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ABSTRACT

In this paper we propose a time-domain gradient algorithm that ex-
ploits the nonstationarity of observed signals and recovers the orig-
inal sources by simultaneously decorrelating time-varying second-
order statistics. By introducing a generalized weighting factor
in our cost function we can formulate an on-line algorithm that
can be applied to time-varying multipath mixing systems. A fur-
ther benefit is the possibility of implementing updates in a recur-
sive manner and thus reduce computational complexity. We show
that this method inherently possesses an adaptive step size and
hence avoids stability problems. Furthermore we present a new
geometric initialization for time-domain gradient algorithms that
improves separation performance in strongly reverberant environ-
ments. In our experiments we compared the separation perfor-
mance of the proposed algorithm with those of its off-line counter-
part and another multiple-decorrelation-based on-line algorithm in
the frequency domain for real-world speech mixtures.

1. INTRODUCTION

Blind source separation (BSS) refers to the problem of recover-
ing signals from several observed linear mixtures. The adjective
“blind” stresses the fact that the source signals are not observed
and that no information is available on the multi-path mixing pro-
cess. This lack of a priori knowledge about the mixing system is
compensated for by a statistically strong but physically plausible
assumption of independence. The absence of prior information is
actually the strength of the BSS model. Thus BSS has received
considerable attention in the recent years, and many algorithms
have been proposed [1, 2, 3], mainly in relation to scalar mixing
systems.

We focus on BSS for acoustic signals, which is characterized
by a convolutive mixing process and therefore is an even more
challenging topic. Among the unresolved problems are two of par-
ticular interest. Firstly, in strong reverberant environments most of
the current algorithms fail to achieve sufficient separation perfor-
mance. This is due to the fact that most algorithms try to invert
the multi-path mixing system by adapting multi-path finite im-
pulse response (FIR) filters. Thus in highly echoic rooms a very
large number of filter coefficients need to be identified. Secondly,
in real-world scenarios, the multi-path mixing system is usually
time-variant because of moving sources, moving sensors or chang-
ing environments. This requires a continuous adaptation of the

algorithm to the time-varying mixing system with a sufficiently
fast convergence of the algorithm. We deal with both problems
in this paper and propose a new geometric initialization method
to improve the separation under reverberant conditions. The sec-
ond problem is addressed by introducing a generalized weighting
factor to allow us to track time-variant environments.

This paper is organized as follows. In Sec. 2 we present a mod-
ified cost function with a generalized weighting factor. We show
that the inherent normalization avoids stability problems. There-
after we derive the natural gradient adaptation for the proposed
cost function and present a recursive formulation for an on-line
time-domain gradient algorithm. We then introduce a new geo-
metric initialization method. After that we address the whitening
problem for time-domain BSS algorithms. In Sec. 3 we compare
simulation results for the proposed on-line algorithm with those
of its off-line counterpart and another on-line algorithm in the fre-
quency domain.

2. TIME-DOMAIN GRADIENT ALGORITHM

2.1. Convolutive BSS model

In real environments, signals arrive at the sensors with different
time delays due to reflections. This scenario is referred to as a
multi-path environment and can be described as a finite impulse
response (FIR) convolutive mixture:

x (t) =

P−1�

k=0

H (k) s (t − k) (1)

where s(t) = [s1(t), ..., sn(t)]T captures the n mutually indepen-
dent source signals and x(t) = [x1(t), ..., xm(t)]T are the mixed
signals obtained by the microphones. The superscript T denotes
transposition. The mixing system H is an m×n matrix consisting
of channel impulse responses hij(k) (i = 1, ..., m, j = 1, ..., n)
that are modeled by FIR filters of length P with the filter coeffi-
cients k = 0, ..., P − 1.

To obtain the estimated sources y(t) = [y1(t), ..., yn(t)]T ,
we seek a n × m matrix W of FIR filters of length L operating
on the sensor measurements x(t) such that the components of the
output vector y(t) are statistically independent:

y(t) =

L−1�

k=0

W(k)x(t − k) (2)
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where the unmixing matrix W(k) is defined as

W(k) =

��
� w11(k) · · · w1m(k)

...
. . .

...
wn1(k) · · · wnm(k)

� �
� . (3)

We introduce W(z) as the z-transform of the unmixing filter co-
efficient W(k) with k = 0, ..., L − 1:

W(z) =

L−1�

k=0

W(k)z−k
, (4)

where L denotes the length of the unmixing filter and z−1 is
used as the unit-delay operator for convenience, i.e., z−kx(t) =
x (t − k).

To recover the original source signals from the observed mix-
tures, BSS uses the mutual independence of the original sources.
However, the mutual independence cannot resolve the following
two ambiguities:

1. The order of the recovered source signals y(t) can be arbi-
trarily permuted as the mutual independence of the sources
is unaffected by the permutation.

2. The recovered signals y(t) may be arbitrarily filtered with
a diagonal matrix Λ where each element on the diagonal
represents an FIR filter of length P.

Thus we can express the recovered signals y(t) as:

y(t) = PΛ ∗ s(t) (5)

where * denotes convolution.
In the remainder of the paper we consider a two-speaker, two-

microphone BSS scenario as shown in Fig. 1
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Fig. 1. BSS model.

2.2. Cost function

The assumption of independence causes the correlation matrices
of the sources Rss(t, k) = E ` s(t)sT (t + k) a to become diago-
nal matrices. Acoustic sources are assumed to be nonstationary,
i.e., the auto-correlations of sources change independently over
time t. Hence the correlation matrix of the outputs Ryy(t, k) =
E ` y(t)yT (t + k) a also varies over time t. Thus, if we force esti-
mated outputs y(t) to be uncorrelated at every time t, we obtain a
much stronger condition than mere decorrelation for a single time
instant t, and this enables us to separate the sources.

Matsuoka et al. [4] used this principle for separating
scalar mixtures. This method was subsequently extended by

Kawamoto et al. [5] and used to separate convolutive mixtures.
As a measure of uncorrelatedness, we use the cost function pro-
posed in [5] and modify it for use with block processing methods.
Therefore we introduce R

(b)
yy (k) to represent the correlation matrix

of y(t) in the b-th analysis block with time delay k. The correla-
tion matrix defined by R

(b)
yy (k) = E(b) ` y(t)yT (t + k) a is calcu-

lated using a block processing procedure, where E(b) [x] denotes
the time average of x for the b-th block.

Additionally, with regard to deriving an on-line time-domain
gradient algorithm, we introduce a generalized weighting factor
β(m, b) where m and b denote block indices.

J1 b m,W(z) c =
1

2

m�

b=1

β(m, b) d log e det diag R
(b)
yy (0) f

− log e detR(b)
yy (0) fhg (6)

The operator diag X denotes the diagonal elements of the matrix
X.

The segmentation of the observed mixtures into blocks ensures
that we are calculating the cross-correlations at multiple times.
The non-negative cost function becomes zero only when yi(t)
and yj(t) are uncorrelated for all the local analysis blocks, i.e.,
E(b) [yi(t)yj(t)] = 0 (i, j = 1, ..., n; i 6= j, b = 1, ..., m). This
corresponds to a simultaneous diagonalization of multiple correla-
tion matrices at different times t.

2.3. Weighting factor

In adaptive filter signal processing it is customary to introduce
a weighting factor β(m, b) into the definition of the cost func-
tion [6]. The weighting factor, which we normalize so thati m

b=1 β(m, b) = 1, allows the more recent samples to have
greater influence on the output error, allowing the tracking of time-
variant acoustic environments. The introduced weighting factor is
based on the block indices m,b. Special forms of the weighting fac-
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Fig. 2. Weighting factors for adaptive algorithms. (a) exponential
forgetting factor, (b) sliding window of length K.

tor that are commonly used are sliding windows or the exponential
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weighting factor (forgetting factor) (Fig. 2) defined by

β(m, b) = (1 − λ)λm−b (7)

where λ is a positive constant close to, but less than 1.
This on-line formulation of algorithms including a general-

ized weighting factor is also similar to off-line or so-called batch
methods. For a batch method, the entire observed signal has to be
processed using the sliding window. After the block processing of
the entire signal, the output signals are generated by applying the
final unmixing filters to the sensor signals. Hence the algorithm
can be interpreted as one iteration of a batch method, as we have
no continuous separation of the observed signals.

In [7] we presented an off-line algorithm based on the cost
function (6) and an additional modification. This approach leads
to good results in highly reverberant environments.

In this paper, we consider the on-line counterpart with an ex-
ponential forgetting factor, as it can be formulated in a recursive
manner that is computationally simple. In the following paragraph
we will provide an on-line formulation of the update rule.

2.4. Natural gradient adaptation

We use the natural gradient adaptation, as introduced by Amari
[8], which provides an isotropic convergence independent of the
mixing matrix H, to minimize the cost function:

∆Wm (k) ∝ −
∂J1 b m,W (z) c

∂W (k)
W

T
(z−1)W(z), (8)

where the symbol ∝ means “proportional to” and k = 0, ..., L−1
denotes the filter tap index. The adaptation rule for an off-line
algorithm using the natural gradient is derived in [9]. For a cost
function including a general weighting factor β(m, b) (6) this re-
sults in:

Wm(k) = α

m�

b=1

β(m, b) � e R(b)
yy (0)−1 f T

R
(b)
yy (k)

− e diag R
(b)
yy (0) f −1

R
(b)
yy (k) � Wm−1(z)

+Wm−1(k) (9)

where α is a step size parameter, m denotes the current block and
k is the filter tap index. Equation (9) converges if the off-diagonal
components of R

(b)
yy (0) are minimized for all blocks. We con-

firmed in experiments that if we consider only time-delay k = 0,
we cannot achieve separation in a strongly reverberant environ-
ment. Therefore, we modify (9) to the following equation to eval-
uate the off-diagonal components of R

(b)
yy (k) for all time delays

k = 0, ..., L − 1:

Wm (k) = α

m�

b=1

β(m, b) � e diag R
(b)
yy (0) f −1

e diag R
(b)
yy (k) − R

(b)
yy (k) fhg (10)

Wm−1(z) + Wm−1(k)

This update equation simultaneously diagonalizes the correlation
matrices R

(b)
yy (k) for multiple blocks (depending on the shape

of β(m, b)) and additionally decorrelates the cross-correlations at
multiple time lags k. Hence we are using the nonstationarity and

the nonwhiteness of the source signals which lead to improved
separation.

With regard to an on-line algorithm, in our update equa-
tion (10) we use the exponential forgetting factor defined in (7).
This results in

Wm(k) = α∆Wm(k) + Wm−1(k) (11)

where

∆Wm(k) =
m�

b=1

(1 − λ)λm−bQb(k) (12)

Qb(k) = � e diag R
(b)
yy (0) f −1

e diag R
(b)
yy (k) − R

(b)
yy (k) fhg Wm−1(z) (13)

and k = 0, ..., L − 1 denotes the filter tap index of the unmixing
filter W. Equation (12) can be formulated in a recursive manner
to reduce the computational complexity. Another benefit is the
reduced memory requirements, since only the preceding filter tap
matrix has to be saved for the update.

∆Wm(k) = λ∆Wm−1(k) + (1 − λ)Qb(k) (14)

Thus, by using the exponential forgetting factor, we obtain an on-
line time-domain gradient algorithm that can be applied to time-
variant multipath environments.

2.5. Inherent normalization

Another approach for measuring the uncorrelatedness of the esti-
mated output signals is the cost function defined by:

J2(W) =
�

b,k

‖R(b)
yy (k) − diag R

(b)
yy (k)‖2 (15)

where R
(b)
yy (k) = E(b)[y(t)yT (t + k)], the index b denotes block

processing and ‖ · ‖2 is the Frobenius norm. This cost function
exploits the nonstationarity and nonwhiteness of the sources and
is widely used (see, e.g., [10]). To achieve fast convergence in this
case it is usually necessary to consider second order gradient ex-
pressions. A proper Newton-Raphson update requires the inverse
of the Hessian. This is both tedious to derive and computationally
very demanding. Thus there are many heuristic approaches with
which to solve this normalization problem.

The cost function J1, however, shows an inherent normaliza-
tion. It can be seen in the update equation (9) that the correlation
matrix R

(b)
yy (k) is scaled by the inverse of R

(b)
yy (0)T and the in-

verse of diag R
(b)
yy (0), respectively.

Similarily we can observe that the off-diagonal components
of the correlation matrix in the modified update rule (10), which
are expressed by diag R

(b)
yy (k) − R

(b)
yy (k), are normalized by the

inverse of diag R
(b)
yy (0). This means a normalization to the short-

time power of the output signals. We observed that this inherent
normalization ensures a fast convergence of the algorithm, thus
making an adaptive step size becomes unnecessary.
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2.6. Utilization of geometric beamforming

The convergence and the separation performance of gradient-
based algorithms are greatly influenced by the initial value, es-
pecially if we need long FIR filters to model the room impulse
responses. To solve this problem we propose a new approach for
calculating the initial value by adding geometric information on
the positions of the microphones and the assumed positions of the
speakers. This method has so far only been applied to frequency-
domain methods [11] where the geometric initialization showed
superior separation especially for a large number of microphones.

The equivalence of adaptive beamformers and BSS shown in
[12] was our motivation to use a beamformer technique for ini-
tializing the adaptation algorithm. We assume the sources to be
spatially separated so that we can employ a null beamformer with
beams that place spatial zeros at the orientations of interfering
sources. For our experiments with a two-speaker, two-microphone
scenario, we assume two sources with angles of θi = ±60o, mea-
sured with respect to the normal vector of the microphone array.

We calculate the null beamformer for both target and jammer
signal configurations with respect to the angle of the interfering
source and the microphone positions. The delays resulting from
the null beamformer are then used as cross path filters w12 and
w21. As these delays are fractions of the sampling time, we have
to use a sinc function for interpolation. The filter in the straight
path w11, w22 is initialized as a unit impulse. The small compo-
nents that exist in addition to the unit impulse (Fig. 3) are the result
of disregarding frequency components smaller than 62.5 Hz. They
were disregarded because we cannot calculate a sharp spatial null
for low frequencies due to the small microphone spacing of 4 cm.
Additionally we incorporate a delay of L

2
to access both future

and past values of the observed signals. Thus a noncausal filter
is formed that allows us to identify non-minimum phase systems.
In [7] we showed for a batch algorithm that the new initialization
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Fig. 3. Initial value W for an unmixing filter length of L = 64
taps.

method improves the separation significantly and that we can esti-
mate long unmixing FIR filters in the time domain that can cover
the entire reverberation. As shown in Sec. 3 we could also con-
firm this experimentally when using the on-line version with an
exponential forgetting factor.

2.7. Dewhitening of output signals

In Sec. 2.1 we pointed out that the recovered source signals possess
two ambiguities; the signal order may be permuted and the outputs
can be arbitrarily filtered. The latter ambiguity causes a change in
the output signal spectrum. Higher frequencies are usually empha-
sized whereas lower frequencies are attentuated and thus the spec-
trum becomes whitened. The flattened spectrum gives the speech
signals an unnatural timbre. Although this ambiguity can arise
in both time-domain and frequency-domain BSS, it is seldom ad-
dressed in time-domain BSS. To simplify the explanation, here we
consider the problem in the frequency domain. Frequency-domain
BSS decomposes the convolutive mixing system in multiple scalar
mixing systems in each frequency bin. The arbitrary filtering cor-
responds to an arbitrary scaling in each frequency bin. Before re-
composing the signals from each frequency bin, the arbitrary scal-
ing has to be resolved because otherwise no separation is achieved.

To overcome the filtering ambiguity, we apply post-filters to
our system. These filters are based on the method for removing
the amplitude ambiguity in frequency-domain BSS proposed by
Ikeda [13]. To the authors’ knowledge, no post-processing method
using this principle has been proposed for time-domain BSS.

The general idea is to transfer the separated output signals
y (t) into the frequency domain and then solve the problem of
irregular amplitude for each frequency bin. The observed mix-
tures X (ω) are described by X (ω) = H (ω)S (ω) and X (ω) =
W−1 (ω)Y (ω). We can assume that, when sources are set at al-
most the same distance from a microphone array, the amplitudes
of all the elements of the mixing filter matrix H (ω) are equal,
because the attenuations of all observed sound signals are nearly
equal due to the small microphone spacing. The inverse of the un-
mixing matrix W (ω) is denoted as W−1 (ω) = ` W−1

ij (ω) a . For
the two-speaker, two-microphone scenario we obtain:

X1(ω) = W−1
11 (ω)Y1(ω) + W−1

12 (ω)Y2(ω) (16)

X1(ω) = 1 · S1(ω) + 1 · S2(ω) (17)

X2(ω) = W−1
21 (ω)Y1(ω) + W−1

22 (ω)Y2(ω) (18)

X2(ω) = 1 · S1(ω) + 1 · S2(ω) (19)

We can now rescale the output signal Y1 (ω) in each frequency
bin by multiplying Y1 (ω) with the factor W−1

11 (ω) so that the
amplitude of X1 (ω) in (16) is equal to the amplitude of X1 (ω)
in (17). The same process is applied to the output signal Y2 (ω)
so that the amplitudes of X2 (ω) in (18) and (19) are the same.
Thus we obtain a dewhitening matrix V (ω), which is defined as
V (ω) = diag W−1 (ω). The dewhitened output signals Ỹ (ω)
are obtained by

Ỹ(ω) = V(ω)Y(ω) = V(ω)W(ω)X(ω). (20)

The post-processing filter emphasizes low frequencies to restore
the original spectral content of the source signals (Fig. 4). The
algorithm without dewhitening returns higher SIR values due to
the emphasis of high frequencies. The smaller separation capa-
bility of our BSS system for low frequencies is not taken into ac-
count. Thus the dewhitening process is corrects the higher signal-
to-interference ratios. We can observe that the obtained spectrum
complies well with the original spectral content.
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Fig. 4. Spectrum of output signal before (a) and after (b) post-
processing.

3. EXPERIMENTS AND RESULTS

3.1. Experimental conditions

We conducted the experiments using speech data convolved with
the impulse responses of a real room (Fig. 5), with a reverberation
time TR = 300 ms. Since the sampling frequency was 8 kHz,
the reverberation time corresponded to a room impulse response
of 2400 taps. We used a two-element microphone array with an
inter-element spacing of 4 cm. The speech signals arrived from
two different directions, −30o and 40o. We used two sentences
spoken by two male and two female speakers selected from the
ASJ continuous speech corpus as source signals [14]. We used six
combinations of speakers with a signal length of seven seconds.
To evaluate the performance, we used the signal-to-interference
ratio (SIR), defined as the ratio of the signal power of the target
signal to the signal power from the jammer signal. The SIR was
continuously calculated for each block by using the post-processed
dewhitened separated output signals.

3.2. Experimental results

We compare the performance of the proposed on-line algorithm
with that of its off-line counterpart [7] and with the second on-line
decorrelation algorithm in the frequency domain presented in [10].

To compare the two on-line algorithms we set the unmixing
filter length at L = 512 taps. For the time-domain algorithm we
chose a blocklength of 1024 samples with an overlap factor of 4
and used an exponential forgetting factor with λ = 0.9999. The
frequency-domain BSS algorithm also had an FFT length of 1024

30

40
2.15 m

1.15 m

1.56 m

5.73 m

3.
12

 m

loudspeakers
  (height : 1.35 m)

microphones
  (height : 1.35 m)

4 cm

room height : 2.70 m

1.15 m

Fig. 5. Layout of the reverberant room used in the experiments.

with an overlap factor of 4. We applied the new geometric ini-
tialization method to both classes, but for the two-source, two-
microphone scenario we could only achieve an SIR improvement
for the time-domain algorithms.

Due to the filtering ambiguity the output signals of the on-
line time-domain algorithm showed a flattened spectrum. The
frequency-domain method avoids the scaling ambiguity in each
frequency bin by enforcing a unity gain constraint for the diagonal
filters. However, we observed that this does not fully prevent the
whitening of the spectrum of the separated output signals. Figure 6
shows the average SIR for six different combinations of source
signals for the investigated algorithms. We observed that the ge-
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Fig. 6. Average SIR depicted for the time-domain on-line algo-
rithm without (solid line) and with (dashed line) the dewithening
postprocessing method. In comparison the frequency-domain on-
line algorithm without postprocessing (dash-dotted line) [10]. Re-
verberation time T60 = 300 ms.

ometric initialization of the time-domain algorithm leads to fast
convergence. Moreover it is seen that the postprocessing method,
which restores the original spectral content of the sources, reduces
the SIR. This results from the fact that the dewhitening process em-
phasizes the low frequencies, which exhibit a smaller SIR caused
by strong reverberation.
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Figure 6 also shows that the frequency-domain on-line algo-
rithm converges to a lower SIR than with the time-domain method.
By contrast, the frequency-domain algorithm is also applicable to
strongly reverberant environments where no a priori information
on the array geometry is available.

The on-line BSS algorithm can exploit the observed signals
only once and yet it achieves good separation. The off-line algo-
rithm on the other hand can repeatedly access their values for each
iteration. This further improves the separation performance seen
in Fig. 7 which shows the SIR for the batch algorithm with and
without the postprocessing method. For the off-line algorithm we
set the unmixing filter length at L = 512 taps, and we chose a
blocklength of 1024 samples. This corresponds to the parameters
we used for the on-line algorithm.
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Number of iterations
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IR

 in
 d

B

Fig. 7. Average SIR of the off-line time-domain algorithm with-
out (solid line) and with the dewhitening postprocessing method
(dashed line). Reverberation time T60 = 300 ms.

4. CONCLUSION

We proposed a time-domain gradient algorithm with a generalized
weighting function. Using an exponential forgetting factor, we in-
troduced a recursive on-line BSS algorithm, which can be applied
to time-varying multipath environments. We presented a new ge-
ometric initialization for time-domain algorithms, which showed
good results for strongly reverberant environments. Our simula-
tion results showed that both on-line and off-line methods are ca-
pable of separating real-world speech signals in echoic surround-
ings.
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