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Abstract— In adaptive filtering, undetected noise bursts often
disturb the adaptation and may lead to instabilities and diver-
gence of the adaptive filter. The sensitivity against noise bursts
increases with the convergence speed of the adaptive filter and
limits the performance of signal processing methods where fast
convergence is required. Typical applications which are sensitive
against noise bursts are adaptive beamforming for audio signal
acquisition or acoustic echo cancellation, where noise bursts are
frequent due to undetected double-talk. In this paper, we apply
double-talk resistant adaptive filtering [2] using a non-linear
optimization criterion to adaptive beamforming in the discrete
Fourier transform domain for bin-wise adaptation controls. We
show the efficiency of double-talk resilient adaptive filtering for
a generalized sidelobe canceller for speech and audio signal
acquisition. The improved robustness leads to faster convergence,
to higher noise-reduction, and to a better output signal quality
in turn.

I. I NTRODUCTION

For applications as, e.g., acoustic echo cancellation or
adaptive beamforming, convergence speed, tracking capability,
computational complexity, and low delay are crucial factors
for the choice of the adaptive algorithm. For acoustic echo
cancellation, in [1], the need for robustness against double-
talk bursts due to presence of local speakers (‘double-talk’)
was pointed out and addressed by using a non-linear function
of the error signal for the adaptation. In [2], robustness
against double-talk bursts was obtained for a subband echo
canceller by introducing robust statistics [3] into subband
adaptive filtering by using a contaminated Gaussian model
for the residual echo signal. In [4], the concept of robust
statistics was used to derive double-talk robust versions of
the normalized least mean-squares (NLMS) algorithm, of the
proportionate NLMS (PNLMS) algorithm, and of the affine
projection algorithm (APA). In [5], a robust recursive least-
squares (RLS) algorithm is derived.
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In recent years, discrete Fourier transform (DFT) do-
main adaptive algorithms (‘frequency-domain adaptive filters’
(FDAFs)) [6] became very attractive for acoustic echo can-
cellation since they (a) combine fast convergence with low
computational complexity and (b) can be realized such that
–for many applications– sufficiently high tracking capability
and sufficiently low delay are obtained [7]. The FDAF general-
izes well to the multi-channel (MC) case (MC-FDAF) [8], [9].
As for RLS algorithms, the convergence speed is independent
of the condition number of the cross-correlation matrix of the
input signals. This is especially important for highly auto- and
cross-correlated input signals (as, e.g., for speech or music) in
order to assure fast convergence. Additionally, DFT-domain
realizations of acoustic echo cancellers allow for a DFT-bin-
wise adaptation. This is especially advantageous for signals
which are sparse in the time-frequency domain, since the
stepsize of the adaptive algorithm can be adjusted for each
DFT-bin individually. This leads to a more frequent adaptation
and faster convergence of the adaptive filter [10].

For improving the robustness of this class of algorithms, a
robust DFT-domain adaptive filter based on robust statistics
and a non-linear least-squares error (LSE) criterion is derived
and applied to acoustic echo cancellation in [11]. In contrast
to the subband robust adaptive filter [2], where the non-
linear cost function is applied to each subband (‘narrowband
decomposition’), and the error signal in each subband is min-
imized individually, [11] minimizes the fullband error signal
in the discrete time domain. However, due to the time-domain
optimization criterion, [11] cannot be used in combinationwith
a DFT-bin-wise stepsize control.

In this paper, we derive a double-talk resilient DFT-domain
adaptive filter which uses a LSE cost function in the DFT
domain so that DFT bin-wise stepsize controls can be used
for double-talk robust algorithms. In order to apply this
technique to multiple-input multiple-output (MIMO) systems,
we formulate the algorithm for the multi-channel case and



refer to it as multi-channel bin-wise robust FDAF (MC-
BRFDAF) (Sect. II). Only the unconstrained case is considered
for simplicity. The derivation is similar to [8], [9], [11].

The MC-BRFDAF is then applied to adaptive beamform-
ing for multi-channel speech enhancement using microphone
arrays (Sect. III). In [12], it is shown with the example of a
‘generalized sidelobe canceller’ (GSC) [13] using an adaptive
blocking matrix [14] that DFT-domain adaptive filtering canbe
efficiently applied to adaptive beamforming and that especially
sparseness of the desired speech signal helps to solve the
tracking problems of GSCs using adaptive realizations of
blocking matrices. These DFT-domain GSCs are especially
efficient to tackle the challenges of beamforming microphone
arrays, such as robustness against reverberation and physical
tolerances of the sensors, or time-variance of the desired signal
and of interferers. In this paper, experiments with the GSC
using the MC-BRFDAF show that robustness against double-
talk can be greatly improved relative to the GSC using the MC-
FDAF even with small-scale microphone arrays so that larger
stepsizes can be chosen for the adaptation. This leads to faster
convergence and to higher noise-reduction while preserving
good output signal quality of the beamformer.

II. D OUBLE-TALK RESILIENT FREQUENCY-DOMAIN

ADAPTIVE FILTER

In this section, we formulate the MC-BRFDAF for linear
multiple-input single-output (MISO) filters. The generalization
to the MIMO case is summarized at the end of this section.
The derivation is analogously to [8], [9], [11].

Lower case and upper case bold font represent vector and
matrix quantities, respectively.(·)∗, (·)T , and (·)H stand for
complex conjugation, matrix or vector transposition, and con-
jugate transposition, respectively. Underlined quantities denote
DFT-domain variables.k is the discrete time index.

A. Computation of the output signal using overlap-save

The output signale(k) of the adaptive MISO system with
Q input channels is given by

e(k) = yref(k) − xT (k)w(k) , (1)

where yref(k) is the reference signal. The MISO filter is
described by theQN × 1 vector w(k), which capturesQ
column vectorswq(k) of length N with filter coefficients
wn,q(k), n = 0, 1, . . . , N − 1:

w(k) =
(

wT
0 (k), wT

1 (k), . . . , wT
Q−1(k)

)T
, (2)

wq(k) = (w0,q(k), w1,q(k), . . . , wN−1,q(k))
T

. (3)

The input signals of the adaptive filter are captured in the
QN × 1 vectorx(k):

x(k) =
(

xT
0 (k), xT

1 (k), . . . , xT
Q−1(k)

)T
, (4)

xq(k) = (xq(k), xq(k − 1), . . . , xq(k − N + 1))
T

.(5)

To calculate the output signal of the MISO system in the DFT
domain using fast convolution and overlap-save, we form a

block of N samples of the error signale(k) as

e(k) = yref(k) − XT (k)w(k) , (6)

where

e(k) = (e(k), e(k − 1), . . . , e(k − N + 1))
T

, (7)

yref(k) = (yref(k), yref(k − 1), . . . , yref(k − N + 1))
T
, (8)

X(k) = (x(k), x(k − 1), . . . , x(k − N))
T

. (9)

We define a block overlap factorα = N/R, whereR is the
‘new’ number of samples per block, and we replace in (6) the
discrete timek by the block timer, which is related tok by
rR = k. Then, the data matrixX(rR) is transformed into a
block-diagonal matrixX(r) of size 2NQ × 2N in the DFT
domain using the DFT matrixF2N×2N of size2N × 2N ,

X(r) =
(

X0(r), X1(r), . . . , XQ−1(r)
)

, (10)

Xq(r) = diag



















F2N×2N











xq(rR − N)
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














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,(11)

andw(rR) is written in the DFT domain as

w(r) = (12)

diag
{(

F2N×2NW10
2N×N , . . . , F2N×2NW10

2N×N

)}

w(rR) ,

where the windowing matrix

W10
2N×N = (IN×N , 0N×N )

T (13)

appendsN zeroes to the coefficient vectorswq(rR) in order
to prevent circular convolution.IN×N is an identity matrix of
size N × N , 0N×N is a matrix of sizeN × N with zeroes.
We obtain for (6) the expression

e(rR) = yref(rR) − W01
N×2NF−1

2N×2NX(r)w(r) , (14)

where the windowing matrix

W01
N×2N = (0N×N , IN×N ) (15)

extracts a block ofN samples fromF−1
2N×2NXq(r)w(r). A

block of R samples of the output signal of the adaptive filter
is given by the lastR samples ofe(rR).

B. Optimization criterion

For formulating the optimization criterion, we transform the
block-error vectore(rR) into the DFT domain by multiplying
(14) with F2N×2NW01

2N×N from the left, whereW01
2N×N =

(W01
N×2N )T [8]. We obtain

e(r) = y
ref

(r) − G01
2N×2NX(r)w(r) , (16)

where

e(r) = F2N×2NW01
2N×Ne(rR) , (17)

y
ref

(r) = F2N×2NW01
2N×Nyref(rR) , (18)

G01
2N×2N = F2N×2NW01

2N×NW01
N×2NF−1

2N×2N . (19)



The elements of e(r) are denoted by en(r), n =
0, 1, . . . , 2N − 1.

We apply the Parseval theorem to the criteria after [2], [4],
[11], and we define the cost functionξ(r) in the DFT domain
as

ξ(r) =
2N−1
∑

n=0

ρ

( |en(r)|
sn(r)

)

, (20)

where

ρ(|z|) =

{

|z|2

2 for |z| ≤ k0 ,

k0|z| − k2

0

2 for |z| > k0 .
(21)

The parameterk0 is a constant. Since the scale of|en(r)| is
generally unknown, the variablesn(r) is introduced into (20)
in order to makeρ(·) scale invariant [3]. It should reflect the
residual noise level at the system output [2], [4]. It may be seen
that (20) corresponds to a LSE criterion [8] in the DFT domain
with a quadratic error surface for|en(r)|/sn(r) ≤ k0, while,
for |en(r)|/sn(r) > k0, the quadratic criterion is replaced by
a 1-norm criterion. This choice ofρ(·) makes the estimator

resilient against outliers, since the gradient ofρ
(

|e
n
(r)|

sn(r)

)

is

reduced for|en(r)|/sn(r) > k0 relative to a quadratic cost
function. The choice ofk0 is a trade-off between convergence
speed and robustness since the robustness of the algorithm
increases withk0 at the cost of decreasing convergence speed.
The MC-FDAF [8] is obtained forξ(r) =

∑2N−1
n=0 |en(r)|2, or,

equivalently, fork0 → ∞, s0(r) = s1(r) = · · · = s2N−1(r) =
1/
√

2.

C. Adaptation algorithm

The cost function (20) is minimized w.r.t.w(r) using an
iterative Newton algorithm [15] of the form

w(r) = w(r − 1) − µ(r)Λ−1(r)∇ξ(r) , (22)

where∇ξ(r) = 2∂ξ(r)/∂w∗(r) is the gradient of the cost
function ξ(r) w.r.t. w(r) and whereΛ(r) = E{∇2ξ(r)} =
4E{∂2ξ(r)/∂2w∗(r)} is the expected value of the Hessian of
ξ(r) w.r.t. w(r). µ(r) is a diagonal matrix of size2N × 2N
with stepsizesµn(r), n = 0, 1, . . . , 2N − 1, on the main
diagonal for controling the adaptation in the frequency bins
separately. The DFT-domain Newton step (22) is analogously
to the Newton step in the discrete time domain in [5] and an
extension of the DFT-domain Newton step in [11] to a bin-
wise operation.

1) Gradient of the cost function: Following [11], we write
one elemente∗n(r) of the error vectore∗(r) as

e∗n(r) = eH(r)1
(n)
2N×1 , (23)

where1
(n)
2N×1 is a 2N × 1 vector with zeroes and with the

n-th element equal to one. Using the chain rule, the gradient
∇ξ(r) is found as follows:

∇ξ(r) = 2
∂ξ(r)

∂w∗(r)
= 2

2N−1
∑

n=0

∂

∂w∗(r)
ρ

( |en(r)|
sn(r)

)

= 2

2N−1
∑

n=0

ρ′
( |en(r)|

sn(r)

)

1

sn(r)

∂|en(r)|
∂e∗n(r)

∂e∗n(r)

∂w∗(r)
,(24)

where

ρ′(|z|) = min{|z|, k0} , (25)

∂|z|
∂z∗

=
∂
√

zz∗

∂z∗
=

1

2

√

z

z∗
=

1

2
exp{j arg{z}},(26)

∂e∗n(r)

∂w∗(r)
= −XH(r)

(

G01
2N×2N

)H
1

(n)
2N×1 . (27)

Equation 24 may be written with the column vector

ψ(r) =

















− 1
2s0

ρ′
(

|e
0
(r)|

s0(r)

)

exp{j arg{e0(r)}}
− 1

2s1

ρ′
(

|e
1
(r)|

s1

)

exp{j arg{e1(r)}}
...

− 1
2s2N−1

ρ′
(

|e
2N−1

(r)|

s2N−1

)

exp{j arg{e2N−1(r)}}

















(28)
of length2N as

∇ξ(r) = 2XH(r)
(

G01
2N×2N

)H
ψ(r) . (29)

2) Hessian of the cost function: The Hessian matrix∇2ξ(r)
of size2N × 2N can be calculated from (29) using

∇2ξ(r) = 4
∂2

∂2w∗(r)
ξ(r) = 2

∂

∂w∗(r)
(∇ξ(r))H

= 4
∂

∂w∗(r)
ψH(r)G01

2N×2NX(r) . (30)

Denoting in (28) then-th element ofψ(r) by ψn(r), we
can calculate then-th element of∂ψH(r)/∂w∗(r) in (30)
by applying the chain rule as follows:

∂ψ∗
n(r)

∂w∗(r)
=

− 1

2s2
n(r)

(

ρ′′
( |en(r)|

sn(r)

)

∂|en(r)|
∂e∗n(r)

exp{−j arg{en(r)}}

+ ρ′
( |en(r)|

sn(r)

)

∂ exp{−j arg{en(r)}}
∂e∗n(r)

)

∂e∗n(r)

∂w∗(r)
, (31)

where

ρ′′(|z|) =

{

1 |z| ≤ k0

0 |z| > k0
, (32)

∂ exp{−j arg{z}}
∂z∗

=
∂

∂z∗

√

z∗

z
=

1

2|z| . (33)

Introducing (25), (26), (32), and (33) into (31), we obtain

∂ψ∗
n(r)

∂w∗(r)
= − ∂e∗n(r)

∂w∗(r)
· 1

s2
n(r)

{

1
2 for

|e
n
(r)|

sn(r) ≤ k0

k0sn(r)
4|e

n
(r)| for

|e
n
(r)|

sn(r) > k0

= − ∂e∗n(r)

∂w∗(r)
· γn(r) . (34)

Forming a diagonal2N × 2N matrix Γ(r) with γn(r), n =
0, 1, . . . , 2N − 1, on the main diagonal,

Γ(r) = diag{(γ0(r), γ1(r), . . . , γ2N−1(r))} , (35)

and introducing (27) and (34) into (30), we obtain

∇2ξ(r) = 4XH(r)
(

G01
2N×2N

)H
Γ(r)G01

2N×2NX(r) . (36)



An estimate of the expected valueΛ(r) = E{∇2ξ(r)} is
obtained by recursively averaging∇2ξ(r) with a forgetting
factor 0 < λ < 1 as

Λ̂(r) = λΛ̂(r − 1) + (1 − λ)∇2ξ(r) (37)

[5], [11]. This choice of recursive estimate ofΛ(r) leads to the
MC-FDAF algorithm with RLS-like properties fork0 → ∞,
s0(r) = s1(r) = · · · = s2N−1(r) = 1/

√
2. (See (42).)

3) Approximations: Since the Newton-type adaptation step
(22) requires the inverse of the2NQ× 2NQ matrix ∇2ξ(r),
an approximation of (36) for reducing the computational com-
plexity may be necessary for practical systems. Following [8],
[9], we can approximateG01

2N×2N ≈ 1
2I2N×2N for sufficiently

largeN , which leads to

∇2ξ(r) ≈ XH(r)Γ(r)X(r) . (38)

For calculatingΛ̂
−1

(r) using (37), the block-diagonal struc-
ture of ∇2ξ(r) can be used to transform the2NQ × 2NQ
matrix ∇2ξ(r) into 2N matrices of sizeQ×Q. This reduces
the complexity of the inversion of a2NQ × 2NQ to 2N
matrices of sizeQ × Q [9].

The adaptive algorithm for a MISO system is finally given
by (17), (22), (29), (37), and (38). A generalization of the
adaptive algorithm to MIMO systems

W(r) =
(

w0(r), w1(r), . . . , wP−1(r)
)

(39)

with Q input channels andP output channels is straightfor-
ward by repeating the algorithm for allP output channels.
In summary, one iteration of the adaptive algorithm can be
written for the MIMO case as follows:

ep(rR) = yref,p(rR) − W01
N×2NF−1

2N×2NX(r)wp(r) ,(40)

Λ̂p(r) = λΛ̂p(r − 1) + (1 − λ)XH(r)Γp(r)X(r) , (41)

wp(r) = wp(r − 1) −
−2µ

p
(r)Λ̂

−1

p (r)XH(r)G01
2N×2Nψ

p
(r) . (42)

Note that, in contrast to the MC-FDAF, we have to calculate
the inverse of the weighted cross-power spectral density matrix
Λ̂p(r) for all P output channels due to the dependency on
Γp(r). The MC-FDAF is obtained forΓp(r) = I2N×2N and
G01

2N×2Nψ
p
(r) = ep(r). In addition to [11, (29)], we may

notice that the update equation (42) allows for a bin-wise
operation with a bin-dependent stepsizeµn(r) and a bin-
dependent scale parametersn(r). Moreover, the derivation
based on the cost function in the DFT domain (20) does
not require the approximation [11, (31)] of the weighting
matrix which is equivalent toΓ(r) for obtaining an efficient
realization of the algorithm.

III. A PPLICATION TO ADAPTIVE BEAMFORMING WITH

DFT-BIN-WISE DOUBLE-TALK DETECTION

For verification, we apply the proposed algorithm to multi-
channel speech enhancement using a DFT-domain realization
of a GSC [12].
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Fig. 1. GSC with an adaptive blocking matrix after [14].

A. Overview of the GSC using an adaptive blocking matrix

The GSC using an adaptive blocking matrix is depicted in
Fig. 1. We identify three blocks, the fixed beamformer, the
adaptive blocking matrixB(r), and the interference canceller
a(r). The blocking matrixB(r) and the interference canceller
a(r) are realized by systematically applying the MC-BRFDAF.

1) Fixed beamformer: The fixed beamformer steers the
sensor array to the position of the desired source and en-
hances the desired signal relative to the interference. Thefixed
beamformer forms the reference path of the GSC. Usually,
the fixed beamformer is designed to allow movements of the
desired source within a given area so that the desired signal
is not attenuated. Although all known beamformer designs
can be used for realizing the fixed beamformer, we use a
simple uniformly weighted beamformer for simplicity. Since,
especially for small-scale microphone arrays(M ≤ 8), the
interference suppression of fixed beamformers is not suffi-
cient for many applications, the adaptive sidelobe cancelling
path –consisting of adaptive blocking matrix and interference
canceller– is required.

2) Adaptive blocking matrix: The blocking matrixB(r) is
a spatial filter which suppresses the desired signal and passes
interference such that the output ofB(r) is a reference for the
interference. In contrast to fixed blocking matricesB, which
do not perfectly suppress the desired signal whenever thereis
a mismatch between the spatial filtering ofB and the actual
wave field of the desired signal, adaptive blocking matricescan
track changes of the wave field of the desired signal. This is
especially important in time-varying reverberant environments,
where fixed blocking matrices continuously let through desired
signal components. Using multi-channel adaptive filtering,
an adaptive blocking matrix can be realized by using the
output signal of the fixed beamformer as a reference and by
subtracting this reference from each channel of the sidelobe
cancelling path using adaptive filters [14].

3) Interference canceller: Using the output signal of the
blocking matrix as a reference for the interference, the in-



terference cancellera(r) adaptively subtracts the residual
interference from the reference path using adaptive filtering.

B. Adaptation control

The fixed beamformer cannot produce an estimate of the de-
sired signal that is free of interference. Therefore, the blocking
matrix should only be adapted when the signal-to-interference
ratio (SIR) is high in order to prevent suppression of interfer-
ence by the blocking matrix. Interference components that are
suppressed by the blocking matrix cannot be cancelled by the
interference canceller, and, thus, leak to the output of theGSC.
Generally, the blocking matrix does not produce an estimate
of the interference which is completely free of the desired
signal. Therefore, the interference canceller should onlybe
adapted if the SIR is low in order to prevent cancellation and
distortion of the desired signal. Higher tracking capability is
obviously obtained when the decision ‘adaptation ofB(r)’ or
‘adaptation ofa(r)’ is made in separate frequency bins and
not for the fullband signals since sparseness of the desired
signal and of interference in the time-frequency domain can
be exploited. This motivates the usage of frequency-domain
adaptive filtering for the realization of the GSC [12].

An activity detector for ‘desired signal only’ (adaptationof
B(r)), ‘interference only’ (adaptation ofa(r)), and ‘double-
talk’ (no adaptation) which operates in separate DFT bins is
presented in [12]. Using the directivity of a fixed beamformer,
The activity detector forms a biased estimateΥ(r, n) of the
ratio of the power spectral densities (PSDs)SIR(r, n) =
Sdd(r, n)/Sii(r, n) of the desired signal,Sdd(r, n), and of the
interference,Sii(r, n), and tracks the maxima and the minima
of Υ(r, n). The blocking matrix and the interference canceller
are adapted wheneverΥ(r, n) is maximum or minimum,
respectively.

C. Motivation for the usage of double-talk robust FDAFs

In Fig. 2, a typical example for the behavior of the adap-
tation control for male desired speech and orchestra music
played by a loudspeaker is shown. The experimental setup
corresponds to that of Sect. III-D. Figure 2a and Fig. 2b show
the desired signal and the interference signal recorded at the
M/2-th microphone. In Fig. 2c, the ratioSIR(r, n) of recur-
sively averaged estimates of the PSDs of the desired signal
and of the interference is depicted as a function of frequency
n (in kHz) and block timer. In Fig. 2d, the decision based on
SIR(r, n) is shown. Blocking matrix (BM) and interference
canceller (IC) are adapted for10 log10 SIR(r, n) ≥ 15 dB
and for10 log10 SIR(r, n) ≤ −15 dB, respectively.1 Figure 2e
illustrates the decision of the adaptation control usingΥ(r, n).
It may be seen that the adaptation control in Fig. 2e does not
always detect activity of the desired signal and of interference
correctly. The blocking matrix and the interference canceller
may thus be adapted during double-talk, which leads to
outliers in the adaptive filters. These outliers –and potential

1Experiments with this adaptation control showed that maximum interfer-
ence suppression and minimum distortion of the desired signalis obtained
with these thresholds.
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Fig. 2. Typical behavior of the adaptation control for the GSC for male desired
speech and orchestra music played back by a loudspeaker.

divergence of the adaptive filters– may be prevented (a) by
reducing the stepsizes of the adaptive filters or (b) by reducing
the adaptation thresholds so that the adaptive filters are less
likely adapted during double-talk.

However, both options reduce the tracking capability and,
thus, the interference suppression of the GSC. For avoiding
this trade-off, we apply the MC-BRFDAF to the blocking
matrix and to the interference canceller. From Fig. 1, it may
be seen that the blocking matrix corresponds to a single-
input multiple-output system withQ = 1 and P = M
and that the interference canceller corresponds to a MISO
system withQ = M and P = 1. Identifying the adaptive
filters bm(r) of the blocking matrix in (42) withwp(r),
p = m = 0, 1, . . . , M − 1, and identifying the adaptive filter
a(r) with wp(r), p = 0, we can systematically use the MC-
BRFDAF for the adaptation of the GSC. The stepsizesµ(r)
are determined by the adaptation control and switched between
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Fig. 3. Comparison of the GSC using MC-FDAF and MC-BRFDAF for
‘continuous’ double-talk:(a) Suppression of the desired signalTRBM(k) by
the blocking matrix,(b) suppression of the interferenceIR(k) by the GSC
and by the fixed beamformer (FBF), and(c) distortion of the desired signal
measured by the segmental SNRSSNR(k) between the FBF output and the
GSC output for data blocks of length512 (Sampling rate12 kHz, N = 256,
R = 64, λ = 0.97, k0 = 0.5, MC-FDAF: µc = [0.7, 0.2] ·(1−λ) [BM,IC],
MC-BRFDAF: µc = [1.3, 1.3] · (1 − λ) [BM,IC]).

0 and a frequency-independent constant valueµc for disabling
and enabling the adaptation.

D. Experimental results

The GSC realized by MC-BRFDAF and by MC-FDAF
is applied to a microphone array with12 cm aperture and
M = 4 equally spaced sensors in an office room with
T60 = 250 ms reverberation time. The desired signal of Fig.2a
arrives from broadside direction from a distance of60 cm. The
interference of Fig.2b is located at120 cm in endfire direction.
The average SIR at the sensors is3 dB. The parameters which
are summarized below Fig. 3 are optimized for maximum
convergence speed and maximum noise-suppression after con-
vergence. They are the same for both GSC realizations except
for the constant stepsize parameterµc. Figure 3a–c show the
suppressionTRBM(k) of the desired signal by the blocking
matrix, the interference suppressionIR(k) of the GSC, and
the distortionSSNR(k) of the desired signal by the GSC as a
function of time after initialization of the system, respectively.
SSNR(k) is the segmental SNR between the output of the
fixed beamformer and the output of the GSC for the desired

signal only. Ideally,SSNR(k) = ∞ since the interference
canceller should not distort the desired signal. It may be seen
that the blocking matrix (Fig. 3a) and the interference canceller
(Fig. 3b) converge faster for MC-BRFDAF than for MC-FDAF,
since larger stepsizes can be chosen for MC-BRFDAF due to
the improved robustness against double-talk. WhileTRBM(k)
converges for both GSCs to nearly the same value,IR(k) is
about4 dB greater for MC-BRFDAF than for MC-FDAF after
convergence. This result is confirmed by application of the
algorithm to various mixtures of speech signals. The distortion
SSNR(k) (Fig. 3c) for MC-BRFDAF is slightly higher for
MC-BRFDAF than for MC-FDAF.

IV. CONCLUSIONS

We presented a DFT-domain adaptive filter which is robust
against double-talk and which is especially designed for wide-
band signals, where adaptation with DFT-bin-wise stepsize
controls is advantageous. The efficiency of the approach was
motivated by applying the adaptive filter to a generalized
sidelobe canceller for audio signals. Experiments showed that
the improved robustness leads to an improved convergence
behavior and higher noise-reduction even for small-scale mi-
crophone arrays.
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