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Abstract

In unknown environments where we need to identify, model, or track unknown and time-varying channels, adaptive

filtering has been proven to be an effective tool. In this contribution, we focus on multichannel algorithms in the

frequency domain that are especially well suited for input signals which are not only auto-correlated but also highly

cross-correlated among the channels. These properties are particularly important for applications like multichannel

acoustic echo cancellation. Most frequency-domain algorithms, as they are well known from the single-channel case,

are derived from existing time-domain algorithms and are based on different heuristic strategies, e.g, for stepsize

normalization. Here, we present a new rigorous derivation of a whole class of multichannel adaptive filtering algorithms

in the frequency domain based on a recursive least-squares criterion. Then, from the normal equation, we derive a

generic adaptive algorithm in the frequency domain. Due to the rigorous approach, the proposed framework inherently

takes the coherence between all input signal channels into account. An analysis of this multichannel algorithm shows

that the mean-squared error convergence is independent of the input signal statistics (i.e., both auto-correlation and

cross-correlation). A useful approximation provides interesting links between some well-known algorithms for the

single-channel case and the general multichannel framework. We also give design rules for important parameters to

optimize the performance in practice. The computational complexity is kept low by introducing several new techniques,

such as a robust recursive Kalman gain computation in the frequency domain and efficient fast Fourier transform

(FFT) computation tailored to overlapping data blocks. Simulation results and real-time performance for applications

such as multichannel acoustic echo cancellation show the high efficiency of the approach.
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1. Introduction

The ability of adaptive filters to operate
satisfactorily in unknown environments and to
track time variations of input statistics make it a
powerful tool of statistical signal processing in
such diverse fields as communications, acoustics,
radar, sonar, seismology, and biomedical engineer-
ing. Despite the large variety of applications, four
basic classes of adaptive filtering applications may
be distinguished [19]: system identification, inverse
modelling, prediction, and interference cancelling.

In speech and acoustics, where all those basic
classes of adaptive filtering can be found, we often
have to deal with very long filters (sometimes
several thousand taps), unpredictably time-varying
environments, and highly non-stationary and
auto-correlated signals. In addition, the simulta-
neous processing of multiple input streams, i.e.,
multichannel adaptive filtering (MC-ADF) is
becoming more and more desirable for future
applications. Typical examples are multichannel
acoustic echo cancellation (system identification)
or adaptive beamforming microphone arrays
(interference cancelling).

In this article, we investigate adaptive MIMO
(multiple input and multiple output) systems that
are updated in the frequency domain and we show
its high efficiency for the above-mentioned appli-
cations. A major difficulty for such applications
has been the practically important case of highly
cross-correlated input signals to the adaptive filter
[7,29,30] which is the main motivation for this
contribution. The resulting generalized multichan-
nel frequency-domain adaptive filtering accounts
for the cross-correlations and has already led to
efficient real-time implementations of multichan-
nel acoustic echo cancellers on standard personal
computers [10,14]. Moreover, the approach shown
in this contribution also provides a basis for new
improved single-channel algorithms.

Generally, we distinguish two classes of adap-
tive algorithms. One class includes filters that are
updated in the time domain, usually on a sample-
by-sample basis, like the classical least-mean-
square (LMS) [33] and recursive least-squares
(RLS) [1] algorithms. The other class may be
defined as filters that are updated in the discrete
Fourier transform (DFT) domain (‘frequency
domain’), block-by-block in general, exploiting
the efficiency of the fast Fourier transform (FFT)
so that the arithmetic complexity of this latter
category is significantly reduced compared to time-
domain adaptive algorithms.
As preliminaries to our generalization of fre-

quency-domain adaptive filtering, we briefly sum-
marize already known concepts and algorithms.
Single-channel frequency-domain adaptive filter-
ing was first introduced by Dentino et al., based on
the LMS algorithm in the time-domain [12].
Ferrara [13] was the first to present an efficient
frequency-domain adaptive filter algorithm
(FLMS) that converges to the Wiener solution
using the classical overlap-save (OLS) method. An
even more efficient algorithm, the unconstrained

FLMS (UFLMS) was derived by Mansour and
Gray [24], using only three FFT operations per
block instead of five for the FLMS, with compar-
able performance [23]. However, in some applica-
tions, a major drawback of these structures is the
delay introduced between input and output.
Indeed, for efficient implementations, this delay
is equal to the length L of the adaptive filter, which
is considerable for applications like acoustic echo
cancellation. A new structure called multidelay

filter (MDF), using the OLS method, was pro-
posed in [3,31] and generalized in [4] where the new
block size N is independent of the filter length L; N

can be chosen as small as desired, with a delay
equal to N. Although from a complexity point of
view, the optimum choice is N ¼ L; using smaller
block sizes (NoL) to reduce the delay is still more
efficient than time-domain algorithms. A more
general scheme, the generalized multi-delay filter

(GMDFa) was proposed in [27,28], where a
denotes an overlap factor of input data blocks.
The settings a41 appear to be very attractive,
since the filter coefficients can be adapted more
frequently (every N=a samples instead of every N

samples in the conventional OLS scheme) and the
delay can be (further) reduced as well. Thus,
GMDFa includes the previous ones, and intro-
duces one more degree of freedom, but the
complexity is increased roughly by a factor a
(which is most often still much lower than that of
time-domain algorithms). Taking the block size in
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Fig. 1. Multichannel adaptive filtering.
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the GMDFa as large as the delay permits will
increase the convergence rate of the algorithm,
while choosing the overlap factor greater than one
will increase the tracking ability of the algorithm.

The case of multichannel adaptive filtering, as
shown in Fig. 1, has been found to be structurally
more difficult in general. In typical scenarios, the
input signals to the adaptive filter xpðnÞ; p ¼

1; . . . ;P; are not only auto-correlated but also
highly cross-correlated which often results in very
slow convergence of the LP filter coefficients
ĥp;kðnÞ; where k ¼ 0; . . . ;L � 1: This problem
becomes particularly severe in applications like
multichannel acoustic echo cancellation [7,29,30],
where the signals xpðnÞ represent loudspeaker
signals that may originate from common sources.
Signal yðnÞ represents an echo received by a
microphone.

Applying common low-complexity algorithms,
such as the LMS algorithm, or conventional
frequency-domain adaptive filtering according to
[27,28], to the multichannel case usually leads to
disappointing results as the cross-correlations
between the input channels are not taken into
account [15]. In contrast to this, high-order affine
projection algorithms and RLS algorithms do take
the cross-correlations into account [2,15]. Indeed,
it can be shown that the RLS provides optimum
convergence speed even in the multichannel case
[15], but its complexity is prohibitively high and
will, e.g., not allow real-time implementation of
multichannel acoustic echo cancellation on stan-
dard hardware any time soon.

Exploiting the efficiency of FFT algorithms is
possible because of the Toeplitz structure of the
matrices involved, which results from the trans-
versal structure of the adaptive filters: The
Toeplitz matrices can be expressed by circulant
matrices which are diagonalizable by the DFT.
Consequently, the key for deriving the frequency-
domain adaptive algorithms is to reformulate the
time-domain error criterion so that Toeplitz and
circulant matrices are explicitly shown. This idea
was already followed in [24] for an LMS-like
derivation (i.e., based on gradient descent with
stochastic approximation), and the result has been
used for the subsequent algorithms mentioned
above. Unfortunately, this procedure does not
lead to a completely systematic solution, e.g., to
the stepsize normalization (which is crucial in the
multichannel case), and does not directly lead to
the constrained FLMS.
Two-channel frequency-domain adaptive filter-

ing was first introduced in [6] in the context of
stereophonic acoustic echo cancellation and de-
rived from the extended least-mean-squares
(ELMS) algorithm [2] in the time domain using
similar heuristic considerations as for the single-
channel case outlined above.
Unlike the above at least partially heuristic

derivations, the rigorous derivation of frequency-
domain adaptive filtering presented in the next
section leads to a generic algorithm with RLS-like
properties. An efficient approximation of this
algorithm can then be studied in a way that is
independent of the signals. While this approxima-
tion provides a direct link to the existing and
interesting new frequency-domain algorithms in
the single-channel case, the property of a tight
coupling of the input channels in the multichannel
case is efficiently preserved. For clarity, we will
confine the detailed derivation to a block size N ¼

L: A generalization to NpL is straightforward; we
will point to interesting new results along the lines.
The organization of this paper is as follows. In

Section 2, we introduce the notation and a
frequency-domain recursive least-squares criterion
from which the so-called normal equation is
derived. Then, from the normal equation, we
deduce a generic multichannel adaptive algorithm
and we introduce the so-called frequency-domain
Kalman gain. In Section 3, we study the conver-
gence of this novel class of multichannel
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algorithms. In Section 4, we consider the general
MIMO case and, in Section 5, we give a very useful
approximation that can be studied independently
of the signals, deduce some well-known single-
channel algorithms as special cases, and explicitly
show how the cross-correlations are taken into
account in the multichannel case. We also give
design rules for some important parameters such
as the exponential window, regularization, and
adaptation stepsize. A useful dynamical regular-
ization method is discussed in more detail in
Section 6. Section 7 introduces several methods for
increasing computational efficiency in the multi-
input and MIMO cases, such as a robust recursive
Kalman gain computation and FFT computation
tailored for overlapping data blocks. Section 8
presents some simulations and multichannel real-
world implementations for hands-free speech
communications. Finally, our results are summar-
ized in Section 9.
2. General derivation of multichannel frequency-

domain algorithms

In the first part of this section we formulate a
block recursive least-squares criterion in the
frequency domain. Once the criterion is rigorously
defined, the adaptive multichannel algorithm
follows immediately.
2.1. Optimization criterion

From Fig. 1, it can be seen that the error signal
at time k between the output of the multichannel
adaptive filter ŷðkÞ and the desired output signal
yðkÞ is given by

eðkÞ ¼ yðkÞ � ŷðkÞ; (1)

with

ŷðkÞ ¼
XP

p¼1

xTp ðkÞĥp ¼ xTðkÞĥ; (2)

where

xpðkÞ ¼ ½xpðkÞ;xpðk � 1Þ; . . . ;xpðk � L þ 1Þ�T (3)
is a vector containing the latest L samples of the
input signal xp of the pth channel, and where

ĥp ¼ ½ĥp;0; ĥp;1; . . . ; ĥp;L�1�
T (4)

contains the current weights of the adaptive FIR
filter taps for the pth input channel. The vectors

xðkÞ ¼ ½xT1 ðkÞ; x
T
2 ðkÞ; . . . ;x

T
PðkÞ�

T (5)

and

ĥ ¼ ½ĥ
T

1 ; ĥ
T

2 ; . . . ; ĥ
T

P�
T (6)

allow a convenient notation of the multichannel
algorithms. Superscript T denotes transposition of
a vector or a matrix.
We now define the block error signal of length

L. Based on (1) and (2) we write

eðmÞ ¼ yðmÞ � ŷðmÞ; (7)

with m being the block time index, and

ŷðmÞ ¼
XP

p¼1

UT
p ðmÞĥp ¼ UTðmÞĥ; (8)

where

eðmÞ ¼ ½eðmLÞ; . . . ; eðmL þ L � 1Þ�T; (9)

yðmÞ ¼ ½yðmLÞ; . . . ; yðmL þ L � 1Þ�T; (10)

ŷðmÞ ¼ ½ŷðmLÞ; . . . ; ŷðmL þ L � 1Þ�T; (11)

UpðmÞ ¼ ½xpðmLÞ; . . . ;xpðmL þ L � 1Þ�; (12)

UðmÞ ¼ ½UT
1 ðmÞ; . . . ;UT

PðmÞ�T: (13)

It can easily be verified that Up; p ¼ 1; . . . ;P are
Toeplitz matrices of size (L � L):

UT
p ðmÞ

¼

xpðmLÞ 	 	 	 xpðmL � L þ 1Þ

xpðmL þ 1Þ . .
. ..

.

..

. . .
. ..

.

xpðmL þ L � 1Þ 	 	 	 xpðmLÞ

2
66666664

3
77777775
:

These Toeplitz matrices are now diagonalized in
two steps:
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Step 1: Transformation of Toeplitz matrices into

circulant matrices.
Any Toeplitz matrix Up can be transformed, by

doubling its size, to a circulant matrix

CpðmÞ ¼
U0T

p ðmÞ UT
p ðmÞ

UT
p ðmÞ U0T

p ðmÞ

2
4

3
5; (14)

where the U0
p are also Toeplitz matrices and can be

expressed in terms of the elements of UT
p ðmÞ;

except for an arbitrary diagonal, e.g.,

U0T
p ðmÞ

¼

xpðmL � LÞ 	 	 	 xpðmL þ 1Þ

xpðmL � L þ 1Þ . .
. ..

.

..

. . .
. ..

.

xpðmL � 1Þ 	 	 	 xpðmL � LÞ

2
66666664

3
77777775
:

It follows

UT
p ðmÞ ¼ W01

L�2LCpðmÞW10
2L�L; (15)

where we introduced the windowing matrices

W01
L�2L ¼ ½0L�L; IL�L�;

W10
2L�L ¼ ½IL�L; 0L�L�

T:

Step 2: Transformation of the circulant matrices

into diagonal matrices.
Using the 2L � 2L DFT matrix F2L�2L with

elements e�j2pnk=ð2LÞ; where n; k ¼ 0; . . . ; 2L � 1; the
circulant matrices are diagonalized as follows:

CpðmÞ ¼ F�1
2L�2LXpðmÞF2L�2L; (16)

where the diagonal matrices XpðmÞ can be ex-
pressed by the first columns of CpðmÞ;

XpðmÞ ¼ diag F2L�2L

xpðmL � LÞ

..

.

xpðmL þ L � 1Þ

2
664

3
775

8>><
>>:

9>>=
>>;: (17)

Now, (15) can be rewritten equivalently as

UT
p ðmÞ ¼ W01

L�2LF
�1
2L�2LXpðmÞF2L�2LW

10
2L�L: (18)
Since

½AX1B; . . . ;AXPB�

¼ A½X1; . . . ;XP�diagfB; . . . ;Bg

for any matrices A; B; Xp with compatible
dimensions, it follows for the error vector using
(13) and (18):

eðmÞ ¼ yðmÞ �W01
L�2LF

�1
2L�2L½X1ðmÞ; . . . ;XPðmÞ�

	 diagfF2L�2LW
10
2L�L; . . . ;F2L�2LW

10
2L�Lgĥ:

ð19Þ

If we multiply (19) by the L � L DFT matrix FL�L;
we obtain the error signal in the frequency
domain1:

eðmÞ ¼ yðmÞ �G01
L�2LXðmÞG10

2LP�LP ĥ; (20)

where

eðmÞ ¼ FL�LeðmÞ; (21)

yðmÞ ¼ FL�LyðmÞ; (22)

G01
L�2L ¼ FL�LW

01
L�2LF

�1
2L�2L; (23)

G10
2LP�LP ¼ diagfG10

2L�L; . . . ;G
10
2L�Lg; (24)

G10
2L�L ¼ F2L�2LW

10
2L�LF

�1
L�L; (25)

XðmÞ ¼ ½X1ðmÞ;X2ðmÞ; . . . ;XPðmÞ�; (26)

ĥp ¼ FL�Lĥp; (27)

ĥ ¼ ½ĥ
T

1 ; ĥ
T

2 ; . . . ; ĥ
T

P�
T: (28)

Optimization criterion: Having derived a fre-
quency-domain error signal, we now define a
frequency-domain criterion for optimizing the
coefficient vector ĥ ¼ ĥðmÞ:

Jf ðmÞ ¼ ð1� lÞ
Xm

i¼0

lm�ieHðiÞ eðiÞ; (29)

where H denotes conjugate transposition and l
ð0olo1Þ is an exponential forgetting factor.
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The criterion (29) is very similar2 to the one
leading to the well-known RLS algorithm [1]. The
main advantage of using (29) is to take advantage
of the FFT in order to have low-complexity
adaptive filters.
2.2. Normal equation

Let r
ĥ
be the gradient operator with respect

to ĥ : Applying the operator r
ĥ

to the cost
function J f ; we obtain [8,19] the complex gradient
vector:

r
ĥ
Jf ðmÞ

¼ 2
@Jf ðmÞ

@ĥ
�
ðmÞ

¼ �2ð1� lÞ
Xm

i¼0

lm�i

	 ðG10
2LP�LPÞ

HXHðiÞðG01
L�2LÞ

H yðiÞ

þ 2ð1� lÞ
Xm

i¼0

lm�i
ðG10

2LP�LPÞ
HXHðiÞ

"

	 ðG01
2L�2LÞXðiÞðG

10
2LP�LPÞ

#
ĥðmÞ; ð30Þ

where � denotes complex conjugation,

G01
2L�2L ¼ ðG01

L�2LÞ
HG01

L�2L

¼ F2L�2LW
01
2L�2LF

�1
2L�2L; ð31Þ

and

W01
2L�2L ¼

0L�L 0L�L

0L�L IL�L

" #
: (32)

By setting the gradient of the cost function equal
to zero and defining

y
2L
ðmÞ ¼ ðG01

L�2LÞ
H yðmÞ

¼ F2L�2L

0L�1

yðmÞ

" #
; ð33Þ

we obtain the so-called normal equation

SðmÞ ĥðmÞ ¼ sðmÞ; (34)
2Note that the time-frequency equivalence is assured by

Parseval’s theorem.
where

SðmÞ ¼ ð1� lÞ
Xm

i¼0

lm�i
ðG10

2LP�LPÞ
HXHðiÞ

	G01
2L�2LXðiÞG

10
2LP�LP

¼ lSðm � 1Þ þ ð1� lÞðG10
2LP�LPÞ

H

	 XHðmÞG01
2L�2LXðmÞG10

2LP�LP ð35Þ

and

sðmÞ ¼ ð1� lÞ
Xm

i¼0

lm�i
	 ðG10

2LP�LPÞ
HXHðiÞy

2L
ðiÞ

¼ lsðm � 1Þ þ ð1� lÞðG10
2LP�LPÞ

H

	 XHðmÞy
2L
ðmÞ

¼ lsðm � 1Þ þ ð1� lÞðG10
2LP�LPÞ

H

	 XHðmÞðG01
L�2LÞ

H yðmÞ: ð36Þ

If the input signal is well-conditioned, matrix SðmÞ

is non-singular. In this case, the normal equation
has a unique solution which is the optimum
Wiener solution.
2.3. Adaptive algorithm

The different formulations for filter adaptation
discussed below, i.e., recursive updates of ĥðmÞ; are
all derived directly from the normal equation (34)
and associated equations (35) and (36).
Here, we replace sðmÞ and sðm � 1Þ in the

recursive equation (36) by formulating (34) in
terms of block time indices m and m � 1;
respectively. We then eliminate Sðm � 1Þ from
the resulting equation using (35). Reintroducing
the error signal vector (20), we obtain an exact
recursive solution of (34) by the following adapta-
tion algorithm:

eðmÞ ¼ yðmÞ � G01
L�2LXðmÞG10

2LP�LP ĥðm � 1Þ;

ð37Þ

ĥðmÞ ¼ ĥðm � 1Þ þ ð1� lÞS�1ðmÞ

	 ðG10
2LP�LPÞ

HXHðmÞðG01
L�2LÞ

H eðmÞ: ð38Þ

For practical purposes, it is useful to refor-
mulate this algorithm. First, we multiply (37)
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by ðG01
L�2LÞ

H;

e2LðmÞ ¼ y
2L
ðmÞ �G01

2L�2L

	 XðmÞG10
2LP�LP ĥðm � 1Þ ð39Þ

ĥðmÞ ¼ ĥðm � 1Þ þ ð1� lÞS�1ðmÞ

	 ðG10
2LP�LPÞ

HXHðmÞe2LðmÞ; ð40Þ

where we defined analogously to (33)

e2LðmÞ ¼ ðG01
L�2LÞ

H eðmÞ

¼ F2L�2L

0L�1

eðmÞ

" #
: ð41Þ

If we multiply (40) by G10
2LP�LP; we obtain the

algorithm (39) and (40) in a slightly different form:

e2LðmÞ ¼ y
2L
ðmÞ �G01

2L�2LXðmÞĥ2LPðm � 1Þ

ð42Þ

ĥ2LPðmÞ ¼ ĥ2LPðm � 1Þ þ ð1� lÞG10
2LP�LP

	 S�1ðmÞðG10
2LP�LPÞ

H
	 XHðmÞe2LðmÞ;

ð43Þ

where SðmÞ is given by (35), and

ĥ2LPðmÞ ¼ G10
2LP�LP ĥðmÞ

¼ ½ĥ
T

2LP;1ðmÞ; . . . ; ĥ
T

2LP;PðmÞ�T;

ĥ2LP;pðmÞ ¼ F2L�2L

ĥpðmÞ

0L�1

" #
: (44)

The rank of the matrix G10
2LP�LP is equal to LP.

Since we have to adapt LP unknowns, in principle,
(43) is equivalent to (40). Indeed, if we multiply

(43) by ðG10
2LP�LPÞ

H; we obtain exactly (40) since

ðG10
2LP�LPÞ

HG10
2LP�LP ¼ ILP�LP: It is interesting to

see how naturally we have ended up using blocks
of length 2L (especially for the error signal) even
though we have used an error criterion with blocks
of length L. We can do even better than that and
rewrite the algorithm exclusively using FFTs of
size 2L: This formulation is by far the most
interesting one because an explicit link with
existing frequency-domain algorithms can be
established. Let us first define the ð2LP � 2LPÞ

matrix

SdðmÞ ¼ ð1� lÞ
Xm

i¼0

lm�iXHðiÞG01
2L�2LXðiÞ

¼ lSdðm � 1Þ

þ ð1� lÞXHðmÞG01
2L�2LXðmÞ: ð45Þ

The relation of SdðmÞ to SðmÞ is obviously given by

SðmÞ ¼ ðG10
2LP�LPÞ

HSdðmÞG10
2LP�LP: (46)

Next, we define

G10
2L�2L ¼ G10

2L�LðG
10
2L�LÞ

H

¼ F2L�2LW
10
2L�2LF

�1
2L�2L

and

G10
2LP�2LP ¼ diagfG10

2L�2L 	 	 	G10
2L�2Lg; (47)

where

W10
2L�2L ¼

IL�L 0L�L

0L�L 0L�L

" #
: (48)

Now, we have a relation between the inverse of the
two matrices S (as it appears in (43)) and Sd:

G10
2LP�2LPS

�1
d ðmÞ

¼ G10
2LP�LPS

�1ðmÞðG10
2LP�LPÞ

H: ð49Þ

This can be verified by post-multiplying both

sides of (49) by SdðmÞG10
2LP�LP and noting that

G10
2LP�2LPG

10
2LP�LP ¼ G10

2LP�LP: Using (49), the

adaptive algorithm (35), (42), and (43) can now
be written more conveniently:

SdðmÞ ¼ lSdðm � 1Þ

þ ð1� lÞXHðmÞG01
2L�2LXðmÞ ð50Þ

e2LðmÞ ¼ y
2L
ðmÞ

� G01
2L�2LXðmÞĥ2LPðm � 1Þ ð51Þ

ĥ2LPðmÞ ¼ ĥ2LPðm � 1Þ þ ð1� lÞG10
2LP�2LP

	 S�1
d ðmÞXHðmÞe2LðmÞ: ð52Þ

Due to the structure of the update equations, we
introduce a frequency-domain Kalman gain ma-
trix in analogy to the RLS algorithm [19]:

KðmÞ ¼ ð1� lÞS�1
d ðmÞXHðmÞ: (53)
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This 2LP � 2L matrix includes the inverse in (52)
and plays an important role in practical realiza-
tions, including a tight coupling between the
multiple input channels by coherence terms, as
shown in detail in subsequent sections. Fig. 2
summarizes the general steps in multichannel
frequency-domain adaptive filtering. The two
shaded blocks represent the calculation of the
Kalman gain using (50) and (53), or efficient
realizations thereof.

A note concerning block sizes NoL: Analo-
gously to (50)–(52), a generic algorithm can be
derived straightforwardly using K ¼ L=N sub-
filters per channel and block convolution. As
shown in Section 5, this leads to a new class of
algorithms for NoL with improved convergence
characteristics compared to the classical multi-
delay filter [31]. Using DFTs of length N and
length 2N ; respectively, the error criterion (29) is
then applied to length-N error vectors. In the
resulting algorithm, the matrices G01

2L�2L in (50)
and (51) are replaced by the corresponding
2N � 2N-matrices G01

2N�2N : Equation (52) remains
in the same form, where G10

2LP�2LP; defined in (47),
is then composed from K 	 P sub-matrices of size
2N � 2N; ĥ2LPðmÞ and XðmÞ are the concatena-
tions of the sub-filters and diagonal sub-matrices,
respectively.
3. Convergence analysis

In this section, we analyze the convergence
behavior of the algorithm for stationary signals
xpðkÞ and yðkÞ based on (37) and (38).
Due to the assumed stationarity of the filter

input signals, we obtain, after taking the expected
value of (35):

EfSðmÞg ¼ ð1� lÞ
Xm

i¼0

lm�iSe; (54)

where

Se ¼ EfðG10
2LP�LPÞ

H

	 XHðmÞG01
2L�2LXðmÞG10

2LP�LPg ð55Þ

denotes the time-independent ensemble average.
Noting that in (54) we have a sum of a finite
geometric series, it can be simplified to

EfSðmÞg ¼ ð1� lmþ1
ÞSe: (56)

For a single realization of the stochastic process
SðmÞ; we assume that

SðmÞ � ð1� lmþ1
ÞSe; (57)

and for the steady state we see with 0olo1 that

SðmÞ � Se for large m: (58)

3.1. Analysis model

For the following, we assume that the desired
response yðkÞ and the tap-input vector xðkÞ are
related by the multiple linear regression model [19]

yðkÞ ¼ xTðkÞhþ nðkÞ; (59)

where the LP � 1 vector h denotes the fixed
regression parameter vector of the model and the
measurement error nðkÞ is assumed to be a zero-
mean white noise that is independent of xpðkÞ 8

p 2 f1; . . . ;Pg: The equivalent expression in the
frequency domain reads

yðmÞ ¼ G01
L�2LXðmÞG10

2LP�LP hþ nðmÞ; (60)
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where h and nðmÞ are defined in the same way as ĥ
in (28) and yðmÞ in (22), respectively.

3.2. Convergence in the mean

By noting that

ðG01
L�2LÞ

HG01
L�2L ¼ G01

2L�2L (61)

from (31), the coefficient update (38) can
be written in terms of the misalignment vector
�ðmÞ as

h�ĥðmÞ ¼ h�ĥðm � 1Þ

� ð1� lÞS�1ðmÞðG10
2LP�LPÞ

H

	 XHðmÞG01
2L�2LXðmÞ

	G10
2LP�LP½h�ĥðm � 1Þ�

� ð1� lÞS�1ðmÞðG10
2LP�LPÞ

H

	 XHðmÞ nðmÞ: ð62Þ

Taking the mathematical expectation of expres-
sion (62), using the independence theory [19], and
(55) together with (58), we deduce for large m that

Ef�ðmÞg ¼ lEf�ðm � 1Þg ¼ lmEf�ð0Þg: (63)

Eq. (63) expresses that the convergence rate of the
algorithm is governed by l: Most importantly, the
rate of convergence is completely independent of
the input statistics (even in the multichannel case).
Finally, we have

lim
m!1

Ef�ðmÞg ¼ 0LP�1 ) lim
m!1

EfĥðmÞg ¼ h: (64)

Now, suppose that lt is the forgetting factor of a
sample-by-sample adaptive algorithm (operating
in the time domain). To have the same effective
window length for the sample-by-sample and
block-by-block algorithms, we should choose l ¼

lL
t : For example, a typical choice for the RLS

algorithm [19] is lt ¼ 1� 1=ð3LÞ: In this case, a
good choice for the frequency-domain algorithm is
l ¼ ½1� 1=ð3LÞ�L:

3.3. Convergence of the mean-squared error

The convergence of the algorithm in the mean is
not sufficient for convergence to the minimum
mean-squared error (MMSE) estimate [19] as it
only assures a bias-free estimate ĥðmÞ: The algo-
rithm converges in the mean square if

lim
m!1

J 0
f ðmÞ ¼ J 0

f ;mino1; (65)

where

J 0
f ðmÞ ¼

1

L
EfeHðmÞ eðmÞg: (66)

From (37), the error signal eðmÞ can be written in
terms of �ðmÞ as

eðmÞ ¼ G01
L�2LXðmÞG10

2LP�LP �ðm � 1Þ þ nðmÞ: (67)

Expression (66) becomes

J 0
f ðmÞ ¼

1

L
JexðmÞ þ s2n; (68)

where the excess mean-squared error is given by

JexðmÞ ¼ Ef�Hðm � 1ÞðG10
2LP�LPÞ

HXHðmÞ

	G01
2L�2LXðmÞG10

2LP�LP �ðm � 1Þg ð69Þ

and s2n is the variance of the noise signal nðkÞ:
Furthermore, (69) can be written as

JexðmÞ ¼ Eftr½�Hðm � 1ÞðG10
2LP�LPÞ

HXHðmÞ

	G01
2L�2LXðmÞG10

2LP�LP �ðm � 1Þ�g

¼ Eftr½ðG10
2LP�LPÞ

HXHðmÞG01
2L�2L

	 XðmÞG10
2LP�LP �ðm � 1Þ�Hðm � 1Þ�g

¼ tr½EfðG10
2LP�LPÞ

HXHðmÞG01
2L�2L

	 XðmÞG10
2LP�LP �ðm � 1Þ�Hðm � 1Þg�:

Invoking the independence assumption and using
(55), we may reduce this expectation to

JexðmÞ ¼ tr½SeMðm � 1Þ�; (70)

where

MðmÞ ¼ Ef�ðmÞ�HðmÞg (71)

is the misalignment correlation matrix.
We derive an expression for the misalignment

vector �ðmÞ using the normal equation (34), and
(36):

�ðmÞ ¼ h� ĥðmÞ

¼ h�S�1ðmÞsðmÞ

¼ h�ð1� lÞS�1ðmÞ
Xm

i¼0

lm�i

	 ðG10
2LP�LPÞ

HXHðiÞðG01
L�2LÞ

H yðiÞ: ð72Þ
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Using yðmÞ from the model (60), we obtain with
(61) and (35):

�ðmÞ ¼ � ð1� lÞS�1ðmÞ
Xm

i¼0

lm�i

	 ðG10
2LP�LPÞ

HXHðiÞðG01
2L�2LÞ

H nðiÞ: ð73Þ

If we plug this equation into (71), we obtain, after
taking the expectations, and noting that for a
given input sequence, the only random variable is
the white measurement noise nðmÞ:

MðmÞ ¼ s2nð1� lÞ2S�1ðmÞ

	
Xm

i¼0

l2ðm�iÞ
ðG10

2LP�LPÞ
H

"

	 XHðiÞG01
2L�2LXðiÞG

10
2LP�LP

#
	 S�1ðmÞ;

ð74Þ

where EfnðmÞnHðmÞg ¼ s2nI was used. Analogously
to (57), we find for the term in brackets in (74):

Xm

i¼0

l2ðm�iÞ
ðG10

2LP�LPÞ
HXHðiÞG01

2L�2LXðiÞG
10
2LP�LP

� ð1� l2ðmþ1Þ
ÞSe: ð75Þ

Assuming strict equality in (75), using (57), and
1� l2ðmþ1Þ

¼ ð1� lmþ1
Þð1þ lmþ1

Þ; this leads to

MðmÞ ¼ s2nð1� lÞ2
1þ lmþ1

1� lmþ1
S�1
e : (76)

Finally, we obtain for (68) with (70)

J 0
f ðmÞ ¼ Pð1� lÞ2

1þ lm

1� lm þ 1

� �
s2n: (77)

This equation describes the convergence curve of
the mean-squared error. One can see that in the
steady state, i.e., for large m, the mean-squared
error converges to a constant value as desired in
(65):

J 0
f ðm ! 1Þ ¼ J 0

f ;min ¼ ½Pð1� lÞ2 þ 1�s2n: (78)

Moreover, we see from (77) that the convergence
behavior of the mean-squared error is independent
of the eigenvalues of the ensemble-averaged matrix
Se: The scalar

JmisðmÞ ¼ Ef�HðmÞ �ðmÞg (79)
describes the convergence of the misalignment, i.e.,
the coefficient convergence. Using (76), we deduce
that

JmisðmÞ ¼ tr½MðmÞ�

¼ s2nð1� lÞ2
1þ lmþ1

1� lmþ1
tr ½S�1

e �

¼ s2nð1� lÞ2
1þ lmþ1

1� lmþ1

XLP�1

i¼0

1

ls;i
; ð80Þ

where ls;i denotes the eigenvalues of the ensemble-
averaged matrix Se: It is important to notice the
difference between the convergence of the mean-
squared error and the misalignment. While the
mean-squared error does not depend on the
eigenvalues of Se (i.e., it is also independent of
the channel coherence), the misalignment is
magnified by the inverse of the smallest eigenvalue
ls;min of Se (and thus of SðmÞ). The situation is
worsened when the variance of the noise s2n is
large. So in practice, at some frequencies, where
the signal is poorly excited, we may have a very
large misalignment. In order to avoid this problem
and to keep the misalignment low, the adaptive
algorithm should be regularized by adding small
values to the diagonal of SðmÞ: In Section 6, this
important topic is discussed in more detail.
4. Note on generalized frequency-domain adaptive

MIMO filtering

In this section, we consider the extension of the
algorithm proposed in Section 2 to the general
MIMO case, i.e., we have P input signals xpðkÞ;
p ¼ 1; . . . ;P; and Q desired signals yqðkÞ; output
signals ŷqðkÞ; and error signals eqðkÞ; q ¼ 1; . . . ;Q;
respectively (Fig. 3).
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In the sequel, the following question is dis-
cussed: what is the optimum solution based on
minimization of error variances?

Let us define signal block vectors yqðmÞ; eqðmÞ;
y

q
ðmÞ; eqðmÞ for each output channel in the same

way as shown in (10), (9), (22), and (21),
respectively. These quantities can be combined in
the ðL � QÞ matrices

EðmÞ ¼ ½e1ðmÞ; . . . ; eQðmÞ�;

YðmÞ ¼ ½y1ðmÞ; . . . ; yQðmÞ�;

EðmÞ ¼ ½e1ðmÞ; . . . ; eQðmÞ�;

YðmÞ ¼ ½y
1
ðmÞ; . . . ; y

Q
ðmÞ�:

We consider two conceivable generalizations of the
recursive least-squares error criterion proposed in
(29):

Error criterion 1: Separate optimization

The most obvious approach to the problem is to
treat each of the Q desired signal channels
separately by the algorithm proposed above:

J f1;qðmÞ ¼ ð1� lÞ
Xm

i¼0

lm�ieHq ðiÞeqðiÞ (81)

for q ¼ 1; . . . ;Q: This criterion has been tradition-
ally used in all approaches for multichannel echo
cancellation, i.e., system identification.

Error criterion 2: Joint optimization

A more general approach foresees to jointly
optimize the MIMO filter by the following
criterion:

J f2ðmÞ ¼
XQ

q¼1

J f1;qðmÞ

¼ ð1� lÞ
Xm

i¼0

lm�i
XQ

q¼1

eHq ðiÞeqðiÞ

¼ ð1� lÞ
Xm

i¼0

lm�itr½EHðiÞEðiÞ�

¼ ð1� lÞ
Xm

i¼0

lm�i
kdiagfEHðiÞEðiÞgk1;

where the matrix norm k 	 k1 sums up the absolute
values of all matrix elements. Introducing the
(LP � Q) coefficient matrix in the frequency
domain

ĤLP�Q ¼

ĥ1;1 	 	 	 ĥ1;Q

..

. . .
. ..

.

ĥP;1 	 	 	 ĥP;Q

2
6664

3
7775; (82)

and using the same approach as in Section 2, we
obtain the following normal equation:

SðmÞĤLP�Q ¼ sLP�QðmÞ: (83)

Fortunately, this matrix equation can be easily
decomposed into Q equations (34). Therefore,
criteria 1 and 2 are strictly equivalent for the
behavior of the adaptation. We note, however,
that the compact formulation (83) of the normal
equation can be used, e.g., to obtain a generalized
control of the adaptation for the echo cancellation
application [5].
Therefore, for both criteria, the generalized

frequency-domain adaptive MIMO filter can be
summarized as

SdðmÞ ¼ lSdðm � 1Þ

þ ð1� lÞXHðmÞG01
2L�2LXðmÞ; ð84Þ

KðmÞ ¼ ð1� lÞS�1
d ðmÞXHðmÞ; (85)

E2L�QðmÞ ¼ Y2L�QðmÞ

� G01
2L�2LXðmÞĤ2LP�Qðm � 1Þ; ð86Þ

Ĥ2LP�QðmÞ ¼ Ĥ2LP�Qðm � 1Þ

þ G10
2LP�2LPKðmÞE2L�QðmÞ; ð87Þ

in analogy to Eqs. (50)–(53).
Note that for block size NoL; an algorithm

is obtained in the same way as mentioned in
Section 2.
5. Approximation and special cases

We start this section by giving a very useful
approximation of the algorithm proposed in the
preceding Section. This approximation can be
studied independently from the input signals. It
allows us both, to show explicitly the links to the
classical single-channel algorithms, and also to
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derive new and very efficient multichannel algo-
rithms where the cross-correlations are taken into
account. The list of special cases of the framework
is not exhaustive and several other algorithms may
also be derived.
5.1. Approximation of the frequency-domain

Kalman gain

Frequency-domain adaptive filters were first
introduced to reduce the arithmetic complexity of
the (single-channel) LMS algorithm [13]. Unfortu-
nately, the matrix Sd is generally not diagonal, so
its inversion in (85) has a high complexity and the
algorithm may not be very useful in practice. Since
Sd is composed of P2 sub-matrices

Si;j ¼ lSi;jðm � 1Þ þ ð1� lÞX�
i ðmÞG01

2L�2LXjðmÞ;

(88)

it is desirable that each of those sub-matrices be a
diagonal matrix. In the next paragraph, we will
argue that G01

2L�2L can be well approximated by the
identity matrix with weight 1=2; accordingly, after
introducing the positive factor mp2 in (87), and
the matrix S0ðmÞ approximating 2SdðmÞ; we then
obtain the following approximate algorithm:

S0ðmÞ ¼ lS0ðm � 1Þ

þ ð1� lÞXHðmÞXðmÞ; ð89Þ

KðmÞ ¼ ð1� lÞS0�1
ðmÞXHðmÞ; (90)

E2L�QðmÞ ¼ Y2L�QðmÞ

� G01
2L�2LXðmÞĤ2LP�Qðm � 1Þ; ð91Þ

Ĥ2LP�QðmÞ ¼ Ĥ2LP�Qðm � 1Þ

þ mG10
2LP�2LPKðmÞE2L�QðmÞ; ð92Þ

where each sub-matrix of S0 and K is now a
diagonal matrix and mp2 is a positive number.
Note that the imprecision introduced by the
approximation in (89) and thus in the Kalman
gain (90) will only affect the convergence rate.
Obviously, we cannot permit the same kind of
approximation in (91), because that would result
in approximating a linear convolution by a
circular one, which of course can have a disastrous
impact in the adaptive filter behavior.
To justify the above approximation, let us

examine the structure of the matrix G01
2L�2L: We

have

ðG01
2L�2LÞ

�
¼ F�1

2L�2LW
01
2L�2LF2L�2L: (93)

Since W01
2L�2L is a diagonal matrix, ðG01

2L�2LÞ
� is a

circulant matrix. Therefore, inverse transforma-
tion of the diagonal of W01

2L�2L gives the first
column of ðG01

2L�2LÞ
�;

g� ¼ ½g�
0; g

�
1; . . . ; g

�
2L�1�

T

¼ F�1
2L�2L½0; . . . ; 0; 1; . . . ; 1�

T:

The elements of vector g can be written explicitly
as

gk ¼
1

2L

X2L�1

l¼L

expð�j2pkl=2LÞ

¼
ð�1Þk

2L

XL�1

l¼0

expð�jpkl=LÞ; ð94Þ

where j2 ¼ �1: Since gk is the sum of a finite
geometric series, we have

gk ¼

0:5 k ¼ 0

ð�1Þk

2L

1� expð�jpkÞ

1� expð�jpk=LÞ
ka0

8><
>:

¼

0:5 k ¼ 0

0 k even

�
1

2L
1� j cot

pk

2L

� �� �
k odd;

8>>>><
>>>>:

ð95Þ

where L � 1 elements of vector g are equal to zero.
Moreover, since ðG01

2L�2LÞ
HG01

2L�2L ¼ G01
2L�2L; then

gHg ¼ g0 ¼ 0:5 and we have

gHg� g2
0 ¼

X2L�1

l¼1

jglj
2 ¼ 2

XL�1

l¼1

jgl j
2 ¼

1

4
: (96)

We can see from (96) that the first element of
vector g; i.e., g0; is dominant in a mean-square
sense, and from (95) that the absolute values of the
L first elements of g decrease rapidly to zero as k

increases. Because of the conjugate symmetry, i.e.,
jgkj ¼ jg2L�kj for k ¼ 1; . . . ;L � 1; the last few
elements of g are not negligible, but this affects
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only the first and last columns of G01
2L�2L since this

matrix is circulant with g as its first column. All
other columns have those non-negligible elements
wrapped around in such a way that they are
concentrated around the main diagonal. To
summarize, we can say that for L large, only the
very first (few) off-diagonals of G01

2L�2L will be non-
negligible while the others can be completely
neglected. We also neglect the influence of the
two isolated peaks jg2L�1j ¼ jg1jog0 on the lower
left corner and the upper right corner, respectively.
Thus, approximating G01

2L�2L by a diagonal matrix,
i.e., G01

2L�2L � g0I ¼ I=2; is reasonable, and in this
case we will have m � 1=g0 ¼ 2 for an optimum
convergence rate. For the rest of this paper, we
suppose that 0omp2:

5.2. Special cases

In the single-channel case P ¼ Q ¼ 1; S0 and K

are diagonal matrices and the classical constrained
FLMS [13] follows immediately from (89) to (92).
This algorithm requires the computation of 5
FFTs of length 2L per block. By approximating
G10

2LP�2LP in (92) to the identity matrix, we obtain
the unconstrained FLMS (UFLMS) algorithm [24]
which requires only 3 FFTs per block. Many
simulations show that the two algorithms have
virtually the same performance.

For NoL; SdðmÞ in (84) consists of ðK 	 PÞ2 sub-
matrices that can be approximated as shown
above. It is interesting that for N ¼ 1; the
algorithm is strictly equivalent to the RLS algo-
rithm in the time domain. After the approxima-
tion, we obtain a new algorithm that we call
extended multidelay filter (EMDF) for 1oNoL

that takes the auto-correlations between the blocks
into account [9]. Finally, the classical multidelay
filter is obtained by further approximating S0ðmÞ in
(89) by dropping the off-diagonal components in
S0ðmÞ:

S00ðmÞ ¼ diagfS1;1;0ðmÞ; . . . ;S1;1;K�1ðmÞg; (97)

where

S1;1;kðmÞ ¼ lS1;1;kðm � 1Þ

þ ð1� lÞX�
1;kðmÞX1;kðmÞ

are ð2N � 2NÞ diagonal matrices.
In the MIMO case, (90) is the solution of a P �

P system of linear equations of block matrices:

KðmÞ ¼ ½KT
1 ðmÞ; . . . ;KT

PðmÞ�T: (98)

This allows us to formally write the update
equation (92) as PQ tightly coupled ‘single-
channel’ update equations

ĥp;qðmÞ ¼ ĥp;qðm � 1Þ þ mG10
2L�2LKpeqðmÞ (99)

(p ¼ 1; . . . ;P; q ¼ 1; . . . ;Q) with the sub-matrices
KpðmÞ taking the cross-correlations between the
input channels into account. These update
equations (99) can then be calculated element-wise
and the (cross) power spectra are estimated
recursively:

Si;jðmÞ ¼ lSi;jðm � 1Þ þ ð1� lÞX�
i ðmÞXjðmÞ; (100)

where Sj;ið	Þ ¼ S�
i;jð	Þ:

It is important to note that the calculation of the
Kalman gain (Eqs. (84) and (85)), which is the
computationally most demanding part, is comple-
tely independent of the number Q of output
channels and thus, has to be calculated only once,
while the remaining update equations (99) for-
mally correspond to single-channel (U)FLMS
algorithms.
In the case of two input channels P ¼ 2; the

Kalman gain can be written in an explicit form by
block-inversion:

K1 ¼ DðmÞS�1
1;1ðmÞ½X�

1ðmÞ � S1;2ðmÞS�1
2;2ðmÞX�

2ðmÞ�;

ð101Þ

K2 ¼ DðmÞS�1
2;2ðmÞ½X�

2ðmÞ � S2;1ðmÞS�1
1;1ðmÞX�

1ðmÞ�;

ð102Þ

with the abbreviation

DðmÞ ¼ ð1� lÞ½I2L�2L � S�
1;2ðmÞS1;2ðmÞ

	 fS1;1ðmÞS2;2ðmÞg�1��1:

The solutions of (90) for more than two input
channels may be formulated similarly to the
corresponding part of the stereo update Eqs.
(101) and (102) (e.g., using Cramer’s rule). These
representations allow an intuitive interpretation as
a correction of the interchannel-correlations in Ki

between X�
i and the other input signals X�

j ; jai:
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For three channels, we have (omitting, for
simplicity, the block time index m of all matrices)

K1 ¼ ð1� lÞD�1½X�
1ðS2;2S3;3

� S3;2S2;3Þ � X�
2ðS1;2S3;3 � S1;3S3;1Þ

� X�
3ðS1;3S2;2 � S1;2S2;3Þ�;

D :¼ S1;1ðS2;2S3;3 � S3;2S2;3Þ � S2;1ðS1;2S3;3

� S1;3S3;1Þ � S3;1ðS1;3S2;2 � S1;2S2;3Þ

as the first of the three Kalman gain components
with the common factor D:

Unfortunately, for a higher number of channels,
the number of update terms increases rapidly, and
the equations become too complicated for practial
use. Therefore, a more efficient scheme for these
cases will be proposed in Section 7.
6. A dynamical regularization strategy

In most practical scenarios, the desired signal
yðkÞ is disturbed, e.g., by some acoustic back-
ground noise. As shown above (c.f. (80)), the
parameter estimation (i.e., misalignment) is very
sensitive in poorly excited frequency bins. For
robust adaptation the power spectral densities Si;i

are replaced by regularized versions according to
~Si;i ¼ Si;i þ diagfdig prior to inversion in (85).
The basic feature of the regularization is a
compromise between fidelity to data and
fidelity to some prior information about the
solution [26]. The latter increases the robustness,
but leads to biased solutions. Therefore, we
propose here a bin-selective dynamical regulariza-

tion vector

diðmÞ ¼ dmax 	 ½e
�S

ð0Þ
i;i ðmÞ=S0 ; . . . ; e�S

ð2L�1Þ
i;i ðmÞ=S0 �T

(103)

with two scalar parameters dmax and S0: S
ðnÞ
i;i

denotes the nth frequency component
(n ¼ 0; . . . ; 2L � 1) on the main diagonal of Si;i:
Note that for efficient implementation, e in (103)
may be replaced by a basis 2 and modified
S0: dmax should be chosen according to the
(estimated) disturbing noise level in the desired
signal yðkÞ:
As shown in Fig. 4, this exponential method
provides a smooth transition between regulariza-
tion for low input power and data fidelity
whenever the input power is high enough, and
yields improved results compared to fixed
regularization and to the popular approach of
choosing the maximum out of the respective
component S

ðnÞ
i;i and a fixed threshold dth: Results

of numerical simulations can be found in Section
8. The method also copes well with unbalanced
excitation of the input channels, and most
importantly, it can be easily extended for the
efficient Kalman gain calculation introduced in the
next section.
7. Efficient multichannel realization

As will be demonstrated by simulation results
and real-world applications in Section 8, the
presented algorithm copes well with multichannel
input. The cases of a larger number of filter input
channels (P larger than 2 or 3) or similarly, a
larger number of sub-filters (NoL) when using the
EMDF algorithm call for further improvement of
the computational efficiency. In this section, we
propose efficient and stable recursive calculation
schemes for the frequency-domain Kalman gain
for and the DFTs of the overlapping input data
blocks for the case of a large number of filter input
channels. Overlapping input data blocks result
from an overlap factor a41; originally proposed
in [27]. Incorporating this extension in the
proposed algorithm is very simple. Essentially,
only the way the input data matrices (17) are
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calculated, is modified to

XpðmÞ ¼ diag F2L�2L

xpðm
L
a � LÞ

..

.

xpðm
L
a þ L � 1Þ

2
6664

3
7775

8>>><
>>>:

9>>>=
>>>;
:

(104)

Simulations show that increased overlap factors a
are particularly useful in the multichannel case.

7.1. Efficient calculation of the frequency-domain

Kalman gain

For a practical implementation of a system with
P42 channels, we propose computationally more
efficient methods to calculate (90) as follows.

Due to the block diagonal structure of (90), it
can be simply decomposed w.r.t. the DFT
components n ¼ 0; . . . ; 2L � 1 into 2L equations

KðnÞðmÞ ¼ ð1� lÞðSðnÞðmÞÞ
�1
ðXðnÞðmÞÞ

H (105)

with (usually small) P � P unitary and positive
definite matrices SðnÞ containing the nth compo-
nents on the block diagonals of S0�1

ðmÞ: Both KðnÞ

and XðnÞ are vectors of length P. Note that for real
input signals xi we need to solve (105) only for
L þ 1 bins.

A well-known and numerically stable method
for this type of problems is the Cholesky decom-
position of SðnÞ followed by solution via back-
substitution, see [17]. The resulting total
complexity for one output value is then

OðP 	 log2ð2LÞÞ þOðP3Þ; (106)

where in the two-channel (stereo) case the second
term OðP3Þ is much smaller than the share due to
the first term.

For a large number (X3) of input channels (see,
e.g., the applications in Section 8) we introduce a
recursive solution of (105) that jointly estimates
the inverse power spectra ðSðnÞÞ

�1 in (89) using the
matrix-inversion lemma, e.g., [19]. This lemma
relates a matrix

A ¼ B�1 þ CD�1CH (107)

to its inverse according to

A�1
¼ B� BCðDþ CHBCÞ�1CHB; (108)
as long as A and B are positive definite. Compar-
ing (89) to (107), we immediately obtain from (89)
an update equation for the inverse matrices

ðSðnÞðmÞÞ
�1

¼ l�1
ðSðnÞðm � 1ÞÞ�1

�

�
ðSðnÞðm � 1ÞÞ�1

ðXðnÞðmÞÞ
HXðnÞðmÞðSðnÞðm � 1ÞÞ�1

lð1� lÞ�1
þ XðnÞðmÞðSðnÞðm � 1ÞÞ�1

ðXðnÞðmÞÞ
H

�

using the bin-wise quantities introduced in (105)
(making the denominator a scalar value). Intro-
duction of the common vector

T
ðnÞ
1 ðmÞ ¼ ðSðnÞðm � 1ÞÞ�1

ðXðnÞðmÞÞ
H (109)

in the numerator and the denominator leads to

ðSðnÞðmÞÞ
�1

¼ l�1
ðSðnÞðm � 1ÞÞ�1

�
T
ðnÞ
1 ðmÞðT

ðnÞ
1 ðmÞÞ

H

l2ð1� lÞ�1
þ lXðnÞðmÞT

ðnÞ
1 ðmÞ

:

ð110Þ

The Kalman gain (105) can then be efficiently
calculated (using (110)) by

KðnÞðmÞ ¼
1� l
l

T
ðnÞ
1 ðmÞ

	 1�
ðT

ðnÞ
1 ðmÞÞ

H
ðXðnÞðmÞÞ

H

lð1� lÞ�1
þ XðnÞðmÞT

ðnÞ
1 ðmÞ

" #
:

ð111Þ

Again, there are common terms

T
ðnÞ
2 ðmÞ ¼ XðnÞðmÞT

ðnÞ
1 ðmÞ (112)

in (111) and (110).
Note that our approach should not be confused

with the classical RLS approach [1] which also
makes use of the matrix-inversion lemma. As we
apply the lemma independently to small P � P

systems (105), it is numerically much less critical
than in the RLS algorithm. Note that for N ¼ L;
there is no analogon to a more efficient fast RLS
[11] due to the different matrix structures (vector
XðnÞðmÞ does not reflect a tapped delay line).
The complexity of the different computation

methods for the Kalman gains (in MUL/ADDs
for one output value eðkÞ) are compared in Fig. 5
for the case N ¼ L: Note that our approach is
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particularly efficient for the extended multidelay
filter (block size NoL) introduced in Section 5.
7.2. Dynamical regularization for proposed Kalman

gain approach

Due to recursion (110) the regularization
according to (103) is not immediately applicable.
Therefore, an equivalent modification is
applied directly to the data matrices XðnÞðmÞ by
addition of mutually uncorrelated white noise
sequences to each channel and frequency bin,
respectively. Using the modified signal vectors,
denoted by

~X
ðnÞ
ðmÞ ¼ XðnÞðmÞ þNðnÞðmÞ; (113)

where NðnÞðmÞ are the vectors of the white noise
signals, we obtain the modified power spectral
density matrices (c.f. Eq. (89))

~S
ðnÞ
ðmÞ � ð1� lÞ

Xm

q¼0

lm�qXðnÞHðqÞXðnÞðqÞ

þ ð1� lÞ
Xm

q¼0

lm�q

	 diagf½jN
ðnÞ
1 ðqÞj2; . . . ; jN ðnÞ

P ðqÞj2�Tg: ð114Þ

The diagonal elements of the second term can be
interpreted as a bin-selective dynamical regular-
ization vector dðnÞðmÞ with elements (for channel i
and bin n)

dðnÞi ðmÞ ¼ ð1� lÞ
Xm

q¼0

lm�q
jN

ðnÞ
i ðqÞj2

¼ ldðnÞi ðm � 1Þ þ ð1� lÞjN ðnÞ
i ðmÞj2: ð115Þ

Thus, in order to update the regularization from
dðnÞi ðm � 1Þ to dðnÞi ðmÞ with the appropriate speed
(determined by l), we need to add noise with
power

jN
ðnÞ
i ðmÞj2 ¼

dðnÞi ðmÞ � ldðnÞi ðm � 1Þ

1� l
: (116)

On the other hand, according to (103), the
regularization should be chosen according to

dðnÞi ðmÞ ¼ dmax exp �
S
ðnÞ
i;i ðmÞ

S0

 !

¼ dmax

	 exp �
lS

ðnÞ
i;i ðm � 1Þ þ ð1� lÞjX ðnÞ

i ðmÞj2

S0

 !
:

ð117Þ

Now, unlike other dynamical regularization meth-
ods, the exponential regularization allows simple
elimination of the elements S

ðnÞ
i;i ðm � 1Þ of the non-

inverted matrix (which need therefore not be
computed at all due to the matrix-inversion lemma
(108)), since

dðnÞi ðmÞ ¼ dmax exp �
S
ðnÞ
i;i ðm � 1Þ

S0

 !" #l

	 exp �
ð1� lÞjX ðnÞ

i ðmÞj2

S0

 !

¼ d1�l
maxðd

ðnÞ
i ðm � 1ÞÞl

	 exp �
ð1� lÞjX ðnÞ

i ðmÞj2

S0

 !
: ð118Þ

7.3. Efficient DFT calculation of overlapping data

blocks

In this section we address the first term of the
computational cost given in (106) which is mainly
determined by the DFTs of the frequency-domain
adaptive filtering scheme (Fig. 2). The 2L-point
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DFT calculation in (104) has to be carried out for
each of the P loudspeaker signals and is therefore
most costly. Moreover, as will be discussed in
Section 8, an increased overlap factor a is often
desirable in the multichannel case. Therefore, we
aim at exploiting the overlap of the input data
blocks by implementing (104) recursively as well.

The derivation

x
ðkÞ
i ðmÞ ¼ xi m

L

a
� L þ k

� �
(119)

denotes the kth component (k ¼ 0; . . . ; 2L � 1) of
the time domain vector (block index m) to be
transformed in (104). Let us now consider the nth
element on the diagonal of XiðmÞ where
w ¼ e�j2p=2L:

X
ðnÞ
i ðmÞ ¼

X2L�1

k¼0

x
ðkÞ
i ðmÞwnk: (120)

Separating the summation into one for previous
and one for new input values (Fig. 6), followed by
the introduction of the previous vector elements
x
ðkÞ
i ðm � 1Þ leads to

X
ðnÞ
i ðmÞ ¼

X2L�L=a�1

k¼0

x
ðkÞ
i ðmÞwnk þ

X2L�1

k¼2L�L=a

x
ðkÞ
i ðmÞwnk

¼
X2L�1

k¼L=a

x
ðkÞ
i ðm � 1Þwnðk�L=aÞ

þ DX
ðnÞ
i ðmÞ; ð121Þ

where

DX
ðnÞ
i ðmÞ ¼

X2L�1

k¼2L�L=a

x
ðkÞ
i ðmÞwnk (122)

contains the new input values and will be the
update term in our recursive scheme. Next, we
0 L/2-1 L-1 3L/2-1 2L-1

x(m-1)

0 L/2-1 L-1 3L/2-1 2L-1

x(m)

previous values new values

Fig. 6. Example: overlapping data blocks, a ¼ 2:
introduce the previous DFT output values
X

ðnÞ
i ðm � 1Þ by subtracting the vector elements of

x
ðkÞ
i ðm � 1Þ of the previous data vector shifted out

of the DFT length 2L:

X
ðnÞ
i ðmÞ ¼ w�nL=a

X2L�1

k¼0

x
ðkÞ
i ðm � 1Þwnk

"

�
XL=a�1

k¼0

x
ðkÞ
i ðm � 1Þwnk

#
þ DX

ðnÞ
i ðmÞ

¼ w�nL=aX
ðnÞ
i ðm � 1Þ

� w�nL=a
X2L�1

k¼2L�L=a

x
ðk�2LþL=aÞ
i ðmÞ

	 wnðk�2LþL=aÞ þ DX
ðnÞ
i ðmÞ: ð123Þ

Using (119), we can show that

x
ðk�2LþL=aÞ
i ðmÞ ¼ x

ðkÞ
i ðm � 2aþ 1Þ: (124)

Finally, we obtain

X
ðnÞ
i ðmÞ ¼ w�nL=aX

ðnÞ
i ðm � 1Þ

� w�n2LDX
ðnÞ
i ðm � 2aþ 1Þ

þ DX
ðnÞ
i ðmÞ: ð125Þ

Again, this recursive update needs to be carried
out only for the bins n ¼ 0; . . . ;L if x

ðkÞ
i ðmÞ is real-

valued. Only the update DX
ðnÞ
i ðmÞ in this equation

has to be calculated explicitly using the L=a new
values of the input vector.
With the truncation of the time-domain input

vector for calculating DX
ðnÞ
i ðmÞ in mind, we

consider now the decimation-in-frequency FFT
algorithm. Fig. 7 shows a simple example for 2L ¼

8 and a ¼ 2: 2L � L=a inputs (thin lines) always
carry zero value. As can be seen from the figure,
the first log2ðaÞ stages do not contain any
summations while for the following stages any
FFT algorithm (e.g., from highly optimized soft-
ware libraries) can be employed. Generally, the
elimination of operations on zeros in the FFT is
referred to as pruning and was first described by
Markel [25]. Since then, several pruning algo-
rithms with increased efficiency have been pro-
posed. A summary and further references of
different approaches may be found, e.g., in [20].
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In summary, using FFT pruning, the recursive
DFT approach reduces the first term of the
complexity in (106) to OðP 	 log2ðL=aÞÞ for each
output point.
8. Simulations and real-world applications

As mentioned in the introduction, there are
many areas of applications for multichannel
adaptive filtering. In the following, we demon-
strate the performance of our approach in a few
examples for hands-free speech communication.

8.1. Multichannel acoustic echo cancellation

For applications such as home entertainment,
virtual reality (e.g., games, training), or advanced
teleconferencing, there is a growing interest in
multimedia terminals with an increased number of
audio channels for sound reproduction (e.g., stereo
or 5.1 channel-surround systems). In such applica-
tions, multichannel acoustic echo cancellation is a
key technology whenever hands-free and full-
duplex communication is desired (Fig. 8).

The fundamental problem is that the multiple
channels may carry linearly related signals which
in turn may make the normal equation to be
solved by the adaptive algorithm singular. This
implies that there is no unique solution to the
equation but an infinite number of solutions and it
can be shown that all but the true one depend on
the impulse responses of the transmission room
[29,30]. It is shown in [7] that the only solution to
the nonuniqueness problem is to reduce the
correlation between the different signals. Three
methods of preprocessing can be distinguished:
inaudible nonlinear processing, e.g., [7], additive
noise (preferably below the masking threshold of
human hearing), e.g., [16], and time-varying
filtering, e.g., [32]. For the following example, a
signal from a common source (in the transmission
room) was convolved by P different room impulse
responses and nonlinearly, but inaudibly prepro-
cessed according to [7] (P different nonlinearities
with factor 0.5). In this subsection we consider
only Q ¼ 1 microphone in the receiving room. The
convergence behavior is shown both in terms of
system misalignment (ratio of the squared norms
of (62) and the desired response), and in terms of
echo return loss enhancement (ERLE) which
describes the ratio of the short-term powers of
the echo yðkÞ � nðkÞ and the residual echo eðkÞ �

nðkÞ: For smoothing the ERLE curves, a moving
average filter of length 256 was used.
Fig. 9 illustrates the effect of taking the cross-

correlations in (101) and (102) for P ¼ 2 into
account. As input xpðkÞ; a common white noise
signal was convolved by the room impulse
responses in the transmission room. Another white
noise signal was added to the echo on the
microphone for SNR ¼ 35 dB: Here, both the
receiving room impulse responses and the model-
ling filter lengths were chosen to be 1024 (solid
lines: proposed, dashed lines: classical UFLMS
algorithm).
For simulations with real-world signals, the

lengths of the measured receiving room impulse
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responses were 4096 and the modelling filters were
1024, respectively. One common speech signal
from the transmission room serves as input signal.
Fig. 10 shows the misalignment convergence of the
described algorithm (solid) for the multichannel
cases P ¼ 2 (lowest curve), 3, 4, 5 (uppermost
curve), and the basic NLMS [19] (dashed) for
comparison. In (a) the overlap factor a was set to 4
in all cases, while in (b) the overlap factor a was set
to 4 for P ¼ 2; and adjusted to 8 for P ¼ 3; 4; and
to 16 for P ¼ 5: Using these parameters, the
convergence curves for the different numbers of
channels are almost indistinguishable. Fig. 11 (a)
shows the corresponding ERLE curves.

Fig. 11 (b) compares different regularization
methods (white noise distortion as above): no
regularization (uppermost curve), constant regu-
larization (dotted), threshold (dashed), exponen-
tial with original algorithm (dash–dot), proposed
Kalman gain according to Eq. (111) (lower solid
line).
We note that for both, stereophonic teleconfer-
encing and hands-free speech recognition applica-
tions, real-time systems could be successfully
implemented on regular personal computers
[10,14].

8.2. Adaptive MIMO filtering for hands-free speech

communication

In applications such as hands-free speech
recognition, it is very important to reduce inter-
fering noise or competing speech signals, and
reverberation of the target speech signal, in
addition to the acoustic echo cancellation
(Fig. 12).
An efficient approach to address these problems

is to replace the single microphone by a micro-
phone array directing a beam of increased
sensitivity at the active talker [22]. In any practical
system, this scenario presents a MIMO system
identification problem for the acoustic echo
canceller [10,22]. Fortunately, as noted in Section
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4, the costly calculation of the Kalman gain is
necessary only once, i.e., it is independent of the
number of microphones. Fig. 13 gives an example
of a low-complexity structure. Echo cancellation is
applied to several beamformer (BF) output sig-
nals. The fixed beamformers do not disturb the
convergence of the echo cancellation and direct
beams to all directions of interest [22]. Thanks to
the efficient frequency-domain approach, it has
become possible to run such a system in real-time
on standard PC platforms, e.g., stereo echo
cancellation (L ¼ 4096) for 5 beams is possible
on an Intel-based PC (1GHz).

8.3. Adaptive beamforming

Next, we show that the proposed generalized
multichannel frequency-domain adaptive filter is
also an interesting option for adaptive beamform-
ing in hands-free speech applications.
A simple and very effective structure for

adaptive beamforming is the generalized sidelobe
canceller (GSC) after Griffith and Jim [18]
(Fig. 14). The fixed beamformer (FBF) enhances
target signal components, and is used as reference
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for the adaptation of the adaptive sidelobe
cancelling path, which consists of a blocking
matrix (BM) and an adaptive interference cancel-
ler (AIC). For our considerations, the AIC, a
multichannel adaptive filter as shown in Fig. 1, is
of particular interest. It is driven by the interferer
signals, while the target signal is blocked by the
BM.

To ensure robust operation (i.e., to avoid
distortion of the target signal), the BM should be
adaptive as well [21]. However, for simplicity, we
assumed in the simulations this matrix to be fixed,
as originally proposed in [18].

Often, if there is a dominant interferer, the
underlying normal equation of the AIC is very ill-
conditioned as in the case of multichannel acoustic
echo cancellation. A low level of background noise
usually ensures that there is a unique solution, but
the convergence may be slowed down consider-
ably. Fig. 15 shows the Interference Rejection (IR)
of a GSC with conventional UFLMS adaption.
For the simulations, P ¼ 5 microphone signals
were used. The filter lengths were L ¼ 128 and the
overlap factor was set to a ¼ 1: In Fig. 16 (same
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Fig. 16. Interference rejection: generalized sidelobe canceller

taking cross-correlations into account.
parameters), the cross-correlations between the
microphone signals were taken into account
leading to significant improvement of the inter-
ference rejection.
9. Conclusions

In many applications where an adaptive filter is
required, frequency-domain algorithms are an
attractive alternative to time-domain algorithms,
expecially for the multichannel case. First, the
computational complexity can be low by utilizing
the efficiency of the FFT. Second, the convergence
is improved if crucial parameters of these
algorithms such as the exponential window,
regularization, and adaptation step are properly
chosen.
In this article a general framework for multi-

channel frequency-domain adaptive filtering was
presented and its efficiency in actual applications
was demonstrated. A generic multichannel algo-
rithm with an MMSE convergence that is inde-
pendent of the input signal statistics can be derived
from the normal equation after minimizing a block
least-squares criterion in the frequency domain.
We analyzed the convergence of this algorithm
and discussed some approximations that lead to
both, well-known algorithms in the single-channel
case, such as the FLMS and UFLMS, and new
algorithms such as the EMDF. For the multi-
channel case the framework is attractive as the
cross-correlations between all input signals are
efficiently taken into account. We have also
presented strategies to improve the computational
efficiency further by introducing stable schemes for
recursive DFT and Kalman gain computation.
Several simulations and real-time implementations
illustrate the benefits of the multichannel algo-
rithm.
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Télécommun. 49 (1994) 414–428.

[29] S. Shimauchi, S. Makino, Stereo projection echo canceller

with true echo path estimation, Proceedings of IEEE

International Conference on Acoustics, Speech, and Signal

Process. May 1995, pp. 3059–3062.

[30] M.M. Sondhi, D.R. Morgan, Stereophonic acoustic echo

cancellation—an overview of the fundamental problem,

IEEE SP Lett. 2 (8) (August 1995) 148–151.

[31] J.-S. Soo, K.K. Pang, Multidelay block frequency domain

adaptive filter, IEEE Trans. Acoust. Speech Signal

Process. ASSP-38 (February 1990) 373–376.

[32] A. Sugiyama, Y. Joncour, A. Hirano, A stereo echo

canceler with correct echo-path identification on an input-

sliding technique, IEEE Trans Signal Process. 49 (11)

(November 2001) 2577–2587.

[33] B. Widrow, S.D. Stearns, Adaptive Signal Processing,

Prentice-Hall Inc., Englewood Cliffs, NJ, 1985.


	Generalized multichannel frequency-domain adaptive filtering: efficient realization and application to hands-free �speech communication
	Introduction
	General derivation of multichannel frequency-domain algorithms
	Optimization criterion
	Normal equation
	Adaptive algorithm

	Convergence analysis
	Analysis model
	Convergence in the mean
	Convergence of the mean-squared error

	Note on generalized frequency-domain adaptive MIMO filtering
	Approximation and special cases
	Approximation of the frequency-domain Kalman gain
	Special cases

	A dynamical regularization strategy
	Efficient multichannel realization
	Efficient calculation of the frequency-domain Kalman gain
	Dynamical regularization for proposed Kalman gain approach
	Efficient DFT calculation of overlapping data blocks

	Simulations and real-world applications
	Multichannel acoustic echo cancellation
	Adaptive MIMO filtering for hands-free speech communication
	Adaptive beamforming

	Conclusions
	Acknowledgements
	References


