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ABSTRACT

We propose a novel class of efficient and robust adaptive algo-
rithms in the frequency domain that is tailored to very long adap-
tive filters and highly autocorrelated input signals as they arise,
e.g., in echo cancellation for high-quality full-duplex audio appli-
cations. The approach exhibits fast convergence, good tracking
capabilities of the signal statistics, and very low delay. Moreover,
the low order of computational complexity of the conventional
frequency-domain adaptive algorithms can be maintained thanks
to efficient realizations. The algorithm allows a tradeoff between
the well-known multidelay filter (MDF) and the recursive least-
squares (RLS) algorithm. It is also well suited for an efficient gen-
eralization to the multichannel case. Moreover, as the robustness
issue during double talk is particularly crucial for fast-converging
algorithms, we apply the concept of robust statistics into our ex-
tended frequency-domain approach. Due to the robust generaliza-
tion of the cost function leading to a so-called M-estimator, the
algorithms become inherently less sensitive to outliers, i.e., short
bursts that may be caused by potential double-talk detection fail-
ures.

1. INTRODUCTION

Many signal processing applications require adaptive filters with
very long impulse responses. In acoustic echo cancellation (AEC)
as shown in Fig. 1, for example, thousands of FIR filter coefficients
may be required to sufficiently model the echo path. Moreover, the
input data are often very highly correlated which causes slow con-
vergence of most algorithms [1]. The requirements are particularly
demanding for high-quality and/or multichannel audio reproduc-
tion.
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Fig. 1. Adaptive filter and double-talk detector in the AEC appli-
cation.

An attractive solution to these problems is to use frequency-
domain adaptive filters since, on the one hand, the computational

complexity can be greatly reduced by exploiting the Fast Fourier
Transform (FFT). On the other hand, the Discrete Fourier Trans-
form (DFT) approximately decorrelates the input signals, which
leads to very favorable convergence properties of the adaptive al-
gorithms. Frequency-domain methods rely on block-processing.
In early approaches, the block length, i.e., the number of new sam-
ples used for each update, was set to the number of filter taps.
The associated processing delay, equal to the block length, and
the resulting difficulty to follow time-varying statistics of non-
stationary signals, are often considered to be a major handicap.
Therefore, a more flexible structure was introduced, the multide-
lay filter (MDF) [2], where the filter length L is partitioned into
shorter length-N sub-filters. While the processing delay can be
significantly reduced with this structure, the major disadvantage
of choosing a block length N that is much shorter than the filter
length L is that the convergence speed is often severely degraded
for highly correlated signals since the correlations between these
shorter blocks are not taken into account.

In this paper, we study an extended MDF (EMDF) to solve this
problem. The EMDF algorithm in its baseline version [3] follows
directly from a generic partitioned frequency-domain adaptive al-
gorithm which can be rigorously derived from an exponentially
weighted least-squares criterion in the frequency-domain [4]. The
generic frequency-domain framework has led to efficient imple-
mentations of multichannel acoustic echo cancellation systems by
inherently taking all inter-channel correlations into account. In a
similar way, the EMDF algorithm contains all inter-partition cor-
relations.

In addition to an improved echo cancellation performance, we
also consider here the robust operation during double talk, i.e., dur-
ing speaker activity in the receiving room. The robustness issue
during double talk is particularly crucial for fast-converging algo-
rithms as a failure of double-talk detection (Fig. 1) may then in
turn cause fast divergence. Therefore, we apply the concept of
robust statistics [5] to the extended frequency-domain approach.
Due to the generalization of the cost function to a so-called M-
estimator, the algorithms become inherently less sensitive to out-
liers, i.e., short bursts that may be caused by double-talk failures at
the beginning or the end of utterances. Robust statistics has already
been shown to be a very powerful tool to circumvent this problem
in the echo cancellation application [6, 7, 8]. In this contribution,
we show how this concept can be included in the generic parti-
tioned frequency-domain algorithm for obtaining a robust EMDF
realization. To keep the formal presentation short and accessi-



ble, we concentrate on the single-channel EMDF algorithm in this
paper; the generalization to the multichannel version is obtained
analogously as in [4]. In contrast to inter-channel correlations,
the inter-partition correlations in the EMDF result from a shift-
structure of the data. This structure can be exploited to derive fast
implementations. Using a fast implementation of the EMDF algo-
rithm (FEMDF) the computational complexity can be kept on the
same order as that of the classical MDF.

2. ROBUST GENERIC PARTITIONED
FREQUENCY-DOMAIN ADAPTIVE FILTERING

Here, we present a generic frequency-domain algorithm in its ro-
bust partitioned and constrained single-channel version providing
the basis for the robust EMDF algorithm introduced in Sect. 3.

2.1. Definitions and Notation

In this paper, we follow the same notation as in [4], where a de-
tailed derivation and an analysis of the non-robust generic algo-
rithm can be found.

From Fig. 1, it can be seen that the error signal at time n bet-
ween the output of the adaptive filter ŷ(n) and the desired output
signal y(n) is given by

e(n) = y(n) −
L−1�
κ=0

x(n− κ)ĥκ, (1)

where ĥκ are the coefficients of the filter impulse response. By
partitioning the impulse response ĥ of length L into K segments
of length N = L/K as in [2], (1) can be written as

e(n) = y(n) −

K−1�
k=0

N−1�
κ=0

x(n−Nk − κ)ĥNk+κ

= y(n) −

K−1�
k=0

x
T
k (n)ĥk = y(n) − x

T (n)ĥ, (2)

where

xk(n) = [x(n−Nk), x(n−Nk − 1), . . .

. . . , x(n−Nk −N + 1)]T , (3)

ĥk = [ĥNk , ĥNk+1, . . . , ĥNk+N−1]
T , (4)

x(n) = [xT0 (n),xT1 (n), . . . ,xTK−1(n)]T . (5)

Superscript T denotes transposition of a vector or a matrix. The
length-N vectors ĥk, k = 0, . . . , K − 1 represent sub-f ilters of
the partitioned tap-weight vector

ĥ = [ĥ0, . . . , ĥK−1]
T . (6)

We now define the block error signal of length N . Based on
(2) we write

e(m) = y(m) −

K−1�
k=0

U
T
k (m)ĥk, (7)

where m is the block time index, and

e(m) = [e(mN), . . . , e(mN +N − 1)]T , (8)

y(m) = [y(mN), . . . , y(mN +N − 1)]T , (9)

Uk(m) = [xk(mN), . . . ,xk(mN +N − 1)]. (10)

To derive the frequency-domain algorithm, the block error signal
(7) is transformed by a DFT matrix to its frequency-domain coun-
terpart. The matrices Uk(m), k = 0, . . . , K − 1 are Toeplitz
matrices of size (N × N). Since a Toeplitz matrix Uk(m) can
be transformed, by doubling its size, to a circulant matrix of size
(2N × 2N), and a circulant matrix can be diagonalized using
the (2N × 2N)-DFT matrix F2N with elements e−j2πνn/(2N)

(ν, n = 0, . . . , 2N − 1), we have

U
T
k (m) = [0N×N , IN×N ]� ��� �

:=W01

N×2N

F
−1
2NXk(m)F2N [IN×N ,0N×N ]T� ��� �

:=W10

2N×N

with the diagonal matrices

Xk(m) = diag{F2N [x(mN −Nk −N), . . .

. . . , x(mN −Nk +N − 1)]T }. (11)

This finally leads to the following block error signal

e(m) = y(m) − W
01
N×2NF

−1
2NX(m)G10

2L×Lĥ, (12)

where

X(m) = [X0(m),X1(m), . . . ,XK−1(m)], (13)

G
10
2L×L = diag {G10

2N×N , . . . ,G
10
2N×N}, (14)

G
10
2N×N = F2NW

10
2N×NF

−1
N , (15)

ĥ = [ĥ
T

0 , . . . , ĥ
T

K−1]
T , (16)

ĥk = FN ĥk. (17)

2.2. Adaptation Algorithm

As in derivations of time-domain adaptive algorithms, we now
form a criterion that is minimized with respect to its filter coef-
ficients. Modeling the noise with a probability density function
(PDF) with a tail that is heavier than the Gaussian PDF gives us
a non-quadratic function to minimize, which results in an outlier-
robust algorithm [5]. Following [5] we choose to work with the
following criterion:

J̃(ĥ) =

mN+N−1�
n=mN

ρ � |e(n)|

s � , (18)

where ρ[·] is a convex function and s is a real positive scale factor
for block m, as discussed in [7]. The resulting algorithm inher-
its robust properties as long as the nonlinear function ρ[·] has a
bounded derivative [5]. The so-called Huber estimator is given by
the following choice of ρ[·] [5]:

ρ(|z|) = 	 |z|2

2
, for |z| ≤ k0,

k0|z| −
k2
0

2
, for |z| ≥ k0.

(19)

where k0 is a constant controlling the robustness of the algorithm.
Adaptive Newton-type algorithms [9] minimize the criterion (18)
by using a recursion of the form

ĥ(m) = ĥ(m− 1) − µ′
S
−1
ψ′ ∇J̃ [ĥ(m− 1)], (20)

where ∇J̃(ĥ) = ∂/∂ĥ
∗
J̃ is the gradient of the optimization cri-

terion w.r.t. ĥ, Sψ′ is an approximation of the expected value of



the Hessian ∇2J̃ = ∂/∂ĥ
∗
(∇J̃)H which will be specified below

in more detail, and µ′ is the relaxation parameter.
To proceed, we need to calculate the gradient and Hessian of

(18). We write one complex conjugated element of the error vector
e(m) as

e∗(n) = e
H(m)1n−mN

= � yH(m) − ĥ
H

(G10
2L×L)HX

H(m)F−H
2N W

01
2N×N �

·1n−mN , (21)

where n = mN, . . . ,mN +N − 1, and 1i is a length-N vector
containing a 1 in position i and zeros in all other positions. Then,
the gradient is found using the chain rule:

∇J̃ =
∂

∂ĥ
∗ J̃ =

mN+N−1�
n=mN

∂

∂ĥ
∗ ρ � |e(n)|

s �
=

mN+N−1�
n=mN

∂

∂ĥ
∗ [e∗(n)]ρ′ � |e(n)|

s � sign [e(n)]

s

Using (21), it follows

∇J̃ = −
1

2Ns
(G10

2L×L)HX
H(m)F2NW

01
2N×N � [e(m)]

= −
1

2Ns
(G10

2L×L)HX
H(m) � [e(m)], (22)

where

� [e(m)] =

����� ψ � |e(mN)|
s � sign [e(mN)]

...

ψ � |e(mN+N−1)|
s � sign [e(mN +N − 1)]

� ���� ,
ψ(|z|) = ρ′(|z|) = min{|z|, k0},� [e(m)] = F2N � 0N×N� [e(m)] � .

Combining (20) and (22), we find the robust frequency-domain
update

ĥ(m) = ĥ(m− 1) +
µ′

2Ns
S
−1
ψ′ (m)(G10

2L×L)HX
H(m) � [e(m)].

(23)

We now derive the Hessian and estimate its expected value Sψ′ .
The Hessian is expressed as

∇2J̃ =
∂

∂ĥ
∗ (∇J̃)H

= −
1

s

∂

∂ĥ
∗ � H [e(m)]W01

N×2NF
−1
2NX(m)G10

2L×L.

By applying again the chain rule, followed by recursive averaging
using a forgetting factor λ (0 < λ < 1) , we finally obtain the
estimate

Sψ′(m) =
(1 − λ)

s2

m�
i=0

λm−i(G10
2L×L)HX

H(i)G̃2N×2N (i)

·X(i)G10
2L×L, (24)

where

G̃2N×2N (m) = F
−H
2N W

01
2N×NΨ 	 [e(m)]W01

N×2NF
−1
2N , (25)

Ψ 	 [e(m)] = diag
 ψ′ � |e(mN)|

s � . . . ψ′ � |e(mN +N − 1)|

s ��� ,
and ψ′ is the derivative of ψ, i.e., ψ′(|z|) is 1 for |z| ≤ k0 and 0
else.

Eqs. (24),(12), and (23) form the main equations of the generic
adaptive algorithm. In the same way as shown in [4], these equa-
tions can be reformulated in a practically more useful form:

Sxx(m) = λSxx(m− 1)

+
(1 − λ)

s2
X
H(m)G̃2N×2N (m)X(m), (26)

K(m) = S
−1
xx (m)XH(m), (27)

e(m) = y(m) − W
01
N×2NF

−1
2NX(m)ĥ2L(m− 1), (28)

ĥ2L(m) = ĥ2L(m− 1) +
µ′

2Ns
G

10
2L×2LK(m) � [e(m)].

(29)
Due to the formal similarity of Eqs. (26)-(29) to the RLS algorithm
[1] in the time domain, we call the matrix K(m) the frequency-
domain Kalman gain. The Kalman gain plays a key role in the
following sections.

3. ROBUST EXTENDED MULTIDELAY FILTER (EMDF)

The Algorithm (26)-(29) is strictly equivalent to the (robust) RLS
algorithm in the time domain for a block length N = 1. Unfor-
tunately, the matrix Sxx(m) in (26) is not diagonal, so the above
generic algorithm still has a high computational complexity due to
the matrix inversion in (27).

To simplify this algorithm we would like to use the same ap-
proximation as for the non-robust frequency-domain method in
[4]. We start by approximating Ψ 	 [e(m)] as

Ψ 	 [e(m)] = ψ′
min(m)IN×N , (30)

where ψ′
min(m) should be bounded by µ = µ′/(1−λ) to prevent

instability (ψ′ ∈ {0, 1}) of the update (29),

ψ′
min(m) = max � µ, min

0≤n≤N−1

 ψ′ � |e(mN + n)|

s �� � .
Since F−H

2N W01
2N×2NF−1

2N = G01
2N×2N /(2N), (25) is now ap-

proximated as

G̃2N×2N (m) =
ψ′

min(m)

2N
G

01
2N×2N . (31)

Furthermore, as shown in [4], matrix G01
2N×2N can very well be

approximated by G01
2N×2N = I2N×2N/2 in (26) for sufficiently

largeN . This approximation leads to a block-diagonal structure of
matrix Sxx(m) with the diagonal sub-matrices (i, j = 0, . . . , K−
1)

Si,j(m) = λSi,j(m− 1) + (1 − λ)X∗
i (m)Xj(m). (32)

Figure 2 illustrates the block structure for the example of 5 parti-
tions. The classical multidelay filter (MDF) in its robust version
is obtained by further approximating Sxx(m) by dropping the off-
diagonal components, i.e., the inter-partition correlations (grey di-
agonals in Fig. 2). This leads to the low computational complexity
per output sample, which is linear in K.



The extended multidelay filter (EMDF) takes the inter-partition
correlations into account and thus provides a better approxima-
tion to the exact solution of the normal equation. However, a
straightforward implementation leads to a computational complex-
ity, which increases quadratically with the numberK of partitions.
Fast schemes, as discussed in the next section, provide a solution
with a complexity that is comparable to that of the classical MDF.

2L

2N

Fig. 2. Structure of matrix Sxx(m).

4. FAST IMPLEMENTATIONS OF THE ROBUST EMDF

To reduce the computational complexity of the robust EMDF al-
gorithm, it is interesting that the data among the partitions are not
independent. Due to the formal similarity of Eqs. (32), (27)-(29)
with the RLS algorithm in the time domain [1, 10], correspond-
ing fast implementations of the Kalman gain (Eqn. (27) which
turns out to be the same for the robust and non-robust versions)
can be expected. In [3] it is shown that all fast calculation schemes
known for the RLS can actually be applied to the EMDF after a
slight modification. The key for fast RLS realizations is the shift-
structure of the input signal vector [1, 10]. In case of the (robust)
EMDF there is a corresponding shift-structure among the parti-
tions (in each frequency-bin). Using this approach the complex-
ity increases only linearly (instead of quadratically as with the or-
dinary EMDF algorithm) with the number of partitions, and the
overal complexitiy is on the same order as in the classical MDF.
As an example, a fast EMDF algorithm based on the so-called fast
transversal filter (FTF) structure [10] is given in [3].

5. EVALUATION FOR ACOUSTIC ECHO
CANCELLATION

We demonstrate the performance of the algorithm by an exam-
ple for acoustic echo cancellation. We apply the (single-channel)
EMDF algorithm for (single-channel) AEC with K = 50 parti-
tions, a block length (each partition)N = 64, and a high sampling
rate of 48 kHz. As input signal, we chose classical music (Air
by Bach). The signal sequence is highly auto-correlated (tonal
sounds, which are known as worst case for the adaptation). In
Fig. 3 we compare different algorithms without doubletalk. In this
case, an echo-to-background noise ratio (EBR) of 45 dB on the mi-
crophone was chosen. The dashed and dash-dotted lines in Fig. 3
show the echo return loss enhancement ERLE and the coefficient
error norm achieved by the conventional MDF and the fast RLS,
respectively, as the extreme cases. For the solid lines, the same
data and the same parameters are used with the EMDF algorithm.
It is important to note that the regularization is adjusted in each
case. Several simulations have confirmed that the EMDF shows
a significantly more stable behaviour than the classical MDF due
to the more accurate approximation to the exact recursive solution
of the normal equation while the complexity is kept low (MULs
for Kalman gain per output sample: in our example FRLS 16000,
MDF 100, FEMDF (FTF) 250). In Fig. 4, we compare the coeffi-
cient error norm of the robust and non-robust EMDF algorithms in
the double-talk case with a coherence-based detector [11].
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Fig. 3. Comparison between classical MDF (dashed lines), Fast
RLS (dash-dot), and EMDF (solid lines).

0 1 2 3 4 5 6
−14

−12

−10

−8

−6

−4

−2

0

Time [sec]

C
oe

ffi
ci

en
t e

rr
or

 n
or

m
 [d

B
]

Fig. 4. Double-talk case: near-end speech after 2sec. Non-robust
EMDF (dashed line) and robust EMDF (solid line).
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