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1. INTRODUCTION

The problem of separating convolutive mixtures of unknown time
series arises in several application domains, a prominent exam-
ple being the so-called cocktail party problem, where we want to
recover the speech signals of multiple speakers who are simulta-
neously talking in a room. The room may be reverberant due to
reflections on the walls, i.e., the original source signals sq(n),
q = 1, . . . , P are filtered by a multiple input and multiple out-
put (MIMO) system before they are picked up by the sensors xp

(Fig. 1). Moreover, in most environments a noise term np (e.g.,
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Fig. 1. Noisy BSS model.

sensor or background noise) will be picked up by each sensor xp,
p = 1, . . . , P . An M -tap mixing system is thus described by

xp(k) = vp(k) + np(k) =

P�
q=1

M−1�
κ=0

hqp(κ)sq(k − κ) + np(k),

(1)
where hqp(κ), κ = 0, . . . , M − 1 denote the coefficients of the
filter from the q-th source to the p-th sensor.

In blind source separation (BSS), we are interested in finding
a corresponding demixing system, where the output signals yq(n),
q = 1, . . . , P are described by

yq(k) =
P�

p=1

L−1�
κ=0

wpq(κ)xp(k − κ). (2)

where wpq(κ), κ = 0, . . . , L − 1 denotes the current weights of
the MIMO filter taps from the p-th sensor channel to the q-th out-
put channel. BSS is solely based on the fundamental assumption
of mutual statistical independence of the different source signals
(|γs1s2 |2 ≈ 0 in Fig. 2). Thus, the separation is achieved by forc-
ing the output signals yq to be mutually statistically decoupled up
to joint moments of a certain order [1].

2. ROBUST BSS FOR NOISY SIGNALS

In [2, 3] a general BSS framework for convolutive mixtures was
presented for the noise-less case. Starting from a generic algo-
rithm various efficient algorithms in the time and frequency do-
main were introduced. To investigate the robustness against noise,
we exemplarily choose a narrowband frequency-domain algorithm
derived from this framework. It is based on second-order statistics
simultaneously utilizing the nonwhiteness and the nonstationarity
of the source signals. The narrowband approach allows a bin-wise
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processing so that the time-domain cost function introduced in [2]
can be reformulated for each frequency bin ν = 0, . . . , 4L − 1

J (ν)(m) =

∞�
i=0

β(i, m)
�

log det diagS(ν)
yy (i) − log detS(ν)

yy (i)
�

,

(3)
where m denotes the block index and S

(ν)
yy is the P × P cross-

power spectral density matrix in the ν-th frequency bin. Here we
choose the normalized weighting function β(i, m) = (1−λ)λm−i

leading to an efficient on-line version allowing for tracking of
time-varying environments. It should be noted that as shown in
[2, 3] at least one time-domain constraint has to be included to
prevent permutations among the output signals in each frequency
bin. The natural gradient (e.g., [1]) derivation of (3) with respect
to the P ×P demixing matrix W(ν) leads to an iterative algorithm
with the following coefficient update

∆W(ν) = 2
∞�

i=0

β(i, m)W(ν)
�
S(ν)

yy − diag S(ν)
yy

�
diag−1 S(ν)

yy .

(4)
As in [3] we are initializing the demixing filter matrix W(ν) for
each frequency bin ν with W (ν)

pp = 1 and W (ν)
pq = 0, p �= q.

A similar update equation based on the stochastic gradient which
includes additional approximations can be found in [5].

As discussed below, the noise can be decomposed in coher-
ent and incoherent contributions. To examine the noise-robustness
of the iterative algorithm (4) we can approximate (3) by a Taylor
series as shown in [2], to obtain

J (ν)(m) =

∞�
i=0

β(i, m)

�
1 − detS

(ν)
yy (i)�P

p=1 S
(ν)
ypyp(i)

�
, (5)

where the term in brackets denotes the generalized coherence in-
troduced in [4]. Now it can be seen that the cost function (5) be-
comes zero if and only if the cross-power spectral densities of the
output signals S

(ν)
ypyq , i.e., the off-diagonal elements of S

(ν)
yy are

zero. Thus, the iterative algorithm (4) tries to minimize the coher-
ence between the output channels γy1y2 (see Fig. 2). To evaluate
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Fig. 2. Magnitude squared coherence function |γ|2 of source sig-
nals, car noise, microphone and output signals.



the influence of noise we can express S
(ν)
yy in terms of S

(ν)
xx and

decompose this matrix according to (1) into its speech signal and
noise components

S(ν)
yy = W(ν)H

S(ν)
xx W(ν)

= W(ν)H
�
S(ν)

vv + S(ν)
nn

�
W(ν). (6)

For noise which is uncorrelated between the channels (e.g., sen-
sor noise), S(ν)

nn corresponds to a diagonal matrix whereas for cor-
related noise (e.g., diffuse noise) the matrix S

(ν)
nn is not sparse.

Moreover, it can be shown [3] that (4) only affects the cross-power
spectral densities S

(ν)
ypyq without modifying the auto-power spec-

tral densities S
(ν)
ypyp . Thus, with the initialization given above, the

diagonal noise term of S
(ν)
nn of the initial block leads to a bias of

S
(ν)
ypyp which cannot be removed by (4). For a given SNR this bias

will be more severe for uncorrelated noise whereas for correlated
noise the initial bias is distributed among all elements of S

(ν)
yy . The

noise components appearing at the cross-power spectral densities
S

(ν)
ypyq will be minimized by (4) leading to an SNR gain at the out-

puts (see γn1n2 and γy1y2 in Fig. 2).

3. BIAS REMOVAL UTILIZING MINIMUM STATISTICS

To increase robustness of BSS algorithms against uncorrelated
noise, bias removal techniques have been introduced, mainly con-
sisting in the estimation and subtraction of the diagonal matrix
S

(ν)
nn from S

(ν)
yy [1]. To deal with correlated and slowly time-

varying noise, we propose to use the minimum statistics approach
[6] for the estimation of the noise characteristics. This method is
based on the observation that the power of a noisy speech signal
frequently decays to the power of the background noise. Hence by
tracking the minima we obtain the auto-power spectral density of
the noise. However, not only the auto- but also the cross-power
spectral densities of the noisy signal xp and the background noise
np are required. They are estimated and averaged recursively for
each frequency bin whenever we detect a minimum (i.e. speech
pause) of the noisy speech signals. Thus, for slowly time-varying
noise statistics this method gives an accurate estimate of the noise
spectral density matrix used for the bias removal. Note that for
multiple active speakers this estimation problem is more difficult
than for a single speaker due to less speech pauses. This technique
was also used for beamforming in diffuse noise fields [7].

4. EXPERIMENTS

The data was recorded with a two-element microphone array with
a spacing of 20cm. The array was mounted at the rear mirror of a
Skoda Felicia car which was directed towards the driver. The re-
verberation time was T60 = 50ms. As source signals we used two
speech signals from the TIMIT database which were convolved
with the measured impulse responses of the car from the driver and
codriver position. Car noise was recorded while driving through
a suburban area at a speed of 60km/h. Moreover, uncorrelated
white noise was used. Both noise types were additively mixed
with speech at an SNR of -5 dB. To evaluate the performance, the
signal-to-interference ratio (SIR) was used which is defined as the
ratio of the signal power of the target speech signal to the signal
power from the jammer speech signal. The SIR was averaged over
both channels. The upper plot of Fig. 3 shows the influence of un-
correlated noise on the BSS algorithm. Compared to the noiseless
case (dashed) the separation performance of the noisy case dete-
riorates (solid). This is due to the bias of the auto-power spectral
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Fig. 3. Comparison of SIR improvement for different noisy data.

density matrices introduced by the noise term. By using a bias-
removal technique utilizing minimum statistics the SIR can be im-
proved (dash-dotted). It should be noted that proper regularization
has to be ensured in (4), when using bias-removal techniques.

The lower plot of Fig. 3 shows that diffuse car noise does al-
most not affect the BSS algorithm and results in similar SIR perfor-
mance as the noiseless case. This is due to the lower bias of S

(ν)
ypyp

as the noise terms are distributed among all elements of S
(ν)
yy .

In addition to the SIR improvement, the BSS algorithm
achieves also an SNR improvement of 5 dB and 6.5 dB for un-
correlated and diffuse car noise, respectively. This is due to the
minimization of the cross-power spectral densities S

(ν)
ypyq which

contain also a noise term as shown in (6).

5. CONCLUSIONS

We presented a robust BSS algorithm which exhibits good per-
formance for noisy signals. If required it can be comple-
mented with a bias-removal technique. This efficient algorithm
has been implemented in real-time on a regular laptop. (see
www.LNT.de/∼aichner/bss video.html)
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