
AN EXTENDED MULTIDELAY FILTER:
FAST LOW-DELAY ALGORITHMS FOR VERY HIGH-ORDER ADAPTIVE SYSTEMS

Herbert Buchner, Walter Kellermann

Telecommunications Laboratory,
University of Erlangen-Nuremberg

Cauerstr. 7, D-91058 Erlangen, Germany
{buchner,wk}@LNT.de

Jacob Benesty

Bell Laboratories, Lucent Technologies,
700 Mountain Avenue

Murray Hill, NJ 07974, USA
jbenesty@bell-labs.com

ABSTRACT

We propose a novel class of efficient adaptive algorithms in the
frequency domain that is tailored to very long adaptive filters and
highly autocorrelated input signals as they arise, e.g., in high-
quality full-duplex audio applications. The approach exhibits good
tracking capabilities of the signal statistics and very low delay.
Moreover, it is shown that the low order of computational com-
plexity of the conventional frequency-domain adaptive algorithms
can be maintained thanks to efficient realizations. The algorithm
allows a tradeoff between the well-known multidelay filter (MDF)
and the recursive least-squares (RLS) algorithm. It is also well
suited for an efficient generalization to the multichannel case.

1. INTRODUCTION

Many signal processing applications require adaptive filters with
very long impulse responses. In acoustic echo cancellation (Fig. 1),
for example, thousands of FIR filter coefficients may be required
to sufficiently model the echo path (EP). Moreover, the input data
are often very highly correlated which causes slow convergence of
most algorithms [1]. The requirements are particularly demanding
for high-quality audio (with high sampling rates, e.g., 48kHz for
both, recording and reproduction) and/or multichannel reproduc-
tion [2].
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Fig. 1. Adaptive filter (dashed) in the AEC application.

An attractive solution to these problems is to use frequency-
domain adaptive filters since, on the one hand, the computational
complexity can be greatly reduced by exploiting the fast Fourier
transformation (FFT). On the other hand, the discrete Fourier trans-
form approximately decorrelates the input signals, which leads to
very favorable convergence properties of the adaptive algorithms.
Frequency-domain methods rely on block-processing. In early ap-
proaches, the block length was set to the number of filter taps.
The associated processing delay, equal to the block length, and
the resulting difficulty to follow time-varying statistics of non-
stationary signals, are often considered to be a major handicap.

Therefore, more flexible structures were introduced: the multi-
delay filter (MDF) [3], where the filter length L is partitioned
into shorter length-N sub-filters, and the generalized multidelay
filter (GMDF) [4] which foresees an additional overlap of the in-
put data blocks for data reuse. While the processing delay can be
significantly reduced with these structures, the major disadvantage
of choosing a block length N that is much shorter than the filter
length L is that the convergence speed is often severely degraded
for highly correlated signals since the correlations between these
shorter blocks are not taken into account. In this paper, we present
an extended MDF (EMDF) to solve this problem. The EMDF
algorithm follows directly from a generic partitioned frequency-
domain adaptive algorithm which can be rigorously derived from
an exponentially weighted least-squares criterion in the frequency-
domain [5]. The generic frequency-domain framework has led to
efficient implementations of multichannel acoustic echo cancel-
lation systems by inherently taking all inter-channel correlations
into account. In a similar way, the EMDF algorithm contains all
inter-partition correlations. To keep the formal presentation short
and accessible, we concentrate on the single-channel EMDF algo-
rithm in this paper; the generalization to the multichannel version
is obtained analogously as in [5]. In contrast to inter-channel cor-
relations, the inter-partition correlations in the EMDF result from
a shift-structure of the data. This structure is exploited in this pa-
per to derive fast implementations. Using a fast implementation of
the EMDF algorithm (FEMDF) the computational complexity can
be kept on the same order as that of the classical MDF.

2. GENERIC PARTITIONED FREQUENCY-DOMAIN
ADAPTIVE FILTERING

Here, we summarize the generic frequency-domain algorithm in its
partitioned and constrained single-channel version. We follow the
same notation as in [5], where a detailed derivation and an analysis
can be found. Then, in the next section, the connection to the MDF
[3] is established and the EMDF algorithm is introduced, based on
the generic algorithm. In this paper, we do not introduce an overlap
of input data blocks, i.e. the GMDF [4] is not considered in this
paper.

From Fig. 1, it can be seen that the error signal at time n bet-
ween the output of the adaptive filter ŷ(n) and the desired output
signal y(n) is given by

e(n) = y(n)− ŷ(n), (1)

with



ŷ(n) =

L−1
∑

κ=0

x(n− κ)ĥκ, (2)

where ĥκ are the coefficients of the filter impulse response. By
partitioning the impulse response ĥ into segments of length N as
in [3], (2) can be written as

ŷ(n) =

K−1
∑

k=0

N−1
∑

κ=0

x(n−Nk − κ)ĥNk+κ, (3)

where we assume that the total filter length L is an integer multiple
of N , so that L = KN . For convenient notation of the algorithm,
we rewrite this equation in vectorized form

ŷ(n) =

K−1
∑

k=0

x
T
k (n)ĥk = x

T (n)ĥ, (4)

where

xk(n) = [x(n−Nk), x(n−Nk − 1), . . .

. . . , x(n−Nk −N + 1)]T , (5)

ĥk = [ĥNk, ĥNk+1, . . . , ĥNk+N−1]
T , (6)

x(n) = [xT0 (n),xT1 (n), . . . ,xTK−1(n)]T . (7)

Superscript T denotes transposition of a vector or a matrix. The
length-N vectors ĥk, k = 0, . . . , K − 1 represent sub-f ilters of
the partitioned tap-weight vector

ĥ = [ĥ0, . . . , ĥK−1]
T . (8)

We now define the block error signal of length N . Based on
(1) and (4) we write

e(m) = y(m)− ŷ(m), (9)

with m being the block time index, and

ŷ(m) =

K−1
∑

k=0

U
T
k (m)ĥk = U

T (m)ĥ, (10)

where

e(m) = [e(mN), . . . , e(mN + N − 1)]T , (11)

y(m) = [y(mN), . . . , y(mN + N − 1)]T , (12)

ŷ(m) = [ŷ(mN), . . . , ŷ(mN + N − 1)]T , (13)

Uk(m) = [xk(mN), . . . ,xk(mN + N − 1)], (14)

U(m) = [UT
0 (m), . . . ,UT

K−1(m)]T . (15)

To derive the frequency-domain algorithm, the block error sig-
nal (9), together with (10) is transformed by a DFT matrix to
its frequency-domain counterpart. The matrices Uk(m), k =
0, . . . ,K − 1 are Toeplitz matrices of size (N × N). Since a
Toeplitz matrix Uk(m) can be transformed, by doubling its size,
to a circulant matrix of size (2N × 2N), and a circulant matrix
can be diagonalized using the (2N × 2N)-DFT matrix F with
elements e−j2πνn/(2N) (ν, n = 0, . . . , 2N − 1), we have

U
T
k (m) = [0N×N , IN×N ]F−1

Xk(m)F[IN×N ,0N×N ]T (16)

with the diagonal matrices

Xk(m) = diag{F[x(mN −Nk −N), . . .

. . . , x(mN −Nk + N − 1)]T }. (17)

By minimizing the resulting frequency-domain error signal by an
exponentially weighted least-squares criterion [5], we obtain the
corresponding normal equation in the frequency domain. The ex-
act recursive solution of this normal equation is given by the generic
partitioned block frequency-domain algorithm, which is [5]

Sxx(m) = λSxx(m− 1)

+(1− λ)XH(m)G1X(m), (18)

K(m) = S
−1
xx (m)XH(m), (19)

e(m) = y(m)−G1X(m)ĥ(m− 1), (20)

ĥ(m) = ĥ(m− 1) + (1− λ)G2K(m)e(m). (21)

Sxx(m) denotes the input power spectral density matrix, which is
calculated from

X(m) = [X0(m),X1(m), . . . ,XK−1(m)]. (22)

λ (0 < λ < 1) is an exponential forgetting factor, and H denotes
conjugate transposition. The underlined quantities e(m), y(m),

and ĥ(m) denote the frequency-domain counterparts of the re-
spective block representations of the signals in the time domain,
i.e.,

e(m) = F

[

0N×1

e(m)

]

, (23)

y(m) = F

[

0N×1

y(m)

]

, (24)

ĥ(m) = [ĥ
T

0 (m), ĥ
T

1 (m), . . . , ĥ
T

K−1(m)]T , (25)

ĥk(m) = F

[

ĥk
0N×1

]

. (26)

Two constraint matrices, G1 of size (2N × 2N ), and G2 of size
(2L × 2L) appear in the above algorithm (18)-(21). They are
defined as

G1 = FW1F
−1, (27)

W1 =

[

0N×N 0N×N

0N×N IN×N

]

, (28)

and

G2 = diag{G̃2, . . . , G̃2}, (29)

G̃2 = FW2F
−1, (30)

W2 =

[

IN×N 0N×N

0N×N 0N×N

]

. (31)

Due to the formal similarity of Eqs. (18)-(21) to the RLS algorithm
[1] in the time domain, we call the matrix K(m) the frequency-
domain Kalman gain. The Kalman gain plays a key role in the
following sections.



3. EXTENDED MULTIDELAY FILTER (EMDF)

The Algorithm (18)-(21) is strictly equivalent to the RLS algo-
rithm in the time domain for a block length N = 1. Unfortu-
nately, the matrix Sxx(m) in (18) is not sparse (or even diagonal),
so the above generic algorithm still has a high computational com-
plexity due to the matrix inversion in (19). However, as shown in
e.g., [5], matrix G1 can very well be approximated by G1 = I/2
in (18) if N is sufficiently large. This approximation leads to a
block-diagonal structure of matrix Sxx(m) with the diagonal sub-
matrices (i, j = 0, . . . ,K − 1)

Si,j(m) = λSi,j(m− 1) + (1− λ)X∗
i (m)Xj(m). (32)

Figure 2 illustrates the block structure for the example of 5 par-
titions. The classical multidelay filter (MDF) is obtained by fur-
ther approximating Sxx(m) by dropping the off-diagonal compo-
nents, i.e. the inter-partition correlations (grey diagonals in Fig. 2).
This leads to the low computational complexity per output sample,
which is linear in K.

The extended multidelay filter (EMDF) proposed here takes
the inter-partition correlations into account and thus provides a
better approximation to the exact solution of the normal equation.
However, a straightforward implementation leads to a computa-
tional complexity, which increases quadratically with the number
K of partitions. Fast schemes, as discussed in the next section,
provide a solution with a complexity that is comparable to that of
the classical MDF.

2L

2N

Fig. 2. Structure of matrix Sxx(m).

4. FAST EMDF ALGORITHMS

In order to reduce the computational complexity of the EMDF al-
gorithm, it is interesting that the data among the partitions are not
independent. Due to the formal similarity of Eqs. (32), (19)-
(21) with the RLS algorithm in the time domain [1, 6], corre-
sponding fast implementations can be expected. The necessary
and sufficient condition for the existence of fast versions of the
RLS algorithms is – apart from the form of the equations for the
calculation of the Kalman gain – the shift-structure of the input sig-
nal vector [1, 6]. Let u(n) = [u(n), u(n−1), . . . , u(n−L+1)]T

be the length-L input signal vector of the RLS algorithm. It is easy
to see that the k-th component uk(n) of this tap input vector can
be expressed as

uk(n) =

{

u(n) k = 0
uk−1(n− 1) k = 1, . . . , L− 1

(33)

In the frequency-domain, we have the following diagonal input
matrices to the k-th sub-filter (partition):

Xk(m) = diag{F[x(mN −Nk −N), . . .

. . . , x(mN −Nk + N − 1)]T }. (34)

Since we assume G1 = I/2, the matrices Sxx(m), and thus
K(m) are also block-diagonal. This allows us to perform the cal-
culations separately for each frequency bin ν (ν = 0, . . . , 2N −
1). The ν-th element on the diagonal Xk(m) is

X
(ν)
k (m) =

2N−1
∑

n=0

x(mN −Nk −N + n)e−j2πνn/(2N). (35)

By substitution of k and m, we find that the following relation
holds:

X
(ν)
k (m) =

{

X
(ν)
0 (m) k = 0

X
(ν)
k−1(m− 1) k = 1, . . . ,K − 1.

(36)

This relation has the same structure as (33), i.e., in each frequency-
bin there is a corresponding shift structure among the partitions.
This allows us to apply any fast RLS algorithm to the EMDF case.
Note that due to the relatively low number K of partitions (com-
pared to the number L of filter taps, which is relevant in the RLS),
the algorithms exhibit a very stable behaviour. The complexity in-
creases only linearly (instead of quadratically as with the ordinary
EMDF algorithm) with the number of partitions. Therefore the
complexitiy is on the same order as in the classical MDF.

As an example, we consider the so-called fast transversal filter
(FTF) structure [6] for efficient calculation of the Kalman gain.
Table 1 summarizes the corresponding fast EMDF algorithm. The
FTF can be derived by using the a priori Kalman gain K(ν)(m) =

(S(ν))−1(m − 1)X(ν)H(m), where X(ν)(m) is a length K row
vector. This a priori Kalman gain can be computed recursively by
5N multiplications (for N output values). “Stabilized” versions of
FRLS (with L, resp. N more multiplications) exist in the litera-
ture but with non-stationary signals like speech, they are not much
more stable than their non-stabilized counterparts. A simple rem-
edy is to re-initialize the predictor-based variables when instability
is detected with the use of the maximum likelihood variable ϕ(ν)

which is an inherent variable of the fast algorithm [6].

5. EVALUATION FOR ACOUSTIC ECHO
CANCELLATION

We demonstrate the performance of the algorithm by an exam-
ple for acoustic echo cancellation. We apply the (single-channel)
EMDF algorithm for (single-channel) AEC with K = 50 parti-
tions, a block length (each partition) N = 64, and a high sampling
rate of 48kHz. As input signal, we chose classical music (Air
by Bach). The signal sequence is highly auto-correlated (tonal
sounds, which are known as worst case for the adaptation). An
echo-to-background noise ratio (EBR) of 45dB on the microphone
was chosen. The dashed lines in Fig. 3 show the echo return loss
enhancement ERLE and the misalignment achieved by the con-
ventional MDF. For the solid lines, the same data and the same
parameters are used with the EMDF algorithm. It is important to
note that the regularization is adjusted in each case. Several simu-
lations have confirmed that the EMDF shows a significantly more
stable behaviour than the classical MDF due to the more accurate
approximation to the exact recursive solution of the normal equa-
tion.

6. CONCLUSIONS

We presented a new class of algorithms within the general frame-
work of frequency-domain adaptive filtering. This class exhibits



Table 1 An FTF-based Fast EMDF algorithm

Definitions:

W1 =

[

0N×N 0N×N

0N×N IN×N

]

G1 = FW1F
−1

W2 =

[

IN×N 0N×N

0N×N 0N×N

]

G̃2 = FW2F
−1

G2 = diag{G̃2, . . . , G̃2}

Input:
Xk(m) = diag{F[x(mN −Ni−N), . . .

. . . , x(mN −Ni + N − 1)]T },
k = 0, . . . , K − 1

Prediction:
X(ν)(m) ← Xk(m), ν = 0, . . . , 2N − 1,

k = 0, . . . , K − 1

e(ν)
a (m) = X

(ν)∗
0 (m)

−a(ν)H(m− 1)X(ν)H(m− 1)

ϕ
(ν)
1 (m) = ϕ(ν)(m− 1) + |e

(ν)
a (m)|2

E
(ν)
a (m−1)

[

t(ν)(m)

M (ν)(m)

]

=

[

0

K
(ν)
1 (m− 1)

]

+

[

1

−a(ν)(m− 1)

]

e
(ν)
a (m)

E
(ν)
a (m−1)

E
(ν)
a (m) = λ

(

E
(ν)
a (m− 1) + |e

(ν)
a (m)|2

ϕ(ν)(m−1)

)

a(ν)(m) = a(ν)(m− 1)

+K
(ν)
1 (m− 1) e

(ν)∗
a (m)

ϕ(ν)(m−1)

e
(ν)
b (m) = E

(ν)
b (m− 1)M (ν)(m)

K
(ν)
1 (m) = t(ν)(m) + b(ν)(m− 1)M (ν)(m)

ϕ(ν)(m) = ϕ
(ν)
1 (m)− e

(ν)∗
b (m)M (ν)(m)

E
(ν)
b (m) = λ

(

E
(ν)
b (m− 1) +

|e
(ν)
b

(m)|2

ϕ(ν)(m)

)

b(ν)(m) = b(ν)(m− 1) + K
(ν)
1 (m)

e
(ν)∗
b

(m)

ϕ(ν)(m)

K(ν)(m) =
K

(ν)
1 (m)

ϕ(ν)(m)

K(m) ← K(ν)(m), ν = 0, . . . , 2N − 1

Filtering:
e(m) = y(m)−G1X(m)ĥ(m− 1)

ĥ(m) = ĥ(m− 1) + µG2K(m)e(m)
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Fig. 3. Comparison between classical MDF (dashed) and EMDF
(solid lines).

several very desirable properties, particularly for very long adap-
tive filters and high sampling rates. Due to the rigorous derivation
of the new algorithm with a block size N ≤ L, we found a natural
way of efficiently taking all cross-correlations between the parti-
tions into account. As shown by way of simulations, the algorithm
can lead to a significant improvement of the convergence speed
over the multidelay filter, i.e., the conventional frequency-domain
algorithm with partitioned blocks. Moreover, by introducing fast
calculation schemes for the frequency-domain Kalman gain in the
extended multidelay filter, the computational complexity can be
kept on the same order as that of the conventional multidelay filter.
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