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ABSTRACT

There are two main approaches for blind source separation (BSS)
on time series using second-order statistics. One is to utilize the
nonwhiteness property, and the other one is to utilize the nonsta-
tionarity property of the source signal. In this paper, we combine
both approaches for convolutive mixtures using a matrix notation
that leads to a number of new insights. We give rigorous deriva-
tions of the corresponding time-domain and frequency-domain ap-
proaches by generalizing a known cost function so that it inher-
ently allows joint optimization for several time lags of the correla-
tions. The approach is suitable for on-line and off-line algorithms
by introducing a general weighting function allowing for track-
ing of time-varying environments. For both, the time-domain and
frequency-domain versions, we discuss links to well-known and
also to extended algorithms as special cases. Moreover, using the
so-called generalized coherence, we establish links between the
time-domain and frequency-domain algorithms and show that our
cost function leads to an update equation with an inherent normal-
ization.

1. INTRODUCTION

The problem of separating convolutive mixtures of unknown time
series arises in several application domains, a prominent exam-
ple being the so-called cocktail party problem, where we want to
recover the speech signals of multiple speakers who are simulta-
neously talking in a room. The room may be very reverberant due
to reflections on the walls, i.e., the original source signals sq(n),
q = 1, . . . , Q of our separation problem are filtered by a multiple
input and multiple output (MIMO) system before they are picked
up by the sensors. In the following, we assume that the number Q
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Fig. 1. Linear MIMO model for BSS.

of source signals sq(n) equals the number of sensor signals xp(n),

p = 1, . . . , P (Fig. 1). An M -tap mixing system is thus described
by

xp(n) =
P�

q=1

M−1�

κ=0

hqp(κ)sq(n − κ), (1)

where hqp(κ), κ = 0, . . . , M − 1 denote the coefficients of the
filter from the q-th source to the p-th sensor.

In BSS, we are interested in finding a corresponding demixing
system according to Fig. 1, where the output signals yq(n), q =
1, . . . , P are described by

yq(n) =
P�

p=1

L−1�

κ=0

wpq(κ)xp(n − κ). (2)

It can be shown (see, e.g., [1]) that the MIMO demixing system
coefficients wpq(κ) can in fact reconstruct the sources up to an
unknown permutation and an unknown filtering of the individual
signals, where L should be chosen at least equal to M .

In order to estimate the P 2L MIMO coefficients wpq(κ), we
consider in this paper only approaches using second-order statis-
tics. It has been shown that on real-world signals with some time-
structure, second-order statistics generates enough constraints to
solve the BSS problem in principle, by utilizing one of the follow-
ing two signal properties [1]:

• Nonwhiteness property by simultaneous diagonalization of
output correlation matrices over multiple time-lags, e.g.,
[2],

• Nonstationarity property by simultaneous diagonalization
of short-time output correlation matrices at different time
intervals, e.g., [3]-[8].

While there are several algorithms for convolutive mixtures utiliz-
ing nonstationarity, both in the time domain and in the frequency
domain, there are currently very few approaches taking the non-
whiteness property into account. Although in theory, each of these
properties is known to be sufficient, it has recently been shown that
in practical scenarios, the combination of these criteria can lead to
improved performance [9, 10].

In the following, we present a rigorous derivation of a more
general class of algorithms for convolutive mixtures by first intro-
ducing a general matrix formulation for convolutive mixtures fol-
lowing [11] that includes all time lags. The approach utilizes both,
the nonwhiteness property and the nonstationarity property and is
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suitable for on-line and off-line algorithms by introducing a gen-
eral weighting function allowing for tracking of time-varying en-
vironments. For both, the time-domain and frequency-domain ver-
sions, we discuss links to well-known and extended algorithms as
special cases. Moreover, using the so-called generalized coherence
[12], we establish links between the time-domain and frequency-
domain algorithms and show that our cost function leads to an up-
date equation with an inherent normalization.

2. A GENERIC BLOCK TIME-DOMAIN BSS
ALGORITHM

2.1. Matrix formulation for convolutive mixtures with exten-
sion to several time lags

From Fig. 1, it can be seen that the output signals yq(n), (q =
1, . . . , P ) of the unmixing system at time n are given by

yq(n) =

P�

p=1

x
T
p (n)wpq, (3)

where

xp(n) = [xp(n), xp(n − 1), . . . , xp(n − L + 1)]T

is a vector containing the latest L samples of the sensor signal xp

of the p-th channel, and where

wpq = [wpq,0, wpq,1, . . . , wpq,L−1]
T

contains the current weights of the MIMO filter taps from the p-th
sensor channel to the q-th output channel. Superscript T denotes
transposition of a vector or a matrix.

We now define the corresponding block output signal vector.
To simplify the presentation, we consider a block length that is
equal to the filter length L in this paper. From (3) follows

yq(m) =

P�

p=1

U
T
p (m)wpq, (4)

with m being the block time index, and

yq(m) = [yq(mL), . . . , yq(mL + L − 1)]T , (5)

Up(m) = [xp(mL), . . . , xp(mL + L − 1)]. (6)

It can be verified that Up, p = 1, . . . , P are Toeplitz matrices of
size (L × L):

U
T
p (m) =

�����
�

xp(mL) · · · xp(mL − L + 1)

xp(mL + 1)
. . . xp(mL − L + 2)

...
. . .

...
xp(mL + L − 1) · · · xp(mL)

� ����
� .

Next, in order to rigorously introduce multiple time lags in the cost
function below, we now extend the output signal vector (5) to the
following L × L matrix by incremental shifts of each column by
one sample:

Yq(m) =

�����
�

yq(mL) · · · yq(mL − L + 1)

yq(mL + 1)
. . . yq(mL − L + 2)

...
. . .

...
yq(mL + L − 1) · · · yq(mL)

� ����
� .

Using this definition, (4) becomes

Yq(m) =
P�

p=1

Xp(m)Wpq, (7)

where the L× 2L matrices Xp(m) are obtained from the Toeplitz
matrices Up by doubling their size, i.e.,

Xp(m) = [UT
p (m), U

T
p (m − 1)]. (8)

The matrices UT
p (m − 1) are also Toeplitz so that the first row

of Xp(m) contains 2L input samples and each subsequent row is
shifted to the right by one sample and thus contains one new input
sample. Wpq are 2L×L Sylvester matrices, which are defined as

Wpq(m) =

�����������������
�

wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0

� ����������������
�

. (9)

Finally, to allow a convenient notation of the algorithm combining
all channels, we write (7) compactly as

Y(m) = X(m)W, (10)

with the matrices

Y(m) = [Y1(m), · · · ,YP (m)], (11)

X(m) = [X1(m), · · · ,XP (m)], (12)

W =

��
� W11 · · · W1P

...
. . .

...
WP1 · · · WPP

� �
� . (13)

2.2. Cost function and algorithm derivation

Having defined the compact matrix formulation (10) for the block-
MIMO filtering, we now define the following cost function as a
generalization of [5]:

J (m) =

m�

i=0

β(i, m) � log det bdiag Y
H(i)Y(i)

− log detYH(i)Y(i) � , (14)

where β is a window function that is normalized according to� m

i=0 β(i, m) = 1 which allows off-line and on-line implementa-
tions of the algorihms (e.g., β(i, m) = (1 − λ)λm−i leads to an
efficient on-line version allowing for tracking in time-varying en-
vironments). Since we use the matrix formulation (10) for calcu-
lating the short-time correlation matrices YH(m)Y(m), the cost
function inherently includes all time-lags of all auto-correlations
and cross-correlations of the BSS output signals. The bdiag opera-
tion on a partitioned block matrix consisting of several submatrices
sets all submatrices on the off-diagonals to zero. In our case, the
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block matrices refer to the different signal channels. By Oppen-
heim’s inequality [13], it is ensured that the first term in the braces
in (14) is always greater than or equal to the second term, where the
equality is only valid if all block-offdiagonal elements of YHY,
i.e., the output cross-correlations over all time-lags, vanish. In ge-
ometrical terms this can be interpreted as a simultaneous orthogo-
nalization relative to several subspaces, since the determinant of a
matrix corresponds to a volume of a parallelepiped spanned by the
column vectors (Fig. 2).

Fig. 2. Parallelepiped.

For the following derivations, we omit the block-time index m
for simplicity, and first define the short-time correlation matrices

Rxx = X
H
X, (15)

Ryy = Y
H
Y. (16)

Note that in principle, there are two basic methods to estimate the
output correlation matrices for nonstationary output signals: the
so-called correlation method, and the covariance method as they
are known from linear prediction problems [14]. While the corre-
lation method leads to a slightly lower computational complexity
(and to smaller matrices, when implemented in the frequency do-
main covered in Section 3), we consider the more accurate covari-
ance method in this paper.

For the derivation of the gradient

∇WJ (m) = 2
∂J (m)

∂W∗
,

we use the expressions (e.g., [15])

∂

∂W∗
log detWH

RxxW = 2RxxW(WH
RxxW)−1

and

∂

∂W∗
log det bdiag W

H
RxxW

= 2RxxW(bdiag W
H
RxxW)−1

.

Using these relations, it follows from (14)

∇WJ (m) = 4

m�

i=0

β(i, m)RxxW � bdiag−1
Ryy − R

−1
yy �

= 4
m�

i=0

β(i, m)Rxy � bdiag−1
Ryy − R

−1
yy �

= 4
m�

i=0

β(i, m)RxyR
−1
yy {Ryy − bdiag Ryy}

·bdiag−1
Ryy. (17)

2.3. Equivariance property and natural gradient

With an iterative optimization procedure, the current demixing ma-
trix is obtained by the recursive update equation

W(m) = W(m − 1) − µ∆W(m), (18)

where µ is a stepsize parameter, and ∆W(m) is the update which
is set equal to ∇WJ (m) for gradient descent adaptation. How-
ever, it is known that stochastic gradient descent suffers from slow
convergence in many practical problems due to dependencies in
the data being processed.

In the BSS application, we can show that the separation perfor-
mance using (18) together with (17) depends on the MIMO mixing
system. The mixing process can be described analogously to (10)
by X = SH, where S is the corresponding L× PL source signal
matrix with time shifts, and H is the PL × 2PL mixing matrix
in Sylvester structure. Due to the inevitable filtering ambiguity in
convolutive BSS, it is at best possible to obtain an arbitrary block
diagonal matrix C = HW. To see how (17) behaves, we pre-
multiply both sides of (17) by H. This way it can easily be shown
that C(m) depends on the mixing system H.

Fortunately, a modification of the ordinary gradient has been
developed that largely removes all effects of an ill-conditioned
mixing matrix H. Termed the natural gradient by Amari [16] and
the relative gradient by Cardoso [17], this modification is usually
written in the following way:

∆W = ∇WJW
H
W.

For our approach, we have to slightly modify it to

∆W = WW
H∇WJ ,

which finally leads to the following update:

∆W(m) = 4

m�

i=0

β(i, m)W {Ryy − bdiag Ryy}

·bdiag−1
Ryy. (19)

To see that the above formulation of the natural gradient is justi-
fied, we again pre-multiply the update (19), which leads to

∆C(m) = 4
m�

i=0

β(i, m)C {Ryy − bdiag Ryy} bdiag−1
Ryy.

The evolutionary behaviour of C = C(m) depends only on the
estimated source signal vector sequence and µ, and the mixing
matrix H has been absorbed as an initial condition into C(0) =
HW(0) as desired. The uniform performance provided by (19)
is due to the so-called equivariance property provided by the natu-
ral/relative gradient BSS update [17]. In our case, only the modi-
fied relative gradient exhibits this property.

2.4. Special cases and links to known time-domain algorithms

To analyze the generalized update (19), and to study links to some
known algorithms, we consider now the case P = 2 for simplicity.
In this case, we have

∆W(m) = 4
m�

i=0

β(i, m)W

· � 0 Ry1y2
R−1

y2y2

Ry2y1
R−1

y1y1
0 �

= 4

m�

i=0

β(i, m)

· � W12Ry2y1
R−1

y1y1
W11Ry1y2

R−1
y2y2

W22Ry2y1
R−1

y1y1
W21Ry1y2

R−1
y2y2

� ,

(20)
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where Rypyq
, p, q ∈ {1, 2} are the corresponding submatrices of

Ryy.
In [9, 10], a time-domain algorithm was presented that copes

very well with reverberant acoustic environments. Although it was
originally introduced as a heuristic extension of [5] incorporating
several time lags, this algorithm can be directly obtained from (19)
or (20) by approximating the block diagonals of Ryy(m) by the
output signal powers, i.e.,

R̃yqyq
(m) = diag Ryqyq

(m) = y
H
q (m)yq(m)I

for q = 1, . . . , P . Using this approximation, the remaining pro-
ducts of Sylvester matrices and Toeplitz matrices in the update
equation (20) can be efficiently implemented by a (fast) convo-
lution as was done in [10].

If we do not apply this approximation, we can slightly simplify
the update equation (20) in a different way by considering (16)
and noting that (AB)−1 = B−1A−1 for any nonsingular square
matrices A and B:

∆W(m) = 4

m�

i=0

β(i, m)W � 0 YH
1 Y−H

2

YH
2 Y−H

1 0 � ,

where −H denotes conjugate transposition of an inverse matrix.
This formulation not only reduces the complexity but the matrices
to be inverted are also much better conditioned, since the condition
number of YHY in (16) is the square of the condition number of
Y [18].

3. GENERIC FREQUENCY-DOMAIN BSS

Frequency-domain BSS is very popular for convolutive BSS since
all techniques originally developed for instantaneous BSS can be
applied independently in each frequency bin, e.g., [1, 6, 7, 8]. Un-
fortunately, the permutation problem, which is inherent in BSS,
may then also appear independently in each frequency bin so that
extra measures have to be taken to avoid this internal permutation.
Based on the above matrix formulation in the time domain, the
following derivation of frequency-domain algorithms shows ex-
plicitly the relation between time-domain and frequency-domain
algorithms, as well as some extensions. Moreover, from a link with
[8], it becomes clear that (14) leads to the very desirable property
of an inherent stepsize normalization.

3.1. General frequency-domain formulation

The matrix formulation introduced above for the time-domain al-
lows a rigorous derivation of the corresponding frequency-domain
BSS algorithms. In the frequency domain, the structure of the al-
gorithm depends on the method chosen for estimating the corre-
lation matrices. Here, we consider again the more accurate co-
variance method [14]. The matrices Xp(m) and Wpq are now
diagonalized in two steps. We first consider the L × 2L Toeplitz
matrices Xp(m)

Step 1: Transformation of Toeplitz matrices into circulant ma-
trices.
Any Toeplitz matrix Xp can be transformed, by doubling its size,
to a circulant matrix CXp

(m) [11]. In our case we define the cir-
culant matrix by taking into account (8) by

CXp
(m) =

��
� X′

p(m − 3) Xp(m − 1)
Xp(m − 2) Xp(m)
Xp(m − 1) X′

p(m − 3)
Xp(m) Xp(m − 2)

� �
� ,

where X′

p(m − 3) = [UT
p (m − 3),UT

p (m)]. It follows

Xp(m) = W
0001
L×4LCXp

(m)W10
4L×2L, (21)

where we introduced the windowing matrices

W
0001
L×4L = [0L×L,0L×L,0L×L, IL×L],

W
10
4L×2L = [I2L×2L, 02L×2L]T .

Step 2: Transformation of the circulant matrices into diagonal
matrices.
Using the 4L × 4L DFT matrix F4L×4L, the circulant matrices
are diagonalized as follows:

CXp
(m) = F

−1
4L×4LXp(m)F4L×4L,

where the diagonal matrices Xp(m) can be expressed by the first
columns of CXp

(m),

Xp(m) =

diag{F4L×4L[xp(mL − 3L), . . . , xp(mL − 1),

xp(mL), xp(mL + 1), . . . , xp(mL + L − 1)]T }, (22)

i.e., to obtain Xp(m), we transform the concatenated vectors of
the current block and three previous blocks of the input signals
xp(n).

Now, (21) can be rewritten equivalently as

Xp(m) = W
0001
L×4LF

−1
4L×4LXp(m)F4L×4LW

10
4L×2L, (23)

Equations (23) and (22) exhibit a form that is structurally similar
to that of the corresponding counterparts of the well-known (su-
pervised) frequency-domain adaptive filters [11]. However, the
major difference here is that we need a transformation length of
at least 4L instead of 2L. This should come as no surprise, since
in BSS using the covariance method, both convolution and correla-
tion is carried out where both operations double the transformation
length.

We now transform the matrices Wpq in the same way as
shown above for Xp. Thereby, we obtain

Wpq = W
10
2L×4LF

−1
4L×4LWpqF4L×4LW

1000
4L×L, (24)

where

W
1000
4L×L = [IL×L,0L×L,0L×L,0L×L]T ,

W
10
2L×4L = [I2L×2L,02L×2L] = � W10

4L×2L � T
,

and

Wpq = diag{F4L×4L[wpq,0, . . . , wpq,L−1, 0, . . . , 0]T }.

Note that in view of the structure of the matrix Wpq , i.e., the
shifted columns in (9), it can be shown that the pre-multiplied
transformation W10

2L×4LF−1
4L×4L in (24) is related to the demix-

ing filter taps in the first column of Wpq , while the post-multiplied
transformation in (24), which we denote by

L
1000
4L×L = F4L×4LW

1000
4L×L,
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is related to the introduction of the multiple time-lags (see also
Section 3.2). Combining all channels, we obtain

X(m) = W
0001
L×4LF

−1
4L×4LX(m)

·bdiag{F4L×4LW
10
4L×2L, . . .

. . . ,F4L×4LW
10
4L×2L}, (25)

W = bdiag{W10
2L×4LF

−1
4L×4L, . . .

. . . ,W
10
2L×4LF

−1
4L×4L}W(m)L, (26)

where bdiag{A1, . . . , AP} denotes a block-diagonal matrix with
submatrices A1, . . . ,AP on its diagonal, X(m) and W(m) are
defined analogously to (12) and (13), respectively. L denotes the
4LP × LP matrix

L = bdiag{L1000
4L×L, . . . ,L

1000
4L×L}.

From (10),(25), and (26) we further obtain

Y = W
0001
L×4LF

−1
4L×4LX(m)G10

4LP×4LP W(m)L, (27)

where

G
10
4LP×4LP = bdiag � G

10
4L×4L, . . . ,G

10
4L×4L � ,

G
10
4L×4L = F4L×4LW

10
4L×4LF

−1
4L×4L,

W
10
4L×4L = W

10
4L×2LW

10
2L×4L

= � I2L×2L 02L×2L

02L×2L 02L×2L � .

To formulate the cost function (14) equivalently in the fre-
quency domain, we now need to calculate the short-time corre-
lation matrix using (27), i.e.,

Ryy = Y
H
Y

= L
H
SyyL,

where

Syy = W
H
SxxW,

Sxx = � G10
4LP×4LP � H

X
H
G

0001
4L×4LX

·G10
4LP×4LP ,

G
0001
4L×4L = F4L×4LW

0001
4L×4LF

−1
4L×4L,

W
0001
4L×4L = W

0001
4L×LW

0001
L×4L

= � 03L×3L 03L×L

0L×3L IL×L � .

The derivation of the gradient of the cost function in the fre-
quency domain is now done in a similar way as in the time domain.
Since YHY = LHWHSxxWL, we obtain using the chain rule
∇WJ = ∇(WL)J · LH , and thus

∇WJ (m) = 4
m�

i=0

β(i, m)SxyL � bdiag−1
L

H
SyyL

− � LH
SyyL � −1 �

L
H

= 4
m�

i=0

β(i, m)SxyL(LH
SyyL)−1

L
H

· {Syy − bdiag Syy}L

·bdiag−1 (LH
SyyL)LH

, (28)

Sxy = SxxW. (29)

Although it is straightforward, we do not consider the natural gra-
dient here in the frequency domain for simplicity.

3.2. The constraints and the permutation problem in
frequency-domain BSS

Two types of constraints appear in the gradient (28):

• Matrix L introduces joint diagonalization over all time-lags

• The matrices G···

··· are mainly responsible for preventing the
internal permutation among the different frequency bins.

Current frequency-domain BSS algorithms do not take the non-
whiteness property into account. By neglecting matrix L in (28)
we obtain the simplified algorithm utilizing only the nonstationar-
ity of the source signals:

∇WJ (m) = 4
m�

i=0

β(i, m)SxyS
−1
yy

· {Syy − bdiag Syy} bdiag−1
Syy. (30)

Note that this algorithm still avoids the well-known internal per-
mutation problem of frequency-domain BSS using the constraints
G···

··· in Sxy and Syy.
By additionally removing these constraints, i.e., by approxi-

mating G···

··· as scaled identity matrices [11], all the submatrices in
(30) become diagonal matrices. Only in this case (30) can be de-
composed in its frequency components, i.e., we can equivalently
write

∇WJ (ν)(m) = 4
m�

i=0

β(i, m)S(ν)
xy � S(ν)

yy � −1

· � S
(ν)
yy − diag S

(ν)
yy � diag−1

S
(ν)
yy , (31)

where ν = 0, . . . , 4L − 1 denotes the frequency bins. In contrast
to Sxy and Syy in (30) which are 4LP × 4LP matrices each, the
corresponding matrices S

(ν)
xy and S

(ν)
yy in (31) are only of dimen-

sion P × P . While (31) is computationally more efficient than
(30), the known measures to avoid the internal permutation have
to be taken.

3.3. Links to known frequency-domain algorithms and the
generalized coherence

The unconstrained coefficient update (31) is directly related to
some known frequency-domain BSS algorithms. In [7], an al-
gorithm that is similar to (31) was derived by directly optimiz-
ing a cost function similar to the one in [5] in a bin-wise manner.
More recently, Fancourt and Parra proposed in [8] to apply the
magnitude-squared coherence

|γ(ν)
ypyq

(m)|2 =
|S

(ν)
ypyq

(m)|2

S
(ν)
ypyp

(m)S
(ν)
yqyq

(m)
, (32)

p, q ∈ {1, . . . , P} as a cost function for frequency-domain BSS,
where S

(ν)
ypyq

(m) denotes the (p, q)-th element of S
(ν)
yy (m), i.e.,

the power spectral density in the ν-th bin and block m. The coher-
ence (32) has the very desirable property that

0 ≤ |γ(ν)
ypyq

(m)|2 ≤ 1, (33)

which directly translates into an inherent stepsize normaliza-
tion of the corresponding update equation [8]. In particular,
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|γ
(ν)
y1y2

(m)|2 = 0 if y1 and y2 are orthogonal, and |γ
(ν)
y1y2

(m)|2 =
1 when y1 = ay2 for any non-zero complex number a.

Comparing our update equation (31) with that derived in [8],

we see that an additional approximation of � S(ν)
yy � −1

as a diagonal

matrix was used in [8], which results in

∇WJ (ν)(m) = 4

m�

i=0

β(i, m)S(ν)
xy diag−1

S
(ν)
yy

· � S
(ν)
yy − diag S

(ν)
yy � diag−1

S
(ν)
yy . (34)

In the following, we study this link more closely using the so-
called generalized coherence [12]

|γ(ν)
yy (m)|2 = 1 −

detS
(ν)
yy (m)� P

p=1 S
(ν)
ypyp

(m)
, (35)

which is valid for an arbitrary number P of channels. By the
Schwarz inequality, it can be shown that (35) also satisfies (33).
In the 2 × 2 case it is equal to the well-known coherence (32).
The generalized coherence can again be interpreted in a geometric
way as in Fig. 2 since detS(ν)(m) corresponds to a volume of a
general parallelepiped spanned by the column vectors of S(ν)(m).
Moreover, it is normalized by the volume

� P

p=1 S
(ν)
ypyp

(m) of a
(rectangular) P -dimensional cuboid.

To see the exact correspondence, we start with (14):

J (ν)(m) =
m�

i=0

β(i, m) � log det diag S
(ν)
yy (i)

− log detS(ν)
yy (i) �

=

m�

i=0

β(i, m)

�
log

P�
p=1

S
(ν)
ypyp

(i)

− log detS(ν)
yy (i) �

=

m�

i=0

β(i, m)

�
− log

detS
(ν)
yy (i)� P

p=1 S
(ν)
ypyp

(i) � .

(36)

A Taylor approximation

− log(x) = (1 − x) +
(1 − x)2

2
+

(1 − x)3

3
+ · · ·

around x = 1 for 0 < x ≤ 2 finally yields

J (ν)(m) =

m�

i=0

β(i, m)

�
1 −

detS
(ν)
yy (m)� P

p=1 S
(ν)
ypyp

(m) � .

For the case P = 2 this is exactly the cost function proposed in [8],
while for P > 2 it is slightly more general. From this equivalence,
we can draw the conclusion that our cost function (14) also leads
to an inherent stepsize normalization for the coefficient updates.

4. CONCLUSIONS

We presented a generalization of a class of BSS algorithms for con-
volutive mixtures taking into account the nonstationarity property
and the nonwhiteness property. Using a matrix framework and a
generalized cost function, rigorous derivations of both known and
new extended algorithms become possible.
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