the beamformer is obtained by convolution of the
sensor data with time-varying FIR filter impulse responses and
summation

y(k) = w
T (k)x(k) (2)

where the P time-varying beamformer filters wi(k) =

[w0,i(k), w1,i(k), . . . , wL−1,i(k)]T are combined in a tap-stacked
PL × 1 weight vector

w(k) =
�
w

T
1 (k),wT

2 (k), . . . ,wT
P (k) � T

. (3)

Accordingly, the PL × 1 sensor data vector x(k) is defined as

x(k) =
�
x

T
1 (k),xT

2 (k), . . . ,xT
P (k) � T

, (4)

xi(k) = [xi(k), xi(k − 1), . . . , xi(k − L)]T . (5)

Similarly to (1) we can write the sensor data vector as combination
of speech signal s(k) and noise signal n(k)

x(k) = s(k) + n(k) (6)

2.1. Weighted error criterion

We derive an optimum beamformer for non-stationary signals in
the time domain in a least squares error (LSE) sense. To take the
non-stationarity into account we formulate the beamformer using
time averages over finite data blocks instead of using stochastic
expectations. As the speech signal s(k) is not accessible, we can
only obtain an estimate for the speech component s(k) which is
denoted as desired signal d(k). Hence, we define the estimation
error e(k) as the difference between the multichannel filter output
and the desired signal d(k) (see Fig. 1)

e(k) = d(k) − w
T (k)x(k) (7)

= d(k) − w
T (k) (s(k) + n(k)) .

To express the estimation error e(k) (7) in a block-by-block man-
ner we introduce the desired signal vector d(m) of size L× 1 and
the PL × L data matrix X(m)

d(m) = [d(mL), d(mL + 1), . . . , d(mL + L − 1)]T (8)

X(m) = [x(mL),x(mL + 1), . . . ,x(mL + L − 1)]. (9)

where m denotes the block index. The data matrix X(m) can be
splitted according to (1) into a matrix with speech signal compo-
nents Xs(m) and a matrix with interference components Xn(m).
Additionally, similar to [6] we introduce a weighting factor β to
allow a trade-off between signal distortion and residual noise. We
can now write the block error e(m) as

e(m) = d(m) − � XT
s (m) + βX

T
n (m) � w(mL), (10)

Thus we can formulate the weighted LSE cost function with the
exponential forgetting factor λ (0 ≤ λ ≤ 1)

JLSE (m) = (1 − λ)

m�
b=1

λ
m−b

e
T (b)e(b). (11)

2.2. Optimum filter

In the following we assume that the speech signal and the noise
signal are mutually orthogonal, i.e. Xs(m)T Xn(m) = 0. The
noise signal, however, may be correlated between the different
sensors. We can now derive an optimum filter wLSE,o(mL) by
taking the derivative of (11) with respect to w(mL) and by setting
the gradient to zero. Thus we obtain

wLSE,o(mL) = (Φx(m) + ρΦn(m))−1
X(m)d(m) (12)

where the weighting factor ρ = β2 −1 and the recursive estimates
of the cross-correlation matrices with respect to (w.r.t.) the sensor
signals Φx(mL) and w.r.t. interference Φn(mL) are given by

Φx(m) = λΦx(m − 1) + (1 − λ)X(m)XT (m) (13)

Φn(m) = λΦn(m − 1) + (1 − λ)Xn(m)XT
n (m). (14)

3. REALIZATION IN THE FREQUENCY DOMAIN

The direct realization of (12) requires the computation of a ma-
trix inverse of size PL × PL (typically: L = 64 . . . 512 and
P = 2 . . . 16). In order to reduce the computational complex-
ity, we propose to determine (12) in the discrete Fourier transform
domain (DFT) using an efficient multichannel frequency-domain
algorithm [5]. The estimation of the cross-correlation matrices
Φx, Φn and of the desired signal d(m) will be based on minimum
statistics.

3.1. Efficient RLS-like multichannel frequency-domain algo-
rithm

The performance of multichannel adaptive filtering algorithms de-
pends strongly on the choice of the adaptation algorithm. This
is due to the very ill-conditioned nature of the underlying nor-
mal equation (12) of the optimization problem to be solved iter-
atively. For such applications, the recursive least-squares (RLS)
algorithm is known to be the optimum choice in terms of conver-
gence speed as it exhibits properties that are independent of the
eigenvalue spread.

The adaptive filters in our system are efficiently updated in
the frequency (DFT) domain in a block-by-block fashion, using
the Fast Fourier Transform (FFT) as a powerful vehicle. As a
result of this block processing, the arithmetic complexity is sig-
nificantly reduced compared to time-domain adaptive algorithms



while desirable RLS-like properties are maintained. The possibil-
ity to exploit the efficiency of FFT algorithms is due to the Toeplitz
structure of the matrices Xs and Xn involved in (10), which re-
sults from the time-shift properties of the input signals. Conse-
quently, by rewriting the original time-domain block error signal
(10) in the frequency domain and then introducing an analogous
frequency-domain cost function allows a mathematically rigorous
derivation of single- and multichannel frequency-domain adaptive
algorithms, as shown in [5].

In Fig. 2 the frequency-domain LSE beamforming algorithm
is depicted and Table 1 summarizes the necessary steps to com-
pute the algorithm. There wi and d denote the frequency-domain
representations of the estimated beamformer weights of channel i

and of the desired signal, respectively. The block output signal is
written as y(m) = [y(mL), . . . , y(mL + L − 1)]T and the ma-
trix F is the DFT matrix of size 2L × 2L. Compared to (12) we
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Fig. 2. Frequency-domain implementation of the LSE beam-
former.

now only have to invert a P × P matrix in each frequency bin for
computing the frequency-domain Kalman gain K(m). This can
be done very efficiently as shown, e.g., in [5].

The main difficulty in implementing this algorithm is the need
to estimate the desired signal and the cross-power spectral density
matrix w.r.t. sensor signals and w.r.t. noise signals. This will be
addressed in the next section.

3.2. Estimation of spectral density matrices and of the desired
signal with minimum statistics

In this paper we propose to use the minimum statistics approach
[4] for the estimation of the noise characteristics. This method is
based on the observation that the power of a noisy speech signal
frequently decays to the power of the background noise. Hence
the general idea is to track the minima of the psd of the sensor sig-
nals in each frequency bin without any distinction between speech
activity and speech pause. The minima are estimates of the psd of
the noise. In [4] it was also shown that for an accurate estimate
of the noise psd a time and frequency-dependent psd smoothing
and bias compensation is necessary. Thus unlike in [6] where a
voice activity detector is used to subsequently estimate either the
noise psd or the noisy speech psd, we can perform this estimation
simultaneously.

Definitions
i, j = 1, · · · , P (number of microphone channels)
W = diag {[01×L11×L]}
µ ≤ 2
Algorithm
Microphone signals:

Xi(m) = diag � F [xi(mL − L + 1) · · ·xi(mL + L)]T �
X(m) = [X

1
(m), . . . ,XP (m)]

X(m) = Xs(m) + Xn(m)
Power spectrum estimation w.r.t. sensor and noise signals:
S(m) = λS(m − 1) + (1 − λ)XH(m)X(m)
Sn(m) = λSn(m − 1) + (1 − λ)XH

n (m)Xn(m)

S̃(m) = S(m) + ρSn(m)
Kalman gain computation:
K(m) = (1 − λ)S̃−1XH(m)
Filtering:
y(m) = � P

i=1
Xi(m)wi(m)

ẽ(m) = � 01×LdT (m) � T
−WF−1y(m)

ẽ(m) = Fẽ(m)
wi(m + 1) = wi(m) + µKi(m)ẽ(m)
Output signal:
y(m) = WF−1y(m)

Table 1. P × 1-channel frequency-domain adaptive filtering

However, in the frequency-domain counterpart of (13), (14)
described in Table 1, not only the psd but also the cross-power
spectral densities of the noisy signal xi and the background noise
ni are required. They are estimated and averaged recursively for
each frequency bin whenever we detect a minimum (i.e. speech
pause) of the noisy speech signal. This method gives an accu-
rate estimate of the noise spectral density matrix for slowly time-
varying noise statistics.

The other difficulty we have to deal with is the need of a de-
sired signal d(k). In [6] this was circumvented by selecting a one
microphone channel as a reference channel and then simply sub-
tracting the estimated noise signal from the reference channel and
using the result as estimate of the desired signal.

Here we propose to use the noise characteristics estimated
with minimum statistics and then apply a single-channel spectral
subtraction rule [3]. This allows a more sophisticated estimation
of the desired signal than a simple subtraction in the time-domain.
To increase robustness we average the desired signal over all P

channels. In single-channel noise reduction we can often perceive
musical noise resulting from the nonstationarity of the noise back-
ground. This effect can be decreased by the introduction of an
oversubtraction factor and a limitation of the maximum subtrac-
tion by a spectral floor constant. However, the residual musical
noise is still audible.

In our algorithm, the LSE beamformer is trying to adapt to the
desired signal d(k) (i.e. the single-channel spectral subtraction so-
lution) in the least-squares sense. Therefore the upper bound of the
achievable SNR by using LSE beamforming is given by the SNR
of the desired signal. The desired signal is generated by single-
channel noise reduction, where always a tradeoff between musical
noise and SNR enhancement exists. To obtain a high upper bound
we will tune the spectral subtraction parameters aggressively to ob-
tain a desired signal d(k) with high SNR leading to high musical
noise.



Due to the temporal averaging introduced by using the recur-
sive estimation of the cross-power spectral density matrices of sen-
sor and noise signals S(m),Sn(m), we can avoid the generation
of musical noise in our multichannel frequency-domain adaptive
algorithm. Additionally also the spatial averaging over all chan-
nels P is contributing to avoid musical noise in the output y(k).
This means we can combine in our LSE beamformer a high noise
suppression while avoiding musical noise.

Additionally it was shown in [1, 7] that we can decompose
our system into an MVDR beamformer and a frequency-dependent
postfilter. Thus if the spatial degrees of freedom are already suf-
ficient for noise suppression, then the output of the LSE beam-
former would be undistorted. If any residual noise remains then it
is further reduced by the frequency-dependent postfilter which by
nature also introduces desired signal distortion.

4. EXPERIMENTAL RESULTS

We have evaluated our algorithm on real data which was recorded
with an 8-channel microphone array mounted at the sun visor po-
sition of the co-driver in a Nissan Patrol 4 × 4 car driving in a
suburban area with 80km/h. The inter-element spacing was cho-
sen to d = 4cm and the sampling rate fs is 8 kHz.

For a diffuse environment the magnitude squared coherence
(MSC) is given by [8]

Γ2(Ω) =
sin2(Ωfsdc−1)

(Ωfsdc−1)2
, (15)

where c is the velocity of sound. As it can be seen in Fig. 3, our
recorded data exhibits relatively diffuse noise components. The
reverberation time T60 of the car was approximately 80ms. We
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Fig. 3. Magnitude squared coherence of background noise (FFT
length 256).

compared our algorithm to a filter & sum beamformer with Dolph-
Chebyshev windowing by using the segmental signal-to-noise ra-
tio (SSNR) as an objective performance measure. The SSNR was
calculated by using a frame size of 16 ms and excluding frames
whose power was below the long-term average of the whole clean
speech signal. The input signal-to-noise ratio (SNR) was varied
between 0 dB and 10 dB. The length of the beamformer filters

SNR Input 0 dB 5 dB 10 dB
SSNR Input in dB -3.7 1.3 6.3
SSNR of Filter & Sum in dB -1.2 3.8 8.8
SSNR of LSE beamformer in dB 1.4 6.4 11.0

Table 2. Segmental SNR results.

was chosen to L = 256. There was no audible degradation of the
speech signal observed. Speech signals are available for listening
in [9].

5. CONCLUSIONS

We have proposed to apply a weighted least-squares optimization
criterion which can be implemented efficiently as a multichannel
frequency-domain adaptive algorithm with RLS-like convergence
properties. We applied a minimum statistics method to obtain a
simultaneous estimation of the noise signal and noisy speech sig-
nal spectral density matrices. Based on the estimated noise psd
we generated a desired signal with a spectral subtraction rule that
was adjusted to give high SNR enhancement. Musical noise was
avoided in the LSE beamformer due to the inherent temporal and
spatial averaging. Experimental results on real data show the ef-
fectiveness of our method.
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