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Real-Time Convolutive Blind Source Separation
Based on a Broadband Approach*

Robert Aichner, Herbert Buchner, Fei Yan, and Walter Kellermann

Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg
Cauerstr. 7, D-91058 Erlangen, Germany
{aichner,buchner,wk}@LNT.de

Abstract. In this paper we present an efficient real-time implemen-
tation of a broadband algorithm for blind source separation (BSS) of
convolutive mixtures. A recently introduced matrix formulation allows
straightforward simultaneous exploitation of nonwhiteness and nonsta-
tionarity of the source signals using second-order statistics. We examine
the efficient implementation of the resulting algorithm and introduce
a block-on-line update method for the demixing filters. Experimental
results for moving speakers in a reverberant room show that the pro-
posed method ensures high separation performance. Our method is im-
plemented on a standard laptop computer and works in realtime.

1 Introduction

The problem of separating convolutive mixtures of unknown time series arises
in several application domains, a prominent example being the so-called cock-
tail party problem, where individual speech signals should be extracted from
mixtures of multiple speakers in a usually reverberant acoustic environment.
Due to the reverberation, the original source signals sq(n), ¢ = 1,...,Q of our
separation problem are filtered by a linear multiple input and multiple output
(MIMO) system before they are picked up by the sensors. BSS is solely based on
the fundamental assumption of mutual statistical independence of the different
source signals. In the following, we further assume that the number @ of source
signals sq(n) equals the number of sensor signals z,(n), p=1,...,P. An M-tap
mixing system is thus described by z,(n) = 25:1 Zf:[;ol hgp,xsq(n — k), where
hgp,ws & =0,...,M — 1 denote the coefficients of the filter from the g-th source
to the p-th sensor.

In BSS, we are interested in finding a corresponding demixing system, where
the output signals are described by y4(n) = 2521 Zﬁ;ol WpqkTp(n — K) with
g = 1,...,P. The separation is achieved by forcing the output signals y, to
be mutually statistically decoupled up to joint moments of a certain order. For
convolutive mixtures, frequency-domain BSS is very popular since all techniques
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originally developed for instantaneous BSS may be applied independently in each
frequency bin. This bin-wise processing, implying a narrowband signal model is
denoted here as narrowband approach and is described, e.g., in [6]. In the con-
text of instantaneous BSS and narrowband approaches for convolutive BSS it is
known that on real-world signals with some time-structure second-order statistics
generates enough constraints to solve the BSS problem in principle by utilizing
nonstationarity or nonwhiteness [6]. Unfortunately, this traditional narrowband
approach exhibits several limitations as, e.g., circular convolution effects may
arise, and the permutation problem, which is inherent in BSS, may then also
appear independently in each frequency bin so that extra repair measures be-
come necessary. In [2, 3] a class of broadband algorithms was derived, for both the
time domain and frequency domain, i.e., the frequency bins are no longer consid-
ered to be independent for unrestricted time-domain signals. These algorithms
are based on second-order statistics exploiting simultaneously nonwhiteness and
nonstationarity and inherently avoid the above-mentioned problems. In this pa-
per we present an efficient realization of one of these broadband algorithms which
has led to a robust real-time implementation.

2 Generic Block Time-Domain BSS Algorithm

2.1 Matrix Formulation

To obtain a block processing broadband algorithm simultaneously exploiting
nonwhiteness and nonstationarity of the source signals, it was shown in [2] that
we need to introduce a block output signal matrix

Yo(mL) -+ yg(mL —L+1)

Y, (m) = yq(m.LJFl) yq(mL?LJFQ)

Yq(mL+ N —1)---ys(mL — L+ N)

and reformulate the convolution as

with m being the block time index and N denoting the block length. The N x
L matrix Y,(m) incorporates L time-lags in the correlation matrices into the
cost function defined in Sect. 2.2, which is necessary for the exploitation of the
nonwhiteness property. To ensure linear convolutions for all elements of Y 4(m),
the N x 2L matrices X,(m) and 2L x L matrices W, are given as

zp(mL) - xp(mL — 2L+ 1)

X, (m) = l‘p(m.LJrl) :-_xp(mLi2L+2)

zp(mL+ N —1)---z,(mL—2L+ N)



842 Robert Aichner et al.

[ Wpg.0 0o --- 0 7
Wpq,1  Wpq,0
Wpg1 -0
Wy = | WpaL-1 D Wpgo , (4)
0 Wpq,L—1 Wpq,1
0 0 Wpgn1
L0 .0 0 |
where the matrices X,(m), p = 1,..., P in (2) are Toeplitz matrices due to

the shift of subsequent rows by one sample each. The matrices W, exhibit a
Sylvester structure, where each column is shifted by one sample containing the
current weights Wy = [Wpg.0, Wpg.1, -+ - Wpg,.—1])7 of the MIMO filter of length
L from the p-th sensor channel to the ¢g-th output channel.

To allow a convenient notation of the algorithm combining all channels, we
write (2) compactly as

Y(m) =X(m)W, (5)
with the matrices
Y(m) = [Yi(m),---,Yp(m)], (6)
X(m) = [Xy(m), -+, Xp(m)], (7)
Wi - Wip
w=| & | 0
Wpi - Wpep

2.2 Cost Function and Generic Broadband Algorithm

Based on (5) we use a cost function first introduced in [2] as a generalization of
[8]:

m

J(m) = Z B(i,m) {log det bdiag Y (i)Y (i) — log det YZ (i)Y (4)},  (9)

where (3 is a weighting function with finite support that is normalized according
to Z;’;O B(i,m) = 1 allowing on-line or block-on-line realizations of the algo-
rithm. For a properly chosen 3(i,m) (see Sect. 2.3) the nonstationarity of the
signals is utilized for the separation. Since we use the matrix formulation (5) for
calculating the short-time correlation matrices Y (m)Y (m), the cost function
inherently includes all L time-lags of all auto-correlations and cross-correlations
of the BSS output signals. The bdiag operation on a partitioned block matrix
consisting of several submatrices sets all submatrices on the off-diagonals to zero.
In our case, the block matrices refer to the different signal channels and are of
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auto-correlation

Y1v1
cross-correlation
Ry.y,

Each d1 onal
represen
one tlme

Fig. 1. Illustration of (9) for the 2 x 2 case

size L x L. The cost function becomes zero if and only if all block-offdiagonal ele-
ments of YHY , i.e., the output cross-correlations over all time-lags, become zero
(see Fig. 1). Therefore, in addition to the nonstationarity (9) explicitly exploits
the nonwhiteness property of the output signals.

In [2, 3] it was shown that the natural gradient derivation of (9) with respect
to W leads to an iterative algorithm with the following coefficient update:

1=0

Q(i) = W(i) {Ryy(i) — bdiag Ryy(i)} bdiag_l Ryy(i), (11)

where the PL x PL short-time correlation matrices Ry, are consisting of the

channel-wise L x L submatrices Ry, y, (m) = Y (m)Y,(m).

2.3 Approximated Version and Efficient Implementation

Starting from the update equation (10) we first address implementation details
concerning the update term Q(%) of the i-th block which are applicable regardless
of the choice of the weighting function 3(i,m). In the last paragraph we specify
B(i,m) to obtain a block-on-line update rule.

Step 1: Estimation of the Correlation Matrices Using the Correlation Method.
In principle, there are two basic methods to estimate the output correlation
matrices Ry y, (m) for nonstationary signals: the so-called correlation method,
and the covariance method as they are known from linear prediction problems [7].
We consider here the correlation method which leads to a lower computational
complexity and follows as a special case of the more accurate covariance method
if we assume stationarity within each block. This leads to a Toeplitz structure
of Ry, y,(m) which can be expressed as

RYpy'; (m) = I:rypyq (m’ v U)} LxL (12)
ZmL—i—N vt+u—1

Typyq (m,v —u) = { ZmL—i—N 1

Yp(n +v —u)ys(n) forv—u>0 (13)
n=mL+|v— u\yp(n—i_v_u)yq(n) forv —u <0

Step 2: Approximation of the Normalization.

A straightforward implementation of (11) together with (12), (13) leads to a
complexity of O(L?) due to the inversion of P auto-correlation Toeplitz matri-
ces Ry, y, of size L x L which are normalizing the update (as also known from
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the recursive least-squares (RLS) algorithm in supervised adaptive filtering [5]).
Thus, for an efficient implementation suitable for reverberant environments re-
quiring a large filter length L we use an approximated version of (11) which
was first heuristically introduced in [1,10] and theoretically derived in [2]. The
efficient version is obtained by approximating the auto-correlation submatrices
in the normalization term by the output signal powers, i.e.,

_ mL+N-—1
Ry.y, (m) = ( Z y?(ﬂ)) 1= qu (m)I (14)

n=mWL

for ¢ =1,..., P. Thus, the matrix inversion is replaced by an element-wise divi-
sion. This is comparable to the normalization in the well-known normalized least
mean squares (NLMS) algorithm in supervised adaptive filtering approximating
the RLS algorithm [5].

Step 3: Efficient Implementation of the Matriz-Matriz Multiplication.
In the remaining channel-wise matrix product of W, (m) and the Toeplitz ma-
Ry,yq(m)
oz, (m)
of Wp,(m) for an efficient implementation. Firstly, it has to be ensured that the
update Q(i) exhibits again a channel-wise Sylvester structure in the form of (4).
A simple way to impose this constraint is to calculate only the first L elements
of the first column of the matrix product which contain the filter weights update
Awpq(m) (see Fig. 2a). Secondly, it can be shown that this matrix product de-

Ry,ye(m)
O'Sq (m)
due to the Sylvester structure of W,;. By implementing this operation as a fast
convolution using fast Fourier transforms (FFTs) the computational complexity

can be reduced to O(log L).

trices p,q,t =1,... P in (11) we can exploit the Sylvester structure

notes a linear convolution of the filter weights w,, with each column of

Step 4: Update Using a Block-on-Line Weighting Function

The weighting function (i, m) allows for different realizations of the algorithm,
e.g., off-line or on-line [3]. Similar to the approach in [9] we are combining the on-
line and off-line approach in a so-called block-on-line method (Fig. 2b). In Table 1
a pseudo-code for the block-on-line implementation of this efficient algorithm is
given exemplarily for the filter update Awq; for P = 2. In the block-on-line
approach a block of KL + N input signal samples is acquired denoted by the
on-line block index m’ (see Fig. 2b). K denotes the number of blocks within the
offline part and thus the data is segmented into K blocks of length N with off-line
block index m (m =m’ - K) and is processed by an off-line algorithm with jyax
iterations. By simultaneously processing K blocks we exploit the nonstationarity
of the signals. The implementation of the off-line part is shown in Steps 3-9 of
Table 1, where j denotes the iteration number and pog is the stepsize of the
off-line part.

Concerning the initialization of wpq(m’) in Step 3 for m’ =1 and j = 1,
it can be shown using (4), (11) that the first coefficients of the filters wp,(m’)
must be unequal to zero. Thus we use unit impulses for the first filter tap in
each wy,(m'). The filters w,,(m’), p # q are set to zero.
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L
YY) ‘
Sylvester
matrix
Wpt(m) 3 o.. T
Y XY . A
L Al | A
} / =
. Ll Bywe(m) -~
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Fig. 2. (a) Illustration of the channel-wise matrix-matrix product. (b) Weighting func-
tion 3(i,m) for block-on-line implementation

The update AWz (m’) (Step 9) is then used as input of the on-line part of
the block-on-line algorithm. The recursive update equations of the on-line part
yield the final filter weights wp, used for separation (Step 10). Here A denotes
the exponential forgetting factor (0 < A < 1) and po, is the stepsize of the
on-line part. The demixing filter weights wyq(m’) of the current block m' are
then used as initial values for the off-line algorithm of the next block (Step 11).

Analogously to supervised block-based adaptive filtering, the approach fol-
lowed here can also be carried out with overlapping data blocks in both, the
on-line and off-line part to increase the convergence rate and to reduce the
signal delay. Overlapping is done by simply replacing the time index mL and

m/K L in the equations by m% and m’ f L respectively. The overlap factors
1 < aoff, @on < L should be chosen suitably to obtain integer values for the time
index. For clarity, however, the overlap factors are omitted in Table 1.

3 Experiments and Real-Time Implementation

The experiments have been conducted using speech data convolved with the
impulse responses of a real office room (580cm x 590cm x 310cm), with a re-
verberation time Tgp = 200 ms and a sampling frequency of fs = 16 kHz. A
two-element microphone array with an inter-element spacing of 20 cm was used
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Table 1. Pseudo code of efficient broadband algorithm implementation exemplarily
shown for the update Awi; in the 2 x 2 case

On-line part:
1. [Acquire KL + N new samples x,((m’ — 1)KL),...,zp(m KL+ N — 1)
of the sensors z,, p = 1,2 and on-line block index m’ = 1,2,...
2. |Generate K blocks xp(mL),...,xp(mL + N — 1) with off-line block index
m=(m' —1)K,...,m'K — 1 to enable off-line iterations
Off-line part:
Compute for each iteration j =1,..., jmax:

Compute for each block m = (m' — 1)K,...,m'K — 1
3. Compute output signals yq(mL),...,yq(mL + N —1), ¢ =1,2 by
convolving z, with filter weights w’_'(m’) from previous iteration
4. Calculate the signal energy of each block m
Ty1y, (M, 0) = ::L,:IL\EI i(n)
5. Compute 15" column of cross-correlation matrix Ry,y, (m) by
Tygyr (M, v — ) for v —u=—L+1,...,0 according to (13)
6. Normalization by elementwise division 7y,y, (m,v — u) /Ty, y, (m,0)
forvo—u=-L+1,...,0

7. Compute the matrix product Wiz (m)

Ryyy; (M)
o5, (m)

according to Fig. 2a. Each filter weight update Aw{l’,{u7
k=0,...,L —1 is therefore calculated as:

i L—1
Aw{l n(m/) = % Zm Zn:() Wi2,n (m)ryﬂll (m7 n— K/)/rylyl (m7 0)
8. Update equation for the off-line part:
wii(m') = wii ' (m') — pog Awi, (m')
9. Repeat Steps 3-8 for jmax iterations and calculate the overall update
for the current m’ as:
AW]II]dX Z]Hldx AWH m/)

On-line part:

10.|{Compute the recursive update of the on-line part yielding the demixing
filter w11(m’) used for separation:

Awqi(m/) = AMAwi (m' — 1) + (1 — A Aw?7> (m/)

wii(m') = wii(m' — 1) — ponAwr1(m’)

11.|{Compute Steps 4-10 similarily for the other channels and use the
demixing filter w,q(m') as the initial filter for the offline part

qu(m/ + 1) = wpqe(m')

as a convolution

for the recording. The speech signals arrived from two different directions, —45°
and 45°. After 10 seconds one speaker position was changed from —45° to 0°.
Sentences spoken by two male speakers from the TIMIT speech corpus [4] were
selected as source signals. To evaluate the performance, the signal-to-interference
ratio (SIR) averaged over both channels was calculated in each block which is
defined as the ratio of the signal power of the target signal to the signal power
from the jammer signal. Simulation results for the algorithm implemented in the
real-time system are given in Fig. 3. The parameters were chosen as L = 1024,
N = 2048, K = 4, a,, = 4 resulting in a latency of 2048 samples (128 msec).
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Fig. 3. Experimental results for the efficient block-on-line algorithm with an instanta-
neous speaker position change at 10 seconds.

The offline-part was calculated for jmax = 10 iterations and the stepsizes for
on-line and off-line part were chosen as pon = pog = 0.002 with A = 0.2. It can
be seen in Fig. 3 that the algorithm is robust against speaker movements and
converges quickly due to the block-on-line structure.

Our scalable real-time system is implemented on a regular laptop using C++
in combination with the efficient Intel Integrated Performance Primitives (IPP)
library. The demonstrator is applicable to P x P scenarios (P = 2,3,...) and
works both under Linux and Windows operating systems. The computational
load on an 1.6 GHz Intel Pentium 4 Processor for the above-mentioned parameter
settings is approximately 70%. A video showing the capability of the system in
reverberant rooms can be found at www.LNT.de/~aichner/bss_video.html

4 Conclusions

In this paper we presented a real-time implementation of an efficient BSS algo-
rithm based on a general class of broadband algorithms. The system is robust
to speaker movements and exhibits a low latency, showing the applicability of
this method to real-world scenarios.
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