
840

Real-Time Convolutive Blind Source Separation
Based on a Broadband Approach�

Robert Aichner, Herbert Buchner, Fei Yan, and Walter Kellermann

Multimedia Communications and Signal Processing
University of Erlangen-Nuremberg

Cauerstr. 7, D-91058 Erlangen, Germany
{aichner,buchner,wk}@LNT.de

Abstract. In this paper we present an efficient real-time implemen-
tation of a broadband algorithm for blind source separation (BSS) of
convolutive mixtures. A recently introduced matrix formulation allows
straightforward simultaneous exploitation of nonwhiteness and nonsta-
tionarity of the source signals using second-order statistics. We examine
the efficient implementation of the resulting algorithm and introduce
a block-on-line update method for the demixing filters. Experimental
results for moving speakers in a reverberant room show that the pro-
posed method ensures high separation performance. Our method is im-
plemented on a standard laptop computer and works in realtime.

1 Introduction

The problem of separating convolutive mixtures of unknown time series arises
in several application domains, a prominent example being the so-called cock-
tail party problem, where individual speech signals should be extracted from
mixtures of multiple speakers in a usually reverberant acoustic environment.
Due to the reverberation, the original source signals sq(n), q = 1, . . . , Q of our
separation problem are filtered by a linear multiple input and multiple output
(MIMO) system before they are picked up by the sensors. BSS is solely based on
the fundamental assumption of mutual statistical independence of the different
source signals. In the following, we further assume that the number Q of source
signals sq(n) equals the number of sensor signals xp(n), p = 1, . . . , P . An M -tap
mixing system is thus described by xp(n) =

∑P
q=1

∑M−1
κ=0 hqp,κsq(n − κ), where

hqp,κ, κ = 0, . . . , M − 1 denote the coefficients of the filter from the q-th source
to the p-th sensor.

In BSS, we are interested in finding a corresponding demixing system, where
the output signals are described by yq(n) =

∑P
p=1

∑L−1
κ=0 wpq,κxp(n − κ) with

q = 1, . . . , P . The separation is achieved by forcing the output signals yq to
be mutually statistically decoupled up to joint moments of a certain order. For
convolutive mixtures, frequency-domain BSS is very popular since all techniques
� This work was partly supported by the ANITA project funded by the European

Commission under contract IST-2001-34327.

C.G. Puntonet and A. Prieto (Eds.): ICA 2004, LNCS 3195, pp. 840–848, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.3 Optimize For Fast Web View: No Embed Thumbnails: No Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [2400 2400] dpi Paper Size: [439.37 666.142] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 300 dpi Downsampling For Images Above: 450 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Maximum Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 300 dpi Downsampling For Images Above: 450 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Maximum Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 2400 dpi Downsampling For Images Above: 3600 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Cancel JobEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Leave Color Unchanged Intent: DefaultDevice-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: Yes ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: Yes Log DSC Warnings: No Resize Page and Center Artwork for EPS Files: Yes Preserve EPS Information From DSC: Yes Preserve OPI Comments: No Preserve Document Information From DSC: YesOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [2400 2400]>> setpagedevice

Real-Time Convolutive Blind Source Separation 841

originally developed for instantaneous BSS may be applied independently in each
frequency bin. This bin-wise processing, implying a narrowband signal model is
denoted here as narrowband approach and is described, e.g., in [6]. In the con-
text of instantaneous BSS and narrowband approaches for convolutive BSS it is
known that on real-world signals with some time-structure second-order statistics
generates enough constraints to solve the BSS problem in principle by utilizing
nonstationarity or nonwhiteness [6]. Unfortunately, this traditional narrowband
approach exhibits several limitations as, e.g., circular convolution effects may
arise, and the permutation problem, which is inherent in BSS, may then also
appear independently in each frequency bin so that extra repair measures be-
come necessary. In [2, 3] a class of broadband algorithms was derived, for both the
time domain and frequency domain, i.e., the frequency bins are no longer consid-
ered to be independent for unrestricted time-domain signals. These algorithms
are based on second-order statistics exploiting simultaneously nonwhiteness and
nonstationarity and inherently avoid the above-mentioned problems. In this pa-
per we present an efficient realization of one of these broadband algorithms which
has led to a robust real-time implementation.

2 Generic Block Time-Domain BSS Algorithm

2.1 Matrix Formulation

To obtain a block processing broadband algorithm simultaneously exploiting
nonwhiteness and nonstationarity of the source signals, it was shown in [2] that
we need to introduce a block output signal matrix

Yq(m) =

yq(mL) · · · yq(mL − L + 1)

yq(mL + 1)
. . . yq(mL − L + 2)

...
. . .

...
yq(mL + N − 1) · · · yq(mL − L + N)

, (1)

and reformulate the convolution as

Yq(m) =
P∑

p=1

Xp(m)Wpq, (2)

with m being the block time index and N denoting the block length. The N ×
L matrix Yq(m) incorporates L time-lags in the correlation matrices into the
cost function defined in Sect. 2.2, which is necessary for the exploitation of the
nonwhiteness property. To ensure linear convolutions for all elements of Yq(m),
the N × 2L matrices Xp(m) and 2L × L matrices Wpq are given as

Xp(m) =

xp(mL) · · · xp(mL − 2L + 1)

xp(mL + 1)
. . . xp(mL − 2L + 2)

...
. . .

...
xp(mL + N − 1) · · · xp(mL − 2L + N)

, (3)

842 Robert Aichner et al.

Wpq =

wpq,0 0 · · · 0

wpq,1 wpq,0
. . .

...
... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1
. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0

, (4)

where the matrices Xp(m), p = 1, . . . , P in (2) are Toeplitz matrices due to
the shift of subsequent rows by one sample each. The matrices Wpq exhibit a
Sylvester structure, where each column is shifted by one sample containing the
current weights wpq = [wpq,0, wpq,1, . . . , wpq,L−1]T of the MIMO filter of length
L from the p-th sensor channel to the q-th output channel.

To allow a convenient notation of the algorithm combining all channels, we
write (2) compactly as

Y(m) = X(m)W, (5)

with the matrices

Y(m) = [Y1(m), · · · ,YP (m)], (6)
X(m) = [X1(m), · · · ,XP (m)], (7)

W =

W11 · · · W1P

...
. . .

...
WP1 · · · WPP

 . (8)

2.2 Cost Function and Generic Broadband Algorithm

Based on (5) we use a cost function first introduced in [2] as a generalization of
[8]:

J (m) =
m∑

i=0

β(i, m)
{
log det bdiag YH(i)Y(i) − log detYH(i)Y(i)

}
, (9)

where β is a weighting function with finite support that is normalized according
to
∑m

i=0 β(i, m) = 1 allowing on-line or block-on-line realizations of the algo-
rithm. For a properly chosen β(i, m) (see Sect. 2.3) the nonstationarity of the
signals is utilized for the separation. Since we use the matrix formulation (5) for
calculating the short-time correlation matrices YH(m)Y(m), the cost function
inherently includes all L time-lags of all auto-correlations and cross-correlations
of the BSS output signals. The bdiag operation on a partitioned block matrix
consisting of several submatrices sets all submatrices on the off-diagonals to zero.
In our case, the block matrices refer to the different signal channels and are of

Real-Time Convolutive Blind Source Separation 843

L

L

auto-correlation
Ry1y1

cross-correlation
Ry1y2

Each diagonal
represents
one time-lag

Fig. 1. Illustration of (9) for the 2 × 2 case

size L×L. The cost function becomes zero if and only if all block-offdiagonal ele-
ments of YHY, i.e., the output cross-correlations over all time-lags, become zero
(see Fig. 1). Therefore, in addition to the nonstationarity (9) explicitly exploits
the nonwhiteness property of the output signals.

In [2, 3] it was shown that the natural gradient derivation of (9) with respect
to W leads to an iterative algorithm with the following coefficient update:

∇NG
W J (m) = 2

m∑

i=0

β(i, m)Q(i), (10)

Q(i) = W(i) {Ryy(i) − bdiag Ryy(i)}bdiag−1 Ryy(i), (11)

where the PL × PL short-time correlation matrices Ryy are consisting of the
channel-wise L × L submatrices Rypyq(m) = YH

p (m)Yq(m).

2.3 Approximated Version and Efficient Implementation

Starting from the update equation (10) we first address implementation details
concerning the update term Q(i) of the i-th block which are applicable regardless
of the choice of the weighting function β(i, m). In the last paragraph we specify
β(i, m) to obtain a block-on-line update rule.

Step 1: Estimation of the Correlation Matrices Using the Correlation Method.
In principle, there are two basic methods to estimate the output correlation
matrices Rypyq(m) for nonstationary signals: the so-called correlation method,
and the covariance method as they are known from linear prediction problems [7].
We consider here the correlation method which leads to a lower computational
complexity and follows as a special case of the more accurate covariance method
if we assume stationarity within each block. This leads to a Toeplitz structure
of Rypyq(m) which can be expressed as

Rypyq(m) =
[
rypyq(m, v − u)

]
L×L

(12)

rypyq(m, v − u) =

{∑mL+N−v+u−1
n=mL yp(n + v − u)yq(n) for v − u ≥ 0

∑mL+N−1
n=mL+|v−u| yp(n + v − u)yq(n) for v − u < 0

(13)

Step 2: Approximation of the Normalization.
A straightforward implementation of (11) together with (12), (13) leads to a
complexity of O(L2) due to the inversion of P auto-correlation Toeplitz matri-
ces Ryqyq of size L × L which are normalizing the update (as also known from

844 Robert Aichner et al.

the recursive least-squares (RLS) algorithm in supervised adaptive filtering [5]).
Thus, for an efficient implementation suitable for reverberant environments re-
quiring a large filter length L we use an approximated version of (11) which
was first heuristically introduced in [1, 10] and theoretically derived in [2]. The
efficient version is obtained by approximating the auto-correlation submatrices
in the normalization term by the output signal powers, i.e.,

R̃yqyq(m) =

(
mL+N−1∑

n=mL

y2
q(n)

)

I = σ2
yq

(m)I (14)

for q = 1, . . . , P . Thus, the matrix inversion is replaced by an element-wise divi-
sion. This is comparable to the normalization in the well-known normalized least
mean squares (NLMS) algorithm in supervised adaptive filtering approximating
the RLS algorithm [5].

Step 3: Efficient Implementation of the Matrix-Matrix Multiplication.
In the remaining channel-wise matrix product of Wpt(m) and the Toeplitz ma-
trices

Rytyq (m)

σ2
yq

(m) , p, q, t = 1, . . . , P in (11) we can exploit the Sylvester structure

of Wpt(m) for an efficient implementation. Firstly, it has to be ensured that the
update Q(i) exhibits again a channel-wise Sylvester structure in the form of (4).
A simple way to impose this constraint is to calculate only the first L elements
of the first column of the matrix product which contain the filter weights update
∆wpq(m) (see Fig. 2a). Secondly, it can be shown that this matrix product de-

notes a linear convolution of the filter weights wpt with each column of
Rytyq (m)

σ2
yq

(m)

due to the Sylvester structure of Wpt. By implementing this operation as a fast
convolution using fast Fourier transforms (FFTs) the computational complexity
can be reduced to O(log L).

Step 4: Update Using a Block-on-Line Weighting Function
The weighting function β(i, m) allows for different realizations of the algorithm,
e.g., off-line or on-line [3]. Similar to the approach in [9] we are combining the on-
line and off-line approach in a so-called block-on-line method (Fig. 2b). In Table 1
a pseudo-code for the block-on-line implementation of this efficient algorithm is
given exemplarily for the filter update ∆w11 for P = 2. In the block-on-line
approach a block of KL + N input signal samples is acquired denoted by the
on-line block index m′ (see Fig. 2b). K denotes the number of blocks within the
offline part and thus the data is segmented into K blocks of length N with off-line
block index m (m = m′ ·K) and is processed by an off-line algorithm with jmax

iterations. By simultaneously processing K blocks we exploit the nonstationarity
of the signals. The implementation of the off-line part is shown in Steps 3-9 of
Table 1, where j denotes the iteration number and µoff is the stepsize of the
off-line part.

Concerning the initialization of wpq(m′) in Step 3 for m′ = 1 and j = 1,
it can be shown using (4), (11) that the first coefficients of the filters wpp(m′)
must be unequal to zero. Thus we use unit impulses for the first filter tap in
each wpp(m′). The filters wpq(m′), p �= q are set to zero.

Real-Time Convolutive Blind Source Separation 845

L

L

L

2L

0

0
0

Rytyq (m)

σ2
yq

(m)

Sylvester
matrix
Wpt(m)

each column
contains the
filter weights
wpt(m)

Filter
update
∆wpq

(a)

���������
���
���
���

���
���
���

���
���
���

i
0

0

1−λ
K

K − 1 2K − 1 3K − 1
m′ = 1 m′ = 2 m′ = 3

(b)

Fig. 2. (a) Illustration of the channel-wise matrix-matrix product. (b) Weighting func-
tion β(i, m) for block-on-line implementation

The update ∆w̃jmax
pq (m′) (Step 9) is then used as input of the on-line part of

the block-on-line algorithm. The recursive update equations of the on-line part
yield the final filter weights wpq used for separation (Step 10). Here λ denotes
the exponential forgetting factor (0 ≤ λ < 1) and µon is the stepsize of the
on-line part. The demixing filter weights wpq(m′) of the current block m′ are
then used as initial values for the off-line algorithm of the next block (Step 11).

Analogously to supervised block-based adaptive filtering, the approach fol-
lowed here can also be carried out with overlapping data blocks in both, the
on-line and off-line part to increase the convergence rate and to reduce the
signal delay. Overlapping is done by simply replacing the time index mL and
m′KL in the equations by m L

αoff
and m′ KL

αon
, respectively. The overlap factors

1 ≤ αoff , αon ≤ L should be chosen suitably to obtain integer values for the time
index. For clarity, however, the overlap factors are omitted in Table 1.

3 Experiments and Real-Time Implementation

The experiments have been conducted using speech data convolved with the
impulse responses of a real office room (580cm × 590cm × 310cm), with a re-
verberation time T60 = 200 ms and a sampling frequency of fs = 16 kHz. A
two-element microphone array with an inter-element spacing of 20 cm was used

846 Robert Aichner et al.

Table 1. Pseudo code of efficient broadband algorithm implementation exemplarily
shown for the update ∆w11 in the 2 × 2 case

On-line part:

1. Acquire KL + N new samples xp((m′ − 1)KL), . . . , xp(m′KL + N − 1)
of the sensors xp, p = 1, 2 and on-line block index m′ = 1, 2, . . .

2. Generate K blocks xp(mL), . . . , xp(mL + N − 1) with off-line block index
m = (m′ − 1)K, . . . , m′K − 1 to enable off-line iterations

Off-line part:

Compute for each iteration j = 1, . . . , jmax:

Compute for each block m = (m′ − 1)K, . . . , m′K − 1:

3. Compute output signals yq(mL), ..., yq(mL + N − 1), q = 1, 2 by
convolving xp with filter weights wj−1

pq (m′) from previous iteration

4. Calculate the signal energy of each block m

ry1y1(m, 0) =
∑mL+N−1

n=mL
y2
1(n)

5. Compute 1st column of cross-correlation matrix Ry2y1(m) by
ry2y1(m, v − u) for v − u = −L + 1, . . . , 0 according to (13)

6. Normalization by elementwise division ry2y1(m, v − u)/ry1y1(m, 0)
for v − u = −L + 1, . . . , 0

7. Compute the matrix product W12(m)
Ry2y1 (m)

σ2
y1

(m)
as a convolution

according to Fig. 2a. Each filter weight update ∆wj
11,κ,

κ = 0, . . . , L − 1 is therefore calculated as:

∆wj
11,κ(m′) = 1

K

∑
m

∑L−1

n=0
w12,n(m)ry2y1(m, n − κ)/ry1y1(m, 0)

8. Update equation for the off-line part:

wj
11(m

′) = wj−1
11 (m′) − µoff∆wj

11(m
′)

9. Repeat Steps 3-8 for jmax iterations and calculate the overall update
for the current m′ as:

∆wjmax
11 (m′) =

∑jmax
j=1

∆wj
11(m

′)

On-line part:

10. Compute the recursive update of the on-line part yielding the demixing
filter w11(m

′) used for separation:

∆w11(m
′) = λ∆w11(m

′ − 1) + (1 − λ)∆wjmax
11 (m′)

w11(m
′) = w11(m

′ − 1) − µon∆w11(m
′)

11. Compute Steps 4-10 similarily for the other channels and use the
demixing filter wpq(m

′) as the initial filter for the offline part
w0

pq(m
′ + 1) = wpq(m

′)

for the recording. The speech signals arrived from two different directions, −45o

and 45o. After 10 seconds one speaker position was changed from −45o to 0o.
Sentences spoken by two male speakers from the TIMIT speech corpus [4] were
selected as source signals. To evaluate the performance, the signal-to-interference
ratio (SIR) averaged over both channels was calculated in each block which is
defined as the ratio of the signal power of the target signal to the signal power
from the jammer signal. Simulation results for the algorithm implemented in the
real-time system are given in Fig. 3. The parameters were chosen as L = 1024,
N = 2048, K = 4, αon = 4 resulting in a latency of 2048 samples (128 msec).

Real-Time Convolutive Blind Source Separation 847

0 5 10 15 20 25
0

2

4

6

8

10

12

14

16

18

Time in seconds

S
IR

 in
 d

B

Fig. 3. Experimental results for the efficient block-on-line algorithm with an instanta-
neous speaker position change at 10 seconds.

The offline-part was calculated for jmax = 10 iterations and the stepsizes for
on-line and off-line part were chosen as µon = µoff = 0.002 with λ = 0.2. It can
be seen in Fig. 3 that the algorithm is robust against speaker movements and
converges quickly due to the block-on-line structure.

Our scalable real-time system is implemented on a regular laptop using C++
in combination with the efficient Intel Integrated Performance Primitives (IPP)
library. The demonstrator is applicable to P × P scenarios (P = 2, 3, . . .) and
works both under Linux and Windows operating systems. The computational
load on an 1.6 GHz Intel Pentium 4 Processor for the above-mentioned parameter
settings is approximately 70%. A video showing the capability of the system in
reverberant rooms can be found at www.LNT.de/∼aichner/bss video.html

4 Conclusions

In this paper we presented a real-time implementation of an efficient BSS algo-
rithm based on a general class of broadband algorithms. The system is robust
to speaker movements and exhibits a low latency, showing the applicability of
this method to real-world scenarios.

References

1. R. Aichner, S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari. Time-domain
blind source separation of non-stationary convolved signals by utilizing geometric
beamforming. In Proc. Neural Networks for Signal Processing, pp 445–454, 2002.

2. H. Buchner, R. Aichner, and W. Kellermann. A generalization of a class of blind
source separation algorithms for convolutive mixtures. In Proc. Int. Symp. on In-
dependent Comp. Analysis and Blind Signal Separation (ICA), pp 945–950, 2003.

3. H. Buchner, R. Aichner, and W. Kellermann. Blind source separation for convolu-
tive mixtures: A unified treatment. In J. Benesty and Y. Huang, editors, Audio Sig-
nal Processing for Next-Generation Multimedia Communication Systems. Kluwer
Academic Publishers, Boston, Feb. 2004.

848 Robert Aichner et al.

4. J.S. Garofolo et al. TIMIT acoustic-phonetic continuous speech corpus, 1993.
5. S. Haykin. Adaptive Filter Theory. Prentice Hall Inc., Englewood Cliffs, NJ, 4th

edition, 2002.
6. A. Hyvaerinen, J. Karhunen, and E. Oja. Independent Component Analysis. John

Wiley & Sons, 2001.
7. J.D. Markel and A.H. Gray. Linear Prediction of Speech. Springer, Berlin, 1976.
8. K. Matsuoka, M. Ohya, and M. Kawamoto. Neural net for blind separation of

nonstationary signals. IEEE Trans. Neural Networks, 8(3):411–419, 1995.
9. R. Mukai, H. Sawada, S. Araki, and S. Makino. Robust real-time blind source sepa-

ration for moving speakers using blockwise ICA and residual crosstalk subtraction.
In Proc. ICA, pages 975–980, 2003.

10. T. Nishikawa, H. Saruwatari, and K. Shikano. Comparison of time-domain ICA,
frequency-domain ICA and multistage ICA for blind source separation. In Proc.
European Signal Processing Conference, volume 2, pages 15–18, Sep. 2002.

