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Abstract

Multichannel signal processing techniques for reproduc-
tion and acquisition of audio and speech signals at the
acoustic human/machine interface offer spatial selectiv-
ity and diversity as additional degrees of freedom over
single-channel schemes.

In this contribution, we identify the fundamental
problems for acquisition and reproduction with distant
sources/ listeners as signal separation problems or system
identification problems of varying difficulty depending
on the available reference information. We analyze the
structure of the respective problems and discuss possible
solutions. As examples for recent advances in this field,
we emphasize speech acquisition systems, and highlight
multi-channel acoustic echo cancellation, adaptive beam-
forming, and blind source separation. The presented al-
gorithms are mainly characterized by their ability to cope
well with the nonstationarity of the involved signals and
the time-variance as well as the complexity of the acous-
tic systems, and thereby represent robust solutions to real-
world scenarios.

1. Introduction

We consider an acoustic human/machine interface ac-
cording to Fig.1 using multiple channels both for repro-
duction and acquisition of sound, which in general should
serve multiple mobile sources and listeners.

For sound reproduction, vector v contains L loud-
speaker signals, which are derived from K source signals
captured by vector u. Vector w of length 2M describes
the signals at the ears of M listeners, which in the ideal
case correspond to a set of desired signals wd.

Regarding signal acquisition, vector s represents M
source signals si of potential interest. n captures the
noise sources which lead to additive noise vectors nw, nx

at the listeners’ ears and the microphones, respectively.
The objective of signal acquisition is to extract a vector z

from N microphone signals described by vector x such
that, ideally, z contains P ≤ M desired source signals si.
The matrices Hwv,Hxv, Hxs describe the transfer char-
acteristics between the respective vector elements. As an
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Figure 1: Multichannel acoustic human/machine inter-
face

essential feature of our scenario, we assume that loud-
speakers and microphones need not be close to the human
users, and that, ideally, the users should be allowed to
move freely. With this general setup, we capture numer-
ous realistic scenarios where natural and synthetic acous-
tic scenes should be reproduced and/or sources should
be recorded for storage, transmission, processing, or in-
terpretation. This includes hands-free speech communi-
cation devices in cars, multimedia terminals, and tele-
conferencing equipment, but also telepresence systems,
home theatres, and virtual reality environments. More-
over, such seamless human/machine interfaces are of spe-
cial importance for user-friendly distant-talking speech
recognition and speech dialog systems.

In the following we review the fundamental signal
processing problems for creating the desired listeners’
signals wd and for extracting the desired source signals
z from x, discuss current solutions, and highlight some
examples for recent advances.



2. Fundamental signal processing problems

For the following representation in the discrete time do-
main we assume that all components of our scenario
act as linear, but generally time-variant systems on the
defined signals. This allows us to capture the signal
processing by a matrix G representing a linear MIMO
(’multiple input/multiple output’) system, which real-
izes linear convolutions on the time domain signals ui,
xj (i = 1, . . . , K; j = 1, . . . , N ). With submatrices
Gvu,Gvx,Gzu,Gzx this reads 1:
(

v

z

)
= G ∗

(
u

x

)
=

(
Gvu Gvx

Gzu Gzx

)
∗

(
u

x

)
.

(1)

The actual ear signals w and the microphone signals x

are determined by the acoustic environment as follows:

w = Hwv ∗ v + nw, (2)

x = Hxs ∗ s + Hxv ∗ v + nx. (3)

We emphasize here that the elements of the matrices H(·)

are commonly impulse responses with a duration of sev-
eral hundred milliseconds, which are typically modelled
by digital FIR filters using around 1000 or more coef-
ficients [2]. With regard to inversion of these systems it
must be considered that most of their zeroes lie very close
to the unit circle, which causes even much longer impulse
responses for the inverse models.

Based on this signal model, we derive now the re-
quirements for the signal processing matrix G. Thereby,
we may safely assume that the source signals si, the vec-
tor of reproduction signals u, and the vector of noise sig-
nals n are mutually independent.

2.1. Sound reproduction

With multichannel sound reproduction we aim at desired
ear signals wd which fulfill:

w
!
= wd = Hd ∗ u, (4)

where the 2M×K matrix Hd describes the usually time-
variant impulse responses hij(k, l) from the j-th input
uj(k) and the i-th ear. Therefore, considering Eqs.1,2,
we have to meet:

Hwv ∗ (Gvu ∗ u + Gvx ∗ x) + nw

!
= Hd ∗ u. (5)

This implies two kinds of signal processing problems:
1Convolution of the column vector x with matrix A written as

y = A ∗ x means that the elements yi(k) of the output vector y

are computed as yi(k) =
� N

j=1

�
∞

n=−∞
aij(k, n)xj(n) (for the

elements of A we have aij(k, n) = aij(k − n) if the system is time-
invariant). The inverse matrix A−1 is defined as the matrix which ful-
fills A−1

∗A = I · δ(k), where I is the identity matrix and δ(k) is the
unit impulse. For rank-deficient or non-square matrices A, the matrix
A−1 represents the pseudoinverse (see [1]).

A. Deconvolution. Matrix Gvu has to equalize the
influence of the room impulse responses Hwv if the sig-
nal processing for reproduction should be independent of
a given signal vector u:

Hwv ∗Gvu ∗ u
!
= Hd ∗ u =⇒ Hwv ∗Guv

!
= Hd

=⇒ Gvu

!
= H−1

wv
∗Hd. (6)

Aside from assuring causality of Gvu by inserting a
proper delay into Hd, the main problem is obviously that,
without reference signals at the ears, the matrix Hwv can-
not be identified and therefore cannot be inverted. (Note
that this problem is even more difficult than the common
blind deconvolution problems where channels are identi-
fied on the basis of observations at the output of the chan-
nels only.) Our problem can only be solved if Hwv can be
sufficiently well modelled or measured in advance. Ac-
tually, for the latter case, it is known that multichannel
systems can efficiently relieve the problem of inverting
systems with zeroes close to the unit circle of the individ-
ual transfer functions [3], so that H−1

wv
can be identified

and realized efficiently if observations at the positions of
the listeners’ ears are available.

B. Noise compensation. From the microphone sig-
nals x, we have to extract reference information on the
noise and interference signals at the ear, which then can
be used for compensation:

Hwv ∗Gvx ∗ x + nw

!
= 0. (7)

This presumes that the noise components at the ears nw

are completely observable in the microphone signals x,
such that a noise vector

nx = Hxw ∗ nw (8)

can be observed. From that, one has to form a compen-
sating signal that can be emitted from the loudspeakers
and fulfills:

Hwv ∗Gvx ∗ nx = Hwv ∗Gvx ∗Hxw ∗ nw

!
= −nw.

(9)

Aside from the difficulty of extracting nx from x, for
signal-independent noise cancellation, we also have to re-
quire that the matrix Gvx meets

Gvx

!
= −H−1

wv
∗H−1

xw
. (10)

From this we see that Gvx can only be causal if H−1
xw

compensates for the acausality of H−1
wv

. This requires
that Hxw is anticausal, i.e., the noise sources are geo-
metrically closer to the reference microphones than to the
region of compensation (unless the noise is periodic with
some period k0, nw(k) = nw(k − k0)). Therefore, in
practice, noise compensation calls for distributing many



microphones in the acoustic environment as potential ref-
erence sensors.

While the inversion of Hwv in A. is identified as a
blind deconvolution problem with unknown output w, the
inversion of Hxw in B. is a blind deconvolution problem
where the input of the unknown system, nw, cannot be
observed. Note that Eq.7 represents a multichannel sys-
tem for active noise cancellation (’active noise control’)
[4]. However, unlike in common active noise cancellation
setups, in our scenario we explicitly allow for relatively
large distances between actuators and sensors on the one
hand, and the spatial region where noise must be compen-
sated on the other hand. So far, no noise compensation
schemes for this scenario of hands-free human/machine
interfaces are known to the authors.

Standard techniques for sound reproduction do not
solve the above problems of deconvolution and noise
compensation: With stereo or other multichannel repro-
duction schemes, the local acoustic environment (repre-
sented by Hwv,nw) is not taken into account and the
matrix Gvu is usually a diagonal matrix with (possibly
delayed) scalar gain factors, so that the desired listening
experience can be provided only in a prescribed sweet
spot in an anechoic room without noise. With wavefield
synthesis [5] this sweet spot can be extended to an entire
plane if a closed contour is sufficiently densely sampled
by loudspeakers (e.g., L = 24, . . . , 128). Here, impulse
responses in Gvu for auralization of virtual acoustic en-
vironments (still without accounting for the local acous-
tic environment) are common. Current research in wave-
field synthesis aims at compensation of the room envi-
ronment, i.e., at identifying Hwv by solving Eq.6 for an
entire region (including the potential positions of the lis-
teners’ ears) using off-line measurements [6]. This can
be expected to work in a limited frequency range and in
idealized environments. However, the impact of the pres-
ence of potentially moving persons and their head-related
transfer functions is not yet accounted for by this method.

2.2. Signal acquisition

The objective of signal acquisition is a vector z con-
taining P out of the M original source signals zi(k) =
sj(k) ∗ δ(k − k0) = sj(k − k0), (i = 1, . . . , P ; j ∈
{1, . . . , M}), where the delay k0 ≥ 0 is required for
causal signal processing. For extracting any of the source
signals from x, Eq.3 requires that other desired sources
and undesired local noise components have to be sup-
pressed, echoes of the loudspeaker signals have to be
compensated, and echoes and reverberation of the desired
source signal sj(k) have to be removed from the micro-
phone signals.

For notational simplicity, we assume in the follow-
ing P = M and an unpermuted mapping of the desired
sources sj(k) to the desired output, zj(k), so that we ob-
tain as requirement for ideal signal acquisition from Eq.1

with Eq.3:

z = Gzu ∗ u + Gzx ∗ x

= Gzu ∗ u + Gzx ∗ (Hxs ∗ s + Hxv ∗ v + nx)

= (Gzu + Gzx ∗Hxv ∗Gvu) ∗ u + Gzx ∗ nx

+Gzx ∗Hxs ∗ s

!
= s ∗ δ(k − k0). (11)

This implies three tasks for digital signal processing:
A. Echo cancellation. For compensating the feed-

back of u into the output signals z, we obviously have to
ensure

(Gzu + Gzx ∗Hxv ∗Gvu) ∗ u = 0. (12)

If perfect echo cancellation should be guaranteed inde-
pendently of the signals u, then

Gzu = −Gzx ∗Hxv ∗Gvu (13)

must hold. This corresponds to a multichannel version of
the classical system identification problem where input
and output of the unknown system can be observed. Note
that actually only the matrix Hxv describing the acoustic
paths from the loudspeakers to the microphones must be
identified.

B. Noise suppression. For perfectly suppressing lo-
cal noise and interference

Gzx ∗ nx = 0 (14)

must be realized. Signal-independent solutions would re-
quire Gzx = 0, which would prevent the acquisition of
any desired signal. Therefore, noise suppression can only
be performed without impairment of the desired signals
if the noise components in x can be perfectly separated
from the desired signal components, before they are sup-
pressed.

C. Source separation and dereverberation. As-
suming that noise and echoes are removed from x, we
still have to separate the desired sources and free them
from reverberation to obtain

Gzx ∗Hxs ∗ s = s ∗ δ(k − k0). (15)

This means, for signal-independent solutions, we have to
ask for

Gzx ∗Hxs = δ(k − k0) · IM,M . (16)

For the elements of the main diagonal of Gzx ∗Hxs this
constitutes a multichannel blind deconvolution problem
and for the off-diagonal elements a blind signal separa-
tion problem which can also be viewed as an interference
cancellation problem similar to Eq.14.

Similarly to the reproduction part, the signal process-
ing subtasks for signal acquisition can be categorized as



problems of either signal separation or system identifica-
tion. Here, the separation of the components of x (see
Eq.3) is a most crucial part for further identification of
Gzx, Gzu, and Gxv: Components correlated with the
loudspeaker signals v must be isolated for identification
of the echo cancellers Hxv, noise components nx should
be identified for subsequent suppression, and individual
desired source signals must be extracted for immediate
use or further processing.

Generally, for separating signal components by multi-
channel linear signal processing three domains can be ex-
ploited: time, frequency, and space. Separation of signal
components is relatively simple if the signals are orthogo-
nal in any one of these domains for the given observation
interval. For time and frequency, this condition is rarely
fulfilled in our scenario: In most cases, noise, interfering
signals, and desired signals will overlap at least partially
in both time and frequency in the microphone signals x.
Fortunately, multichannel signal acquisition also allows
spatial filtering to separate signal components originating
from different points in space. In reverberant environ-
ments, however, the separation of sources according to
angles of incidence is also limited, as due to reflections,
filtered versions of the source signals may arrive from all
angles. As another limitation for signal separation, the
sampling theorems have to be observed not only for time
and frequency domain but also for spatial apertures [7] to
avoid ambiguities, and finite observation intervals will al-
ways limit resolution in all three domains. The most crit-
ical limitation comes usually from the finite spatial aper-
ture and its sampling by microphones: Audio bandwidths
span up to ten octaves which call for many microphones,
and for geometrically large apertures at low frequencies.

Among the various system identification tasks in our
scenario, echo cancellation is structurally the simplest
one, as input and output of the unknown systems can be
observed, although the output vector Hxv∗v may be sub-
merged in x. On the other hand, solving the blind decon-
volution problem in Eq.16 for realistic scenarios presents
a major challenge for current research.

3. Some recent advances in signal
acquisition

Rather than attempting a comprehensive overview of this
very active research area we present here a synopsis of
some recent results with examples from our own work.

3.1. Echo cancellation

For a convenient treatment of the mechanism we assume
that Gvu = IK,K · δ(k) and consider the system identi-
fication problem only for a single microphone signal and
a single output signal (N = P = 1) with Gzx = δ(k).
(The application to microphone arrays has been discussed
in [8].) Then, Eq.13 reduces to Gzu = −Hxv, where the

matrices are row vectors with K generally time-variant
impulse responses as elements:

Gzu = (g1(k), . . . , gK(k)) , (17)

Hxv = (h1(k), . . . , hK(k)) . (18)

Using an FIR model of length Lg we obtain for the esti-
mate of the echo (see Fig.2)

ŷ(k) = gT (k)u(k), (19)

where

g(k) =
(
gT

1 (k), . . . ,gT
K(k)

)T
, (20)

u(k) =
(
uT

1 (k), . . . ,uT
K(k)

)T
. (21)

with the individual impulse responses and data vectors

gi(k) =
(
gi,0(k), . . . , gi,Lg−1(k)

)T
, (22)

ui(k) = (ui(k), . . . , ui(k − Lg + 1))T , (23)

respectively. The estimation error reads:

e(k) = y(k) − ŷ(k), (24)

where

e(k) =: z(k)|
s=0,nx=0 , y(k) =: x(k)|

s=0,nx=0 .

(25)

Figure 2: Echo cancellation for K-channel reproduction

In order to follow the time-variance of the impulse re-
sponse hi(k), gradient-type adaptive algorithms are com-
mon to approximate the optimum Wiener solution g(k):

g(k) = g(k − 1) + k(k)e(k), (26)

where the ’Kalman gain’ vector k(k) determines the di-
rection of the adaptation. While for single-channel echo
cancellation (K = 1) simple adaptation algorithms, such
as the normalized least mean square (NLMS) algorithm
(corresponding to k(k) = αu/(uHu), 0 < α < 2, see
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[2]) are very popular, for multichannel echo cancellation
(K ≥ 2), algorithms with improved convergence proper-
ties are necessary. This is due to the strong time-varying
correlation between the K input channels ui(k), which
results from the fact that the signals ui(k) are usually
different mixtures of a common set of sources. As an
alternative to the NLMS algorithm, the RLS (’recursive
least squares’) algorithm using the Kalman gain vector
k(k) = R−1

uu
(k) · u (with Ruu being the estimated au-

tocorrelation matrix of u) promises fastest convergence.
However, even here we have to improve the condition
number of Ruu, e.g., by an (ideally imperceptible) non-
linearity NLi (cf. Fig.2) [10].

As a direct inversion of the K · LG × K · LG ma-
trix R−1

uu
(k) is still unrealistic for real-time implemen-

tations with K · LG = 1000 . . .20000, approximative
solutions in the DFT domain are very attractive. In [9]
an algorithm is presented which requires only the inver-
sion of LG matrices of size K ×K instead of one matrix
of size (K · LG) × (K · LG), and thereby allows real-
time operation of a K = 5-channel echo canceller with
K · LG > 20000 filter coefficients on an ordinary PC
(Intel 1.7GHz, dual processor board, sampling frequency
12kHz). In Fig.3 typical convergence curves of the sys-
tem error norm (∝ log10(‖Gzu + Hxv‖

2
2/‖Hxv‖

2
2))

and the echo suppression (ERLE) are depicted for vari-
ous K. The ERLE curves demonstrate that with proper
parametrization echo suppression need not deteriorate
with increasing channel number K.

In some common applications, especially with low-
cost loudspeakers and low-power amplifiers, the linear
model for the feedback path Hvx is not valid any more.
In [11], the matrix notation as used so far for linear sys-
tems was extended to incorporate Volterra filters, and an
efficient DFT domain algorithm was presented which al-
lows modelling of loudspeaker nonlinearities by second-
order Volterra filters.

3.2. Adaptive beamforming microphone arrays

Beamforming microphone arrays aim at both the signal
separation and the suppression of noise and interference,
and ideally extract undistorted desired signals. By way of
an exemplary design [12], we discuss how these problems
can be addressed. A more general treatment of theoreti-
cal concepts, alternative approaches, and other aspects of
design and applications can be found in [13, 14].

The structure considered here (see Fig.4) is based on
a robust version of the Generalized Sidelobe Canceller
(GSC) [15] and aims at extracting a single desired signal
zi ≈ si from x.

Figure 4: Structure of a robust Generalized Sidelobe Can-
celler

The GSC principle [16] foresees that a signal-
independent beamformer c filters the sensor signals so
that the direct path from the desired source remains undis-
torted whereas, ideally, other directions should be sup-
pressed. (If necessary, the position of the desired source
must be determined by additional localization methods
[13].) In the lower path, an adaptive blocking matrix B

aims at suppressing all components originating from the



desired signal si, so that only noise components appear
at the output of B. From these, the adaptive interference
canceller a derives an estimate for the remaining noise
component in the output of c, by minimizing an estimate
of the total output power E{z2

i }. Obviously, the fixed
beamformer c and the interference canceller a jointly per-
form interference suppression in the sense of Eq.14. The
resulting signal zi will also be slightly dereverberated rel-
ative to Gxs ∗ s as the fixed beamformer b will attenuate
reflections arriving from attenuated angles of incidence.

As for the separation of the noise components, a time-
variant blocking matrix B can use spatial, spectral, and
temporal selectivity to isolate and suppress the desired
signal. The adaptation of the blocking matrix B allows to
follow movements of the desired source Si and thereby
provides robustness against desired signal cancellation:
Otherwise, if desired signal leaks through the blocking
matrix, it will be treated as a noise component and sub-
tracted from the output of c. The spatial selectivity is very
beneficial as it allows to completely suppress the signal
arriving from the assumed source direction, but it usu-
ally cannot completely suppress reverberation of the de-
sired signal. Therefore, adaptation of the blocking matrix
B has to exploit temporal selectivity: It should only be
adapted during periods when the desired signal is domi-
nant. Likewise, the interference canceller a should only
be adapted when noise and interference are dominant.

While the original proposal [15] suggests an im-
plementation by FIR filters in the time domain, both
blocking matrix and interference canceller become sig-
nificantly more efficient and robust if spatial selectiv-
ity and the temporally selective adaptation is combined
with spectral selectivity: Realizing the entire structure in
the DFT domain allows bin-selective decisions and filter
adaptation and improves performance significantly, es-
pecially for nonstationary noise and interferers [12, 17].
For a linear array of N = 8 sensors with spacing 4cm,
more than 20dB of interference suppression with negligi-
ble distortion of the desired signal can be obtained in en-
vironments with moderate reverberation (T60 = 0.3sec).

3.3. Blind source separation

Blind source separation (BSS) aims at separating mix-
tures of several desired sources, so that Gzx ∗Hxs ∗ s =
z ≈ s. Here, the ≈ sign does allow for an additional fil-
tering of each vector element but not for mixing of the
vector elements. The problem is illustrated in Fig.5 for
M = N = 2. Blindness also implies that - as opposed
to ordinary beamforming - no information on the posi-
tions of desired sources is necessary. As such it has been
termed ’blind beamforming’ [18] and BSS can be under-
stood as realizing a GSC-like structure for each output
zi [19], however, due to the blindness, its components
cannot be determined by the same criteria. Lacking ref-
erence information, BSS essentially attempts to minimize
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statistical dependency between the output signals, but it
should be emphasized that the separation performance of
the resulting filters in Gzx is still determined by their spa-
tial selectivity. Note that the optimization criteria do not
address the dereverberation problem Eq.16, although the
spatial selectivity of the resulting Gzx may contribute to
dereverberation (just as beamforming does).

For the given convolutive mixtures of speech and au-
dio signals, three stochastic signal properties can be ex-
ploited to determine optimum demixing filters Gzx:

Nonwhiteness of speech and audio signals can be ex-
ploited by simultaneous diagonalization of correlation
matrices between zi(k), zj(k − d) for several relative de-
lays d. Nonstationarity can be exploited by simultaneous
diagonalization of several short-time estimates of the cor-
relation matrices, assuming that the optimum filters vary
less than the short-time signal statistics. Nongaussianity
can exploited by higher order statistics (HOS) as used for
independent component analysis (see, e.g., [20]).

For most known algorithms, only one or two of
these properties are exploited. Successful systems have
been presented that are based on second order statistics
(SOS) only, and use nonwhiteness and nonstationarity
only [21, 22]. Recently, a generic class of algorithms has
been presented which simultaneously exploits all three
properties and minimizes mutual information [23]. Here,
spherical invariant random processes (SIRPs) [24] which
represent an efficient model for speech signals if based,
e.g., on a Laplacian multivariate probability density func-
tion (pdf), can be incorporated into the score function.

As in our scenario convolutive mixtures have to be
separated, an implementation in the DFT domain is es-
pecially attractive, because it converts convolutive mix-
tures in the time domain into scalar mixtures for each fre-
quency bin. However, if separation in frequency bins is
carried out independently, this leads to the so-called in-
ternal permutation problem: the separated DFT bins for
sources Si and Sj cannot be aligned so that all bins with
components of Si appear at one output of the BSS system,
while all bins for Sj appear at the other. Moreover, most
frequency domain algorithms are implicitly based on the
DFT-inherent circular convolution of the input data in-



stead of the required linear convolution. Heuristic repair
mechanisms are common, but within the framework of a
generic SOS or HOS algorithm, time-domain criteria can
also be transformed rigorously into the DFT domain and,
thereby, both problems are solved perfectly [22, 23].

In Fig.6 the convergence of the signal-to-interference
power ratio for various off-line BSS algorithms for M =
N = 2 and demixing filters of length 512 is compared.
The speech signal mixtures were recorded in a real room
with T60 = 0.15sec at a sampling frequency of 16kHz.
Obviously, the HOS-SIRP algorithm [23], which ac-
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counts for all three signal properties, clearly outperforms
the other algorithms. The generic SOS exhibits roughly
the same convergence speed as the well-known frequency
domain algorithm [21], which is based on heuristic re-
pair mechanisms for the internal permutation and the cir-
cular convolution problem and turns out to be an ap-
proximation of the generic SOS algorithm. The relation
of the time-domain approximation to the generic SOS
algorithm corresponds to the relation of the NLMS to
the RLS adaptation algorithm, which explains the some-
what slower convergence. However, this approximation
permitted the first known real-time implementation of a
time-domain algorithm which perfectly avoids internal
permutation and circular convolution, whereas previously
reported real-time implementations of BSS systems all
operate in the DFT domain (e.g., [21, 25]).

For future research, robust implementations for
M, N > 2 and non-square cases (M 6= N ) present an
immediate challenge. Real-world environments call for
algorithms that can cope well with diffuse noise, which
is known to significantly reduce performance of known
algorithms. Finally, a highly attractive avenue of research
aims at the extension of the recently found generic BSS
algorithms to dereverberation.

4. System integration

For the general scenario of Fig.1 the interaction of the
various signal processing components is crucial for the
overall performance. Strategies for combining AEC with
beamforming and with multichannel reproduction have
been discussed in [8] and [26], respectively. As an exam-
ple for a real system, we consider a DFT-domain imple-
mentation of an acoustic front-end for multimedia termi-
nals combining stereo AEC (K = L = 2) and robust
GSC beamformer (N = 8) [12]. Even with simulta-
neous activity of desired talker and interfering talker, a
typical interference suppression of 15dB is obtained and
loudspeaker echoes can be suppressed by 30dB. The im-
portance of acoustic preprocessing for speech dialogue
systems has been verified by measuring word recognition
rates for a commercial dictation system (’Dragon System
Naturally Speaking Preferred’), see Table 1. It should
be mentioned that with greater distance of the talker to
the microphone array (and decreasing direct to reverber-
ant signal power ratio), the recognition rates reduce dras-
tically, so that dereverberation will become increasingly
important.

Environment Single FBF GSC AEC+
mic RGSC

Studio (T60 : 50ms) 32% 60% 92% 97%
Office (T60 : 300ms) 30% 50% 86% 91%

Table 1: Word recognition rates in % for a commer-
cial dictation system (close-talking microphone:= 100%;
talker distance to microphone array 0.6m; FBF:= output
of fixed beamformer c)

5. Conclusions

Considering the various signal processing problems at the
acoustic human/machine interface, it was shown that for
signal acquisition, acoustic echo cancellation seems clos-
est to being solved. Noise and interference can also be
successfully suppressed in many scenarios by beamform-
ing techniques. Blind source separation works well in
low-noise scenarios for two sources. Dereverberation re-
mains a major challenge for the coming years especially
with regard to distant-talking speech recognition. On the
reproduction side, wavefield synthesis seems to produce
satisfactory perceptual audio quality, as long as the in-
fluence of the local acoustic environment can be disre-
garded. Room compensation is under investigation, but
wide-band wide-range active noise compensation appears
to be out of reach. In summary, it seems safe to con-
clude that practical relevance and difficulty of the un-
solved problems at hand will present many fascinating
challenges for digital signal processing on both theoreti-
cal and experimental level for the foreseeable future.
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