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Abstract
Adaptive filtering in the DFT domain is popular for
its computational efficiency and its attractive conver-
gence properties resulting from the applicability of the
FFT and separate adaptation of individual DFT bins.
Narrowband algorithms assume a complete decoupling
of different frequency bins, which corresponds to as-
suming a circulant structure for the input data ma-
trix. Wideband designs account for the difference
between the actual Töplitz structure and the circu-
lant structure by introducing additional constraints.
In this contribution, we show that a wideband ap-
proach with rigorous implementation of appropriate
constraints leads to highly efficient algorithms with
excellent convergence properties. As examples we con-
sider multichannel acoustic echo cancellation (MC-
AEC) and blind source separation (BSS) of convolu-
tive mixtures.

1 Introduction
Adaptive filtering in the DFT domain not only ex-
ploits the computational efficiency of linear filtering
in the DFT domain [1], but it also promises superior
convergence behavior compared to most time-domain
adaptation algorithms [2].

In many cases, such DFT-domain adaptive systems
are designed under the assumption that individual fre-
quencies of the input signal(s) can be considered in-
dependently from each other. This implicitly assumes
that the input can be described by a set of countable
complex exponentials as eigenfunctions of the linear
system. This “narrowband signal model” is especially
popular in adaptive beamforming and blind source
separation (BSS). However, especially for nonstation-
ary signals, time-limitation implying continuous spec-
tra has to be accounted for by a “wideband signal
model”. In this paper we show that

- the difference between narrowband and wideband
signal model reduces to the difference between cir-
culant and Töplitz matrices,

∗This work was partly supported by the ANITA project

funded by the European Commission under contract IST-2001-

34327.

- this difference is acknowledged in some practically
important cases already in a more or less empiri-
cal manner,

- a systematical extension of Töplitz matrices to
circulant matrices leads to new algorithms for
wideband signals that include the already known
remedies as special cases and exhibit truly opti-
mum behavior,

- the practical impact of a wideband signal model
for MC-AEC and convolutive BSS is significant.

2 Wideband vs. narrowband signals
In the discrete time domain, the output signal ŷ(n) of
an FIR filter at time n is

ŷ(n) = xT (n)ĥ, (1)
where the input signal vector x and the impulse re-

sponse ĥ of length L are given by

x(n) = [x(n), x(n − 1), · · · , x(n − L + 1)]T , (2)

ĥ = [ĥ0, ĥ1, · · · , ĥL−1]
T . (3)

A block of L output samples ŷ(m) reads

ŷ(m) = UT (m)ĥ, (4)

where m is the block time index, and

ŷ(m) = [ŷ(mL), · · · , ŷ(mL + L − 1)]T , (5)

U(m) = [x(mL), · · · ,x(mL + L − 1)]. (6)

Obviously, U is a Töplitz matrix of size L × L:

UT (m) =










x(mL) · · · · · · x(mL − L + 1)

x(mL + 1)
. . .

...
...

. . .
. . .

...
x(mL + L − 1) · · · · · · x(mL)











.

(7)

We observe that UT (m) is circulant only if x(mL +
k) = x(mL − L + k), i.e., if x(n) is a periodic signal
with period L/κ, κ ∈ {1, 2, . . . , L}. We note that such
signals x(n) are described by a finite Fourier series

x(n) =

L−1
∑

i=0

cie
j 2πin

L , (8)



i.e., by at most L complex exponentials. Applying the
L × L DFT matrix FL with elements fik = e−j2πik/L

to (4) we write

FLŷ(m) = FLUT (m)ĥ = FLUT (m)F−1
L FLĥ, (9)

and note that iff UT (m) is a circulant fulfilling (8),
then UT (m) is diagonalized by the DFT matrix:

FLUT (m)F−1
L = diag {FLx∗1(mL)}

=: diag {x(m)} =: X(m), (10)

where x∗1(mL) denotes the first column of UT . Thus,
the linear filtering operation is equivalent to a circular
convolution and can be written as

ŷ(m) = X(m)ĥ, (11)

where ŷ(m),x(m), ĥ are the DFTs of ŷ(m),x∗1(m), ĥ,
respectively. If (8) is not fulfilled, x(m) cannot cap-
ture the differences between the actual Töplitz matrix
and the assumed circulant matrix and (11) does not
describe linear filtering [1].

To exploit the efficiency of FFTs for linear filtering
of arbitrary signals x(n), the evaluation of (4) in the
DFT domain should be carried out so that the differ-
ence to a circulant UT (m) does not affect the output.
The two popular approaches coincide with the respec-
tive signal models:

Wideband signal model: Exploit the fact that for
arbitrary x(n) (4) yields equivalent results for
circular and Töplitz matrices if only the first

K < L elements of ĥ are nonzero and only the
first L−K+1 elements of ŷ(m) are considered as
useful output. This leads directly to the ’overlap-
add’ and ’overlap-save’ algorithms [1].

Narrowband signal model: Choose L sufficiently
large so that x(n) seems to be reasonably well
represented by (8), which still implies that x(n)
has a discrete Fourier spectrum.

3 A general approach to adaptive lin-

ear filtering in the DFT domain
The distinction between narrowband and wideband
signal models from Section 2 is now carried over to
the design of adaptive filtering for arbitrary signals.
By way of a simple and well-known example, we in-
troduce a very general design method for wideband
DFT-domain adaptive filtering algorithms that re-
cently led to powerful algorithms for very challenging
applications such as MC-AEC and convolutive BSS
[11, 12, 16, 17, 18]. This concept is applicable to a
broad class of adaptive filtering problems: Supervised
and unsupervised systems with single or multiple in-
puts and outputs, respectively, with optimization cri-
teria based on second-order or higher-order statistics,

with according gradients of first order or higher order
for minimization of the respective cost functions.

For simplicity, the main idea is illustrated for the
case of a linear single-channel supervised adaptive fil-
ter: According to Fig. 1, the error signal at time n
between the output of the adaptive filter ŷ(n) and the
desired output signal y(n) is given by

e(n) = y(n) − ŷ(n). (12)

+
x(n) e(n)

y(n)

y(n)^

-h^ (n)

Figure 1: Single-channel supervised adaptive filter.

For the block error signal of length L we write based
on (12) and (1)

e(m) = y(m) − ŷ(m), (13)

where

e(m) = [e(mL), · · · , e(mL + L − 1)]T , (14)

y(m) = [y(mL), · · · , y(mL + L − 1)]T . (15)

This error definition and its DFT form the basis for
the adaptive filtering algorithms below.

3.1 Narrowband signal model
Adaptive filtering in the DFT domain based on a nar-
rowband signal model (see Section 2) is characterized
by the following steps [4] as illustrated in Fig. 2:

Step 1: Running or (possibly overlapping) block
DFTs for each input channel (short-time Fourier
transformation (STFT))

Step 2: Independent scalar adaptive filtering for each
frequency bin

Step 3: Synthesis of output signal(s) by inverse
DFT(s)
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Figure 2: Illustration of narrowband approach.

As an example we consider an RLS-type adaptation al-
gorithm1, which minimizes the exponentially weighted

1RLS-type algorithms are chosen because of their optimum

convergence behavior w.r.t. a given quadratic cost function



squared error in the k-th DFT bin, |e(k)(i)|2, for
k = 0, . . . , N − 1:

JNB,k(ĥ
(k)

(m)) = (1 − λ)

m
∑

i=0

λm−i|e(k)(i)|2, (16)

This narrowband DFT-domain RLS algorithm oper-
ates independently in each DFT bin and can be sum-
marized (based on (11) and (13)) as follows:

S(m) = λS(m − 1) + (1 − λ)XH(m)X(m),(17)

e(m) = y(m) −X(m)ĥ(m − 1), (18)

ĥ(m) = ĥ(m − 1)

+(1 − λ)S−1(m)XH(m)e(m). (19)

As its main advantages, the low computational com-
plexity and the structural simplicity of the concept
make it seemingly attractive for implementation in
many application scenarios. However, major disad-
vantages when used for arbitrary signals x(n) are:

Sub-optimum convergence properties. In the
case of supervised adaptive filtering, convergence
to the Wiener solution is not assured due to
coupling of the DFT bins.

Large transform lengths L are needed to justify
the narrowband signal model (see Section 2).

Signal distortion due to artifacts caused by circular
filtering effects (i.e., insufficient approximation of
(4) in the DFT domain).

3.2 Wideband signal model
To avoid errors caused by differences between the de-
sired circulant and the actual Töplitz matrix for wide-
band signals, linear filtering in the DFT domain (i.e.
overlap add/save) requires windowing/zero-padding of
data, i.e., the introduction of constraints. The crucial
question we want to answer here is: How can these
constraints be systematically introduced into adaptive
filtering algorithms?

As a key observation, we note that any Töplitz ma-
trix U can be expanded to a circulant [3, 11, 12]

C(m) =

[

U′T (m) UT (m)
UT (m) U′T (m)

]

, (20)

where U′ is also a Töplitz matrix using the same data
samples as U(m) (except for an arbitrary element
along the main diagonal). This allows for a compact
and exact matrix formulation of the Töplitz matrix
UT (m) in terms of the DFT of the input signal x(n)
[12]:

UT (m) = W01
L×2LC(m)W10

2L×L (21)

= W01
L×2LF−1

2LX2L(m)F2LW10
2L×L.(22)

Here, we introduced the windowing matrices

W01
L×2L = [0L×L, IL×L],

W10
2L×L = [IL×L,0L×L]T ,

and the diagonal matrix X2L(m), which can be writ-
ten in terms of the elements of the first columns of
C(m),

X2L(m) =

diag{F2L[x(mL − L), · · · , x(mL + L − 1)]T }.(23)

Based on this, a general method for designing wide-
band adaptive filtering algorithms involves:
Step 1: Formulate an exact wideband cost function

in terms of DFT matrices and suitable windows
based on (22).

Step 2: Minimize the cost function w.r.t. the DFT-
domain filter coefficients in order to obtain an
“exact” algorithm.

Step 3: Examine the various constraints appearing in
the algorithm resulting from Step 2 and selectively
approximate them for more efficient algorithms.

Analogously to the narrowband case we consider as an
example an RLS-type DFT-domain supervised single-
input/single-output adaptive filter which minimizes
the cost function

J(m) = (1 − λ)

m
∑

i=0

λm−ieH(i)e(i). (24)

A rigorous derivation [12] yields the following generic
algorithm (as illustrated in Fig. 3):

S2L(m) = λS2L(m − 1)

+(1− λ)XH
2L(m)G1X2L(m) (25)

e2L(m) = y
2L

(m) −G2X2L(m)ĥ2L(m − 1)(26)

ĥ2L(m) = ĥ2L(m − 1) + (1 − λ)G3S
−1
2L (m)

·XH
2L(m)e2L(m), (27)

where

e2L(m) = F2L

[

0L×1

e(m)

]

,

y
2L

(m) = F2L

[

0L×1

y(m)

]

,

ĥ2L(m) = F2L

[

ĥ(m)
0L×1

]

,

G1 = G2 = F2LW01
2L×2LF−1

2L ,

G3 = F2LW10
2L×2LF−1

2L ,

W01
2L×2L =

[

0L×L 0L×L

0L×L IL×L

]

,

W10
2L×2L =

[

IL×L 0L×L

0L×L 0L×L

]

.
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Figure 3: Generic SISO supervised FDAF as an ex-
ample for the wideband approach.

This example highlights the structural similarity be-
tween wideband and narrowband adaptive filtering,
but also the decisive differences: The wideband struc-
ture strictly prevents circular filtering artifacts and
accounts for the coupling of different DFT bins by the
constraints Gi. Some of the constraints in this exam-
ple have been previously proposed: G2 in [5, 6, 7]
and G3 in [5] and the resulting algorithms can be
seen as efficient versions of the generic algorithm. Un-
like the narrowband algorithm, the generic wideband
algorithm and the mentioned approximations can be
shown to converge to the Wiener solution for arbitrary
wideband signals [12]. Moreover, the generic wide-
band algorithm can be straightforwardly extended to
partitioned FIR filters [8, 9, 10, 12] and can also
be generalized to the multichannel and MIMO cases
[11, 12]. Beyond that, the concept is also applicable to
non-quadratic cost functions [13] which are useful to
obtain robust algorithms in the presence of nongaus-
sian distortions.

4 Applications
To demonstrate the superiority of rigorously derived
wideband algorithms over narrowband algorithms, we
consider two challenging adaptive filtering tasks.

4.1 MC-AEC

Multichannel acoustic echo cancellation (MC-AEC)
differs from single-channel AEC mainly in that - by
use of a single error signal - multiple systems with
correlated inputs must be identified instead of a single
system [11]. For RLS-type algorithms this implies a
condition number of the autocorrelation matrix which
worsens with increasing channel number and, accord-
ingly, requires better adaptation algorithms [12]. The
impact of a rigorously derived wideband DFT-domain
algorithm becomes obvious from simulation results as
shown in Fig.4. For P = 1, 2, 5 loudspeaker chan-
nels emitting filtered speech, P adaptive FIR filters

of length L = 1024 were used to model impulse re-
sponses of length 4096. While the wideband algorithm
according to [12] was used with DFT-length 2L and
block overlap factor of 4 (for P = 1, 2) and 16 (for
P = 5), for the narrowband algorithm a tenfold DFT
length (20L) and overlap factor (40 and 160 respec-
tively) had to be chosen to achieve the convergence
behavior of Fig.4. Clearly, this choice reduces the
potential computational advantage of the narrowband
approach while the convergence of the wideband algo-
rithm to higher echo suppression (ERLE: echo return
loss enhancement) is by far superior.
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Figure 4: MC-AEC performance of the wideband ap-
proach (solid) and the narrowband approach (dashed).

4.2 BSS for convolutive mixtures
Blind source separation aims at separating P sources
from Q sensor signals containing convolutive mixtures
of the desired source signals, which are assumed to
be statistically independent. By transforming the sig-
nals into the DFT domain, the convolutive mixtures
in the time domain become scalar mixtures for each
DFT bin. So far, most DFT-domain BSS algorithms
are based on the narrowband signal model, which im-
plies decoupled scalar BSS problems in each DFT bin.
However, this inevitably causes the so-called internal
permutation problem: E.g., for P = Q = 2, the sepa-
rated DFT bins for sources A and B cannot be aligned
so that all bins with components of A appear at one
output of the BSS system, while all bins for B ap-
pear at the other. Whereas most current DFT-domain
BSS algorithms include empirical repair mechanisms
for the internal permutation problem, the circular fil-
tering problem remains [15]. For P, Q > 2 these dif-
ficulties are known to become even more serious. A
strictly wideband approach, however, inherently solves
both problems [16, 18]. This is illustrated in Fig.5
for P = Q = 2: The mixtures of two speech sig-
nals of 10s duration, sampled at 16kHz, were recorded
in a room with reverberation time T60 = 150ms. A
wideband off-line BSS algorithm according to [16] and
the corresponding narrowband algorithm were applied



with demixing filter length L = 512. Obviously, for
the wideband algorithm the two outputs converge to
about 15dB separation gain, whereas, as to be ex-
pected, the narrowband algorithm converges to no sep-
aration at all because the internal permutation prob-
lem remains unsolved.
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Figure 5: BSS performance of the wideband approach
(solid) and the narrowband approach (dashed).

5 Summary and Conclusions
In this paper, we highlight the importance of strictly
observing the wideband nature of the input signals
when designing adaptive filtering algorithms if the
narrowband signal model is not perfectly valid. Iden-
tifying the expansion of a Töplitz matrix to a circulant
as a key for a rigorous derivation of a broad class of
optimum wideband algorithms, we demonstrated the
impact of the wideband signal model onto the result-
ing algorithm by way of a simple example. The impor-
tance of the constraints introduced by the wideband
signal model becomes even more evident in the sim-
ulation results as presented for challenging adaptive
filtering tasks such as multichannel acoustic echo can-
cellation and blind source separation for convolutive
mixtures: Here we found recently published wideband
algorithms to be far superior compared to correspond-
ing narrowband algorithms.
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Université du Québec, Montréal, Canada, for numer-
ous stimulating discussions.

References
[1] A.V. Oppenheim, R.W. Schafer, Digital Signal Pro-

cessing, Prentice Hall, Englewood Cliffs, NJ, 1975.

[2] S. Haykin, Adaptive Filter Theory, 3rd ed., Prentice
Hall, Englewood Cliffs, NJ, 1996.

[3] G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd
ed., Johns Hopkins, Baltimore, MD, 1996.

[4] M. Dentino, J. McCool, and B. Widrow, “Adaptive
filtering in the frequency domain,” Proc. IEEE, vol.
66, pp.1658-1659, 1978.

[5] E.R. Ferrara, Jr., “Fast implementation of the LMS
adaptive filter,” IEEE Trans. Acoust., Speech, Signal
Processing (TR-ASSP), vol. 28, pp. 474-475, 1980.

[6] D. Mansour, A.H. Gray, “Unconstrained Frequency-
Domain Adaptive Filter,” IEEE TR-ASSP, vol.30,
no.5, 1982.

[7] J.C.Lee, C.K.Un, “Performance analysis of frequency-
domain block LMS adaptive digital filters,” IEEE
Trans. Circuits Syst., vol.36, pp. 173-189, 1989.

[8] J.-S. Soo, K.K. Pang, “Multidelay block frequency do-
main adaptive filter,” IEEE TR-ASSP, vol.38, pp. 373-
376, 1990.

[9] E. Moulines, O. Ait Amrane, and Y. Grenier, “The
generalized multidelay adaptive filter: structure and
convergence analysis,” IEEE Trans. Signal Processing,
vol. 43, pp. 14-28, 1995.

[10] J. Prado, E. Moulines, “Frequency-domain adaptive
filtering with applications to acoustic echo cancella-
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