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Abstract—In this paper, we present a general broadband ap-
proach to blind source separation (BSS) for convolutive mixtures
based on second-order statistics. This avoids several known limita-
tions of the conventional narrowband approximation, such as the
internal permutation problem. In contrast to traditional narrow-
band approaches, the new framework simultaneously exploits the
nonwhiteness property and nonstationarity property of the source
signals. Using a novel matrix formulation, we rigorously derive the
corresponding time-domain and frequency-domain broadband al-
gorithms by generalizing a known cost-function which inherently
allows joint optimization for several time-lags of the correlations.
Based on the broadband approach time-domain, constraints are
obtained which provide a deeper understanding of the internal per-
mutation problem in traditional narrowband frequency-domain
BSS. For both the time-domain and the frequency-domain ver-
sions, we discuss links to well-known, and also, to novel algorithms
that constitute special cases. Moreover, using the so-called gen-
eralized coherence, links between the time-domain and the fre-
quency-domain algorithms can be established, showing that our
cost function leads to an update equation with an inherent normal-
ization ensuring a robust adaptation behavior. The concept is appli-
cable to offline, online, and block-online algorithms by introducing
a general weighting function allowing for tracking of time-varying
real acoustic environments.

Index Terms—Adaptive filtering, blind source separation (BSS),
convolutive mixtures, multiple-input–multiple-output (MIMO)
systems, second-order statistics.

I. INTRODUCTION

THE PROBLEM of separating convolutive mixtures of un-
known time series arises in several application domains, a

prominent example being the so-called cocktail party problem,
where individual speech signals should be extracted from mix-
tures of multiple speakers in a usually reverberant acoustic en-
vironment. Due to the reverberation, the original source signals

, of our separation problem are filtered by
a linear multiple-input–multiple-output (MIMO) system before
they are picked up by the sensors. Blind source separation (BSS)
is solely based on the fundamental assumption of mutual sta-
tistical independence of the different source signals. In the fol-
lowing, we further assume that the number of source signals
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Fig. 1. Linear MIMO model for BSS.

equals the number of sensor signals ,
(Fig. 1). An -tap mixing system is thus described by

(1)

where , denote the coefficients of the
filter from the th source to the th sensor.

In BSS, we are interested in finding a corresponding demixing
system according to Fig. 1, where the output signals ,

are described by

(2)

The separation is achieved by forcing the output signals to be
mutually statistically decoupled up to joint moments of a certain
order. Note that this approach is not aiming at a deconvolution
of the individual signals . For deconvolution it was shown in
[1] that for an exact inversion of the mixing system and
thus, a perfect reconstruction of the sources is possible. More-
over, in [2], conditions for blind identification were given. How-
ever, in contrast, in BSS, a blind interference cancellation (sim-
ilar to conventional adaptive beamforming) is performed, so that
in fact, the MIMO demixing system coefficients can re-
construct the sources up to an unknown (external) permutation
and an unknown filtering of the individual signals (see, e.g., [3]),
where, ideally, should be chosen at least equal to to allow
modeling of all reflections.

In this paper, in order to estimate the MIMO coefficients
, we only consider approaches using second-order statis-

tics. For convolutive mixtures, frequency-domain BSS is very
popular since all techniques originally developed for instanta-
neous BSS can be applied independently in each frequency bin.
In the following, this bin-wise processing, implying a narrow-
band signal model is denoted as the narrowband approach. Such

1063-6676/$20.00 © 2005 IEEE



BUCHNER et al.: GENERALIZATION OF BLIND SOURCE SEPARATION ALGORITHMS 121

narrowband approaches for convolutive BSS and methods for
instantaneous BSS can be found, e.g., in [3]–[14].

In the context of instantaneous BSS and narrowband ap-
proaches for convolutive BSS, it is known that on real-world
signals with some time-structure, second-order statistics gener-
ates enough constraints to solve the BSS problem in principle,
by utilizing one of the following two signal properties [3]:

• Nonwhiteness property by simultaneous diagonalization
of output correlation matrices over multiple time-lags,
e.g., [4], [5];

• Nonstationarity property by simultaneous diagonalization
of short-time output correlation matrices at different time
intervals, e.g., [6]–[14].

Unfortunately, this traditional narrowband approach exhibits
several limitations as identified in, e.g., [15]–[17]. In particular,
the permutation problem, which is inherent in BSS, may then
also appear independently in each frequency bin so that extra
repair measures have to be taken to address this internal per-
mutation. Problems caused by circular convolution effects due
to the narrowband approximation are reported in, e.g., [16].

Extending the work in [18], we present, in Section II, a
rigorous derivation of a more general class of broadband
algorithms for convolutive mixtures based on second-order
statistics, i.e., the frequency bins are no longer considered
to be independent for unrestricted time-domain signals. This
general approach inherently avoids the above-mentioned prob-
lems, such as the internal permutation ambiguity, discussed
in Section III, by introducing a general matrix formulation
for convolutive mixtures that includes multiple time-lags. We
will demonstrate that the general broadband approach in fact
implies the necessity to account for both, the nonwhiteness
property and the nonstationarity property simultaneously.

After deriving a generic time-domain algorithm, we also in-
troduce an equivalent broadband formulation in the frequency
domain in Section IV by extending the framework of [19] to
unsupervised adaptive filtering. Moreover, links between the
time-domain and frequency-domain algorithms are established.
As discussed in Section III and IV-C, this provides deeper in-
sight into the internal permutation problem of conventional nar-
rowband frequency-domain BSS. For both, the time-domain and
the frequency-domain versions, we extensively discuss relations
to well-known and state-of-the-art algorithms from the literature
in Section II-E, Section IV-C–D, and present several novel al-
gorithms following as special cases of the framework. In this
regard, another very useful aspect is that many well-known and
powerful techniques from the vast literature on supervised adap-
tive filtering (e.g., [20]) can now be directly applied to the BSS
application.

The framework shown here is applicable for online, block-
online, and offline algorithms as it uses a general weighting
function allowing for tracking of time-varying environments
[21]. The processing delay can be kept low by overlapping/par-
titioned signal blocks [22].

As illustrated by experimental results, the framework allows
an efficient separation of real-world speech signals in rever-
berant, noiseless environments. Simulation results show that the
general broadband approach does not suffer from the above-

mentioned specific limitations of narrowband algorithms. The
broadband approach has also led to the development of a high-
performance real-time BSS system on a regular PC which can
cope with reverberant environments (e.g., office rooms) [23].
Moreover, this was also successfully applied to noisy car envi-
ronments [24].

More recently, it has been shown that the framework pre-
sented here can be efficiently extended to higher-order statistics
so that in addition to nonwhiteness and nonstationarity, the non-
gaussianity of the source signals can be exploited [25]. There, it
has also been proven that the second-order approach presented
here is the optimum second-order BSS approach for convolutive
mixtures in the sense of minimum mutual information known
from information theory.

II. GENERIC BLOCK TIME-DOMAIN BSS ALGORITHM

In this section, we first introduce a general matrix formula-
tion allowing a rigorous derivation of time-domain algorithms
from a cost function which inherently takes into account the
nonwhiteness and nonstationarity properties. We then consider
the so-called equivariance property in the convolutive case and
the corresponding natural gradient formulation. From this for-
mulation, several well-known and novel algorithms follow as
special cases.

A. Matrix Formulation for Convolutive Mixtures With
Extension to Several Time-Lags

From Fig. 1, it can be seen that the output signals ,
of the unmixing system at time are given by

(3)

where

(4)

is a vector containing the latest samples of the sensor signal
of the th channel, and where

(5)

contains the current weights of the MIMO filter taps from the th
sensor channel to the th output channel. Superscript denotes
transposition of a vector or a matrix.

In addition to the filter length and the number of channels
we need to introduce two more parameters for the following

general formulation:

• number of time-lags taken into account for the correla-
tions in the cost function below ;

• length of output signal blocks as basis for the estimates
of short-time correlations below.

We define a block output signal vector of length (to
obtain a correlation matrix of full rank in (17)). From (3)
it follows

(6)
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with block time index , and

(7)

(8)

Analogously to supervised block-based adaptive filtering [19],
[22], the approach followed here can also be carried out with
overlapping/partitioned data blocks to increase the convergence
rate and to reduce the signal delay. Overlapping is introduced by
simply replacing the time index in the equations by
with the overlap factor . For clarity, we will omit the
overlap factor and will point to it when necessary.

Obviously, , in (8) are Toeplitz matrices
of size

. . .
...

. . .
...

Next, in order to incorporate time-lags in the cost function as
follows, we capture subsequent output signal vectors (7) in
the following matrix

. . .
...

. . .
...

Using this definition, (6) can be extended to

(9)

with and as determined in the following. We have
to ensure linear convolutions for all elements of up to
the maximum number of time-lags as shown in [18].
Therefore, and also with regard to the frequency-domain real-
ization in Section IV, two blocks of the input signals are
required. Thus, the sizes of and must be
and , respectively. The matrices are obtained
from the Toeplitz matrices by doubling their size, i.e.,

(10)

The matrices , are also Toeplitz so
that the first row of contains input samples and each
subsequent row is shifted to the right by one sample and thus,

contains one new input sample. are Sylvester
matrices, which are defined as

. . .
...

...
. . .

...
. . .
. . .

...
. . .

...

...
...

...

(11)

It can be seen that for the general case the last
rows are padded with zeros to ensure compatibility with
. Finally, to allow a convenient notation of the algorithm

combining all channels, we write (9) compactly as

(12)

with the matrices

(13)

(14)

...
. . .

... (15)

B. Cost Function and Algorithm Derivation

The aim of BSS for convolutive mixtures according to Sec-
tion I, i.e., separation of the output channels, while putting no
constraints on the temporal structure of the individual signals,
can be expressed in terms of the overall system from the sources
to the demixing filter outputs. Analogously to the demixing
system in (12), this system can be expressed by a blockwise
Sylvester matrix of suitable dimensions. The mixing process
is described analogously to (12) by , where is
the corresponding source signal matrix
with time shifts, and is the mixing
matrix in Sylvester structure. The dimensions result from the
linearity condition of the convolution. Due to the inevitable
filtering ambiguity in convolutive BSS (e.g., [3]), the output
signals can become mutually independent but there may still
exist channel-wise arbitrary filtering. Thus, it is at best possible
to obtain an arbitrary block diagonal matrix , i.e.,

(however, our experience is that
with our broadband approach the spectral content of the indi-
vidual channels is not noticeably affected). The bdiag operation
on a partitioned block matrix consisting of several submatrices
sets all submatrices on the off-diagonals to zero. Here, the
submatrices refer to the different signal channels. Analogously,
the boff operation sets all submatrices on the diagonal to zero.

To reach this goal, different approaches exploiting nonwhite-
ness, nonstationarity, and/or nongaussianity are known. In [25],
a unified treatment for convolutive mixtures based on an infor-
mation-theoretic criterion has been introduced. In the following,
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Fig. 2. Illustration of (18) for the 2 � 2 case.

we focus on wideband solutions based on second-order statis-
tics. Thus, the stochastic signals are described here by a se-
quence of short-time correlation matrices with lags based on the
matrix formulation, introduced above. We define the short-time
correlation matrices

(16)

(17)

of size and , respectively. Note that in
principle, there are two basic methods to estimate the output
correlation matrices for nonstationary output signals: the
so-called correlation method, and the covariance method as
they are known from linear prediction problems [26]. While
the correlation method leads to a slightly lower computational
complexity (and to smaller matrices, when implemented in
the frequency domain covered in Section IV), we consider the
more accurate covariance method in this paper. The correlation
method follows as a special case if we assume stationarity
within each block [23]. Note also that (17) is full rank since in
general we assume .

Having defined the compact matrix formulation (12) for the
block-MIMO filtering, we now define the following cost func-
tion, based on the sequence of lagged correlation matrices:

(18)

This cost function, introduced in [18], in generalization of [8]
also follows from the general information-theoretic approach
in [25]. In Section II-D, it is shown that the equilibrium points
of (18) actually correspond exactly to the desired BSS solution

.
The quantity in (18) is a weighting function with finite sup-

port that is normalized according to which
allows offline and online implementations of the algorithms as
shown in Section V (e.g., for

, and , elsewhere leads to an efficient online ver-
sion allowing for tracking in time-varying environments [21]).
Since we use the matrix formulation (12) for calculating the
short-time correlation matrices , the cost function
inherently includes all time-lags of all auto-correlations and
cross-correlations of the BSS output signals. By Oppenheim’s
inequality [27] , it is en-
sured that the first term in the braces in (18) is always greater
than or equal to the second term, where the equality holds if all
block-offdiagonal elements of , i.e., the output cross-cor-
relations over all time-lags, vanish (Fig. 2). In geometrical terms

Fig. 3. Parallelepiped.

the mechanism of the optimization criterion (18) can be inter-
preted using a volume of a parallelepiped spanned by the column
vectors of a matrix (Fig. 3) which is described by its determi-
nant. Thus, minimizing (18) corresponds to a simultaneous or-
thogonalization relative to several subspaces represented by the
submatrices on the main diagonal of .

In this paper, we consider algorithms based on first-order gra-
dients. An extension to higher order gradients would be straight-
forward but computationally more expensive. In the following
equations, we omit the block-time index for simplicity. In
order to express the update equations of the filter coefficients
exclusively by Sylvester matrices , we take the gradient with
respect to and ensure the Sylvester structure of the result by
selecting the nonredundant values using a constraint . For
the derivation of the gradient

(19)

we use the expression (complex version of, e.g., [28] and [29])

(20)

and (see Appendix)

(21)

Using these relations, it follows from (18)

(22)

where . With an iterative opti-
mization procedure, the current demixing matrix is obtained by
the recursive update equation

(23)

where is a stepsize parameter, and is the update
which is set equal to for gradient descent adaptation.

A simple way to impose the constraint for this generic
update is to select a certain column or the th row as a refer-
ence (as they contain all filter weights , )
and generate in the form of (11) from it. As can be
shown from the considerations in Section II-D, the steady-state
performance does not depend on the choice of the reference
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values. For special cases, and frequency-domain versions dis-
cussed later, we will give further methods for enforcing this con-
straint.

C. Equivariance Property and Natural Gradient

It is known that stochastic gradient descent suffers from slow
convergence in many practical problems due to dependencies in
the data being processed.

In the BSS application, we can show that the separation per-
formance using (23) together with (22) depends on the MIMO
mixing system . For verification, we premultiply (22) by
which shows that always depends on .

Fortunately, a modification of the ordinary gradient has been
developed that largely removes all effects of an ill-conditioned
mixing matrix . Termed the natural gradient by Amari [30]
and the relative gradient by Cardoso [31], this modification is
usually written in the following way:

(24)

For our approach based on (12), we have to reorder the right
side, i.e.,

(25)

This leads to the following expression:

(26)

which is used as update in (23). In the derivation of the
natural gradient for instantaneous mixtures in [30], the fact that
the demixing matrices form a Lie group has played an important
role. However, the blockwise-Sylvester matrices after (11),
(15) do not form a Lie group. To see that the above formulation
of the natural gradient is indeed justified, we again premultiply
the update (26), which leads to

(27)
The evolutionary behavior of depends only on the
estimated source signal vector sequence and the stepsize , and
the mixing matrix has been absorbed as an initial condition
into as desired. The uniform performance pro-
vided by (26) is due to the so-called equivariance property pro-
vided by the relative gradient BSS update [31]. In our case, only
the modified relative gradient (25) exhibits this property.

Another well known advantage of using the natural/relative
gradient is a reduction of the computational complexity of the
update as the inversion of the matrix in (22)
need not be carried out in (26). Instead, only submatrices of
size have to be inverted. Moreover, this implies that
instead of the condition is sufficient for the
natural gradient update. Therefore, we consider without loss of
generality this somewhat relaxed condition in the following.

Moreover, noting that the products of Sylvester matrices
and the remaining matrices in the update (26) can be interpreted
as linear convolutions, they can be efficiently implemented by a
fast convolution as in [32].

D. On the Convergence to the Desired Solution

In this section, we prove that the equilibrium points of the
highly nonlinear multivariate cost function (18) correspond only
to global optima if parameter is chosen appropriately, i.e., a
convergence to local optima, other than the desired solution (see
Section II-B) (or due to the external permuta-
tion ambiguity any channel-wise permuted version thereof) can
be avoided by the coefficient update (26). However, proper ini-
tialization of the demixing filter coefficients (see Section VI) is
necessary.

To begin with, we express (27) using
exclusively

by the input statistics, and the overall system . Without loss of
generality, we consider here the online adaptation (

, see Section V) as variations of influence only
the speed of convergence. By setting , we then obtain
the condition for equilibrium points from (27) as

or

(28)

and finally

(29)

For the discussion of solutions to this equation, we distinguish
the three following cases:

Case 1) ;
Case 2) ;
Case 3) .
Case 1) is impossible as also implies

. Moreover, the trivial case
is easily avoided by proper initialization of .

Case 2) gives the desired solutions (and only the de-
sired ones). Since according to the funda-
mental assumption of independent sources, we obtain from

the desired solutions

(30)

and all channel-wise (external) permutations.
Case 3) represents undesired, possibly suboptimum solutions

which cannot appear with scalar mixtures and must be precluded
by a proper choice of parameter (controlling the exploitation
of nonwhiteness) as will be demonstrated in the sequel.

We discuss Case 3) in two steps. To begin with, we ignore the
Sylvester structure of and , imposed by . Then, a nec-
essary and sufficient condition to obtain the desired solution (30)
is that the -matrix is of full rank, making
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condition (29) again equivalent to , i.e.,
to the desired case (b). In terms of dimensions, this requires

, and, since, ideally, , we have
. Note that in the well-known case of scalar mix-

tures, we have , i.e., in principle, global conver-
gence is always guaranteed by taking into account only nonsta-
tionarity [6] as is then chosen to 1. In the convolutive case, we
have to increase the number , i.e., simultaneously exploit the
nonwhiteness, to achieve improved performance. This will also
be demonstrated in Fig. 8. In addition, for a full rank of ma-
trix the different channels of its -transform must not have
any common zeros in the -plane according to [1]. In practical
acoustic scenarios this assumption is usually fulfilled [1].

Now, we take into account the Sylvester structure of and
, respectively, imposed by . Generally, the update (26)

consists of a matrix multiplication of (size for each
channel) and another matrix (of size for each channel)
based on . A close examination shows that the second part
of (26) constitutes the search space for the coefficient update

, and with , all elements of can be
adjusted independently from each other toward the global op-
timum as discussed above. However, by examining the channel-
wise matrix multiplication of and the second part of (26),
we observe that due to the Sylvester structure, the upper left

submatrix of is fully determined by the upper left
submatrices of and the second part, respectively.

Moreover, it can be seen from (11) that when considering only
this upper left submatrix, only the first column or the

th row contain all filter weights. Therefore, is reducible
from to if and only if the first column or the th row of

is chosen as a reference for , i.e., if we pick the first
column or th row of and construct the Sylvester structure
from it. Several simulations under various conditions have con-
firmed this general finding.

E. Special Cases and Links to Known Time-Domain
Algorithms

To further illustrate the generalized update (26), and to study
links to some known algorithms along with Fig. 4, we consider
now the case for simplicity. In this case, we have

(31)

where , , are the corresponding
submatrices of . It can be seen that (31) exhibits an in-
herent normalization by the autocorrelation matrices as
known from the recursive least-squares (RLS) algorithm in su-
pervised adaptive filtering [20]. Note that the matrices

Fig. 4. Overview of time-domain algorithms based on second-order statistics.

have to be properly regularized prior to inversion, e.g., by adding
a constant to the main diagonal. The update (31) results in an

-complexity for a straightforward implementation. How-
ever, due to the similarity of the update equation to supervised
adaptive filtering, fast calculation schemes and other approxi-
mations are well possible [20].

For , we obtain the algorithm proposed in [33] which
takes only the nonstationarity property into account.

In [32] and [34], a time-domain algorithm was presented that
copes very well with reverberant acoustic environments. Al-
though it was originally introduced as a heuristic extension of
[33] incorporating several time-lags, this algorithm can be di-
rectly obtained from (26) or (31) for by approximating
the block diagonals of by the output signal powers, i.e.,

(32)

for . Thus, this approximation is comparable to the
well-known normalized least mean squares (NLMS) algorithm
in supervised adaptive filtering approximating the RLS algo-
rithm [20]. In addition to the reduced computational complexity,
we can ensure the Sylvester structure of the update by using
the autocorrelation method as in [32] resulting in Toeplitz ma-
trices . The straightforward implementation of this
algorithm in the time domain leads to a complexity of .
By using fast convolution techniques, the complexity can be re-
duced to which has led to an efficient real-time imple-
mentation [23].

Another very popular subclass of second-order BSS algo-
rithms, particularly for instantaneous mixtures, is based on a
cost function using the Frobenius norm of
a matrix , e.g., [3], [4], [9]–[12], [35]. Analogously
to (18), this approach may be generalized for convolutive mix-
tures to

(33)
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which leads (after taking the gradient w.r.t. in a similar way
as shown in the Appendix) to the following update equation:

(34)

We see that this update equation differs from the more general
(22) only by the missing inherent normalization expressed by
the inverse matrices and . Thus, (34) can be
regarded as an analogon to the least mean square (LMS) algo-
rithm [20] in supervised adaptive filtering. However, many sim-
ulation results have shown that for large filter lengths , (34)
is prone to instability, while (22) or (26) show a very robust
convergence behavior (see Section VI) even for on the order
of hundreds or thousands of filter coefficients in BSS for real
acoustic environments.

III. INTERNAL PERMUTATION

Generally, in BSS we distinguish between the noncritical ex-
ternal permutation ambiguity among the output channels and
the internal permutation ambiguity in each frequency bin. While
the external permutation ambiguity can be easily solved by in-
corporating prior geometrical knowledge of the array geometry,
i.e., by source localization, the internal permutation ambiguity
may severely limit the separation performance in frequency-do-
main algorithms.

A. Broadband Versus Narrowband Cost Function

Although it is widely believed in the literature that the internal
permutation may only arise with narrowband frequency-domain
criteria, recently some authors have claimed that to a certain de-
gree the same internal permutation in frequency bins may arise
in time-domain, i.e., also with broadband criteria [17], [36]. To
the authors’ knowledge, there are only a few theoretical analyses
and little practical evidence for this claim [36]. However, a rig-
orous proof that this phenomenon does not exist seems difficult
to derive.

In [36], a first attempt to analyze the internal permutation
problem more closely is documented. Unfortunately, some as-
sumptions were made which lead to discrepancies between the
actually observed performance of BSS algorithms in practice
and that analysis. In particular, exact ensemble averages or in-
finitely long block intervals are assumed for the estimation of
correlations in the cost function. During these long intervals the
signals are assumed to be wide-sense stationary so that adja-
cent frequency bins are becoming completely independent from
each other in that analysis. Unfortunately, these assumptions
are well-known to be unsuitable for SOS-based BSS, which re-
quires nonstationarity, e.g., [3]. On the other hand, the assump-
tion of independence between adjacent frequency components
is on par with the narrowband approach, and thus is not suitable
to explain the behavior of broadband algorithms.

It is known that frequency permutation ambiguities in blind
algorithms without prior geometrical information can only
be resolved by taking into account different frequency bins

Fig. 5. Effect of permutations on the cost functions.

simultaneously (e.g., [37]). Based on the interfrequency cor-
relations (see e.g., [38, p. 45] for a convincing illustration),
several different approaches have been proposed in the liter-
ature. In [38] and [39] narrowband cost functions have been
complemented with these correlations to solve the permutation
problem. Moreover, these across-frequency correlations are
also used in almost all supplementary repair mechanisms for
narrowband algorithms, e.g., [10], [40]. A simple smoothness
constraint on the filter coefficients has also been proposed
[11], [41]. In Section IV below we provide without stationarity
assumption (covariance method) a clear relationship between
broadband and narrowband algorithms. The resulting generic
broadband frequency-domain algorithm inherently includes
the inter-frequency correlations and also a generalization of
the smoothness constraint and thus, accounts for the internal
permutation.

B. Discussion on Broadband Cost Function

In the following we discuss how well internal permutations
can be prevented within the different broadband criteria (18) and
(33).

As shown in Section II-E the cost function (18) has the de-
sirable property of an inherent normalization resulting in a fast
and robust convergence behavior of the corresponding update.
In this regard (18) is clearly superior to the cost function (33)
based on the Frobenius norm.

We compare the two broadband criteria and with re-
spect to the internal permutation problem experimentally. For
this evaluation we have computed the cost functions for two in-
dependent speech signals with a certain percentage of internal
permutations. Ideally, and should exhibit a global min-
imum for 0% permutations and be strictly monotonic decreasing
toward small percentages of permutations. For each percentage
of permutations we performed 20 Monte Carlo trials in which
the permuted frequency bins were randomly selected. The signal
length was 10 s at a sampling rate of 16 kHz. The speech sig-
nals were segmented into blocks of length for the
estimation of the correlation matrices . Con-
cerning the weighting function , we averaged the results ob-
tained from these blocks, which correspond to an offline adap-
tation described in Section V-A. Fig. 5 underlines the superior
behavior of the proposed cost function . The Frobenius-based
criterion in the right subplot of Fig. 5 shows relatively large
confidence intervals and when only a few frequency bins are
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permuted the cost function is already close to zero, so that an
optimum solution of the internal permutation is not guaranteed
with this criterion. In contrast, the proposed criterion in the
left subplot of Fig. 5 exhibits small confidence intervals and is
strictly monotonic decreasing toward smaller percentages of in-
ternal permutations. This confirms the high robustness of the
generic algorithm against frequency-domain permutations.

IV. GENERIC FREQUENCY-DOMAIN BSS

Based on the matrix formulation in the time domain (Sec-
tion II), the following derivation of broadband frequency-do-
main algorithms shows explicitly the relation between time-do-
main and many well-known frequency-domain algorithms, as
well as some extensions. Moreover, from a link to [14], it be-
comes clear that the broadband cost function (18) also leads to
the very desirable property of an inherent stepsize normalization
in the frequency domain. As pointed out in Section II, the con-
ditions for the paramters , , and for the natural gradient
adaptation are given by the relations and .
Therefore, we may assume without loss of generality
for the following derivation.

A. General Frequency-Domain Formulation

The matrix formulation introduced for the time-domain in
Section II allows a rigorous derivation of the corresponding fre-
quency-domain BSS algorithms. In the frequency domain, the
structure of the algorithm depends on the method for estimating
the correlation matrices. Here, we consider again the more ac-
curate covariance method [26]. The matrices and
are now diagonalized in two steps. We first consider the
Toeplitz matrices .

Step 1: Transformation of Toeplitz Matrices Into
Circulant Matrices

Any Toeplitz matrix can be transformed, by doubling its
size, to a circulant matrix [19]. In our case we define
the circulant matrix by taking into account (10) by

(35)

where is a properly chosen extension ensuring a
circular shift of the input values in the first column. It follows

(36)

where we introduced the windowing matrices

Here, we use the following conventions for the windowing ma-
trices in the frequency domain:

• The lower index of a matrix denotes its dimensions.

• The upper index describes the positions of ones and zeros.
Unity submatrices are always located at the upper left
(“10”) or lower right (“01”) corners of the respective ma-
trix. The size of these clusters is indicated in subscript
(e.g., “ ”).

Step 2: Transformation of the Circulant Matrices Into Diag-
onal Matrices

Using the DFT matrix , the circulant ma-
trices are diagonalized as follows:

(37)

where the diagonal matrices representing the fre-
quency-domain versions of , can be expressed by the
first columns of

(38)

i.e., to obtain , we transform the concatenated vectors
of the current block and three previous blocks of the input sig-
nals . Here, denotes a square matrix with the
elements of vector on its main diagonal. Now, (36) can be
rewritten equivalently as

(39)

Equations (39) and (38) exhibit a form that is structurally similar
to that of the corresponding counterparts of the well-known (su-
pervised) frequency-domain adaptive filters [19]. However, the
major difference here is that we need a transformation length of
at least instead of . This should come as no surprise, since
in BSS using the covariance method, both convolution and cor-
relation is carried out where both operations double the trans-
formation length.

We now transform the matrices in the same way as
shown above for . Thereby, we obtain

(40)

where

and the frequency-domain representation of the demixing ma-
trix

(41)
Equation (40) is illustrated in Fig. 6. Note that the column vector
in (41) corresponds to the first column of the matrix
in Fig. 6. Moreover, it can be seen that the premultiplied trans-
formation in (40) is related to the demixing
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Fig. 6. Illustration of 4L� 4L circulant matrix in (40).

filter taps in the first column of , while the postmultiplied
transformation in (40), which we denote by

(42)

is related to the introduction of time-lags (see also Sec-
tion IV-C). Combining all channels, we obtain

(43)

(44)

where denotes a block-diagonal matrix
with submatrices on its diagonal, and

are defined analogously to (14) and (15), respectively.
denotes the matrix

(45)

From (12), (43), and (44) we further obtain

(46)

where

To formulate the cost function (18) equivalently in the fre-
quency domain, we now need to calculate the short-time corre-
lation matrix using (46), i.e.,

(47)

where

(48)

(49)

The gradient of the cost function in the frequency domain
is now derived in a similar way as in the time domain. Since

, we ob-
tain using the chain rule for matrices ,
and thus, with expressions (20) and (21)

(50)

where

(51)

Equation (50) is the generic frequency-domain analogon to (22)
and may be equivalently used for coefficient adaptation.

As in the time domain, where imposes the Sylvester
structure, we need to ensure a diagonal structure of the subma-
trices in the frequency domain. While the structure of ma-
trix is independent of , matrix introduces the number of
time-lags taken into account by the cost function, as shown by
(42) and (46) (see also Fig. 6). To calculate the separated output
signals, given a demixing matrix , we need to pick the first
column of in (46) (the other columns were introduced in (9)
for including multiple time-lags in the cost function). This is
done by using in (46).
Then, in that equation becomes a matrix
whose columns correspond to the diagonals of . As a general
rule

(52)

and building diagonal submatrices of using the entries
of , transforms the two equivalent representations into each
other. Thus, to formally obtain the update of needed for
the output signal calculation, we post-multiply (50) by , both
simplifying the calculation of (50), and enforcing the diagonal
structure of during the adaptation.

In addition to this diagonal structure, we have to ensure the
Sylvester structure in the time domain as noted previously. As
can be seen in Fig. 6, (41) determines the first column, and thus
the whole Sylvester matrix. In other words, we have to
ensure that the time-domain column vector in (41) contains only

filter coefficients and zeros. Therefore, we have to tighten
the constraint appearing in (50) to . To-
gether with (52) this leads to

(53)
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B. Natural Gradient in the Frequency Domain

In Section II-C, it has been shown that the natural gradient
for convolutive mixtures introduced there for the time domain
yields equivariant adaptation algorithms, i.e., the evolutionary
behavior of

(54)

and does not explicitly depend on in
(27).

In this section, we investigate how this formulation of the
natural gradient transforms into the frequency domain. To begin
with, we start by the following approach containing arbitrary
matrices , , , and :

(55)

Now, our task is to determine the four matrices such that the
resulting coefficient update exhibits desired properties.

As a first condition, matrix in (55) must
be positive definite, i.e., all its eigenvalues must be positive to
ensure convergence. This determines matrices and so
that we obtain

(56)

As the second, and most important condition, it is required
that the equivariance property is fulfilled. Combining (54) with
(44), we obtain a relation between and the frequency-domain
coefficients

(57)

and analogously

(58)

As in the time domain [see (27)], it is required that (58) in com-
bination with the natural gradient (56) can be expressed by
defined in (57), and therefore, does not explicitly depend on .
This leads to the claim

(59)

and a comparison of (59) with (57) yields the matrices

(60)

Note that is not the general solution. This can be ver-
ified by inserting (60) in (59), and considering the argument of

according to (44). Finally, we obtain the natural gra-
dient

(61)

and together with (48), (50), and (51) it follows the coefficient
update

(62)

Note that this equation is the broadband frequency-domain anal-
ogon to the natural gradient (26) and shows again the convenient
property of avoiding one matrix inversion. Formally, as in Sec-
tion IV-A, (53) can be used to obtain .

C. Constraints and the Internal Permutation Problem in
Narrowband Frequency-Domain BSS

Two types of constraints appear in the gradient (50) and in
the natural gradient update (62):

• The matrices in (48), (49), (51), and in the update
equations are mainly responsible for preventing decou-
pling of the individual frequency components, and thus
avoid the internal permutation among the different fre-
quency bins by introducing interfrequency components
(as noted in Section III) into the spectral density matrices.

• Matrix has two different functions: on the one hand, it
allows joint diagonalization over time-lags, and on the
other hand, it acts as time-domain constraint similar to the
matrices (see Fig. 6).

Concerning matrix we can distinguish between four dif-
ferent cases:

1) : As in the time domain, this choice allows the
exploitation of the nonwhiteness property with up to
time-lags.

2) : This is the optimum case as in the time domain.
3) : This choice is not meaningful in the time domain.

In the frequency domain, however, we can choose up
to the transformation length due to the introduced cir-
culant matrix, as shown in Fig. 6. Then, the time-domain
constraint is relaxed, which generally leads to a subop-
timum solution.

4) : According to Fig. 6 this corresponds to the tradi-
tional narrowband approximation (apart from constraints

) so that all matrices cancel out in the update equa-
tions, which can also be verified using (42).

In Case 4), i.e., by neglecting matrix in (50) we obtain a sim-
plified gradient

(63)

and a simplified natural gradient

(64)

Note that these expressions still largely avoid the internal per-
mutation problem of narrowband frequency-domain BSS using
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the constraints in , , and in the update equations
obtained from inserting (63) or (64) into (53). This is similar to
the across-frequency processing in [38].

By additionally approximating as scaled identity ma-
trices [19] in the gradients, all the submatrices in (63) and (64)
become diagonal matrices. This approximation combined with

[see Case 4)] corresponds to the traditional narrowband
approach. Only in this case both equations can be decomposed
in its frequency components, i.e., we can equivalently write

(65)

and

(66)

respectively, where denotes the frequency
bins. In contrast to , , and in (63), (64) which are

matrices each, the corresponding matrices ,
, and in (65), (66) are only of dimension .

To obtain the updated equations from the approximated gra-
dients, we again apply (53) which contains another constraint

transforming the filter coefficients back in the time
domain, zeroing the last values, and transforming the result
back to the frequency domain. Thus, even if (65) and (66) can be
efficiently computed in a bin-selective manner, this constraint
prevents a complete decoupling of the frequency-components
in the update equations. This procedure appears similarly in the
well-known “constrained frequency-domain adaptive filtering”
in the supervised case [19], [20]. In BSS, this theoretically
founded mechanism largely eliminates the permutation problem
in a simple way. It was first heuristically introduced in [41], and
also in [11]. A more detailed experimental examination on this
constraint was reported in [17] confirming that our theoretically
obtained ratio between filter length and transformation length

yields optimum separation performance. However, due to
the omission of the other constraints in the approximated gradi-
ents one will not achieve a perfect solution of the permutation
ambiguity as observed experimentally in [17]. Thus, the generic
algorithm derivation provides a tradeoff between computational
complexity and internal permutation ambiguity, depending on
the number of implemented constraints. Traditional narrow-
band approaches also neglecting the time-domain constraint in
(53) require additional measures for solving the permutation
problem (e.g., [10], [40]). Note that most of these methods also
exploit interfrequency correlations in some way. However, in
contrast to the global optimization within the cost function, this
subsequent ordering is done using local decisions.

D. Some Links to Known Narrowband Frequency-Domain
Algorithms and the Generalized Coherence

The approximated coefficient update (65) is directly related
to some well-known narrowband frequency-domain BSS algo-

rithms. In [13], an algorithm that is similar to (65) was de-
rived by directly optimizing a cost function similar to the one
in [8] in a bin-wise manner. More recently, it was proposed in
[14] to apply the magnitude-squared coherence , ,

as a cost function for narrowband frequency-do-
main BSS. The coherence has the very desirable property that

, which directly translates into an in-
herent stepsize normalization of the corresponding update equa-
tion [14]. In particular if and are orthog-
onal, and if and are linearly related.

Comparing the update (65) with that derived in [14], we see
that an additional approximation of as a diagonal ma-
trix was used in [14], which results in

(67)

The coherence function applied in [14] can be extended to the
case by using the so-called generalized coherence [42].
In [18] a link between the cost function (18) and the generalized
coherence was established. This relationship allows a geometric
interpretation of (18) and shows that this cost function leads to
an inherent stepsize normalization for the coefficient updates.

V. WEIGHTING FUNCTION

In the generalized cost function (18), we introduced a
weighting function with the block time indices , to
allow different realizations of our algorithms. Based on the cost
function we previously derived stochastic and natural gradient
update equations in the time domain (22), (26) and in the
frequency domain (50), (62), respectively. Due to the similar
structure of these equations, we will now consider only the time
domain for simplicity. Thus we can express (22) and (26) as

(68)

where denotes the corresponding update term of the th
block. In the following we distinguish three different types of
weighting functions for offline, online, and block-on-
line realizations [21]. The weighting functions have a finite sup-
port, and are normalized such that .

A. Offline Implementation

When realizing the algorithm as an offline or so-called batch
algorithm then corresponds to a rectangular window,
which is described by , where

for , and elsewhere.
The entire signal is segmented into blocks, and then the

entire signal is processed to estimate the demixing matrix
where the superscript denotes the current iteration of the co-
efficient update

(69)
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Hence, the algorithm is visiting the signal data repeatedly for
each iteration and therefore, it usually achieves a better per-
formance compared to its online counterpart.

B. Online Implementation

In time-varying environments, an online implementation of
(68) is required. An efficient realization can be achieved by
using a weighting function with an exponential forgetting factor

. It is defined by

(70)

where . Thus, (68) reads

(71)

where denotes the current block. Additionally, (71) can be
formulated recursively to reduce computational complexity and
memory requirements since only the preceding demixing matrix
has to be saved for the update [21].

C. Block-online Implementation

Similar to the approach in [43] we can combine the online
and offline approach in a so-called block-online method. After
obtaining blocks of length we process an offline algorithm
with iterations. The demixing filter matrix of the cur-
rent block is then used as initial value for the offline algorithm
of the next block. This block-online approach allows a tradeoff
between computational complexity on the one hand and sepa-
ration performance and speed of convergence on the other hand
by adjusting the maximum number of iterations as we will
see in Section VI. See also [23] for more details.

VI. EXPERIMENTS AND RESULTS

A. Experimental Conditions

The experiments have been conducted using speech data
convolved with measured impulse responses of a real room

, with a reverberation time
and a sampling frequency of . A

two-element microphone array with an inter-element spacing
of 16 cm was used for the recording. The speech signals arrived
from two different directions, and 45 . Sentences spoken
by two male speakers (from the TIMIT speech corpus) were
selected as source signals. The length of the source signals was
10 s. To evaluate the performance, the signal-to-interference
ratio (SIR) was used which is defined as the ratio of the signal
power of the target signal to the signal power from the jammer
signal. For offline implementations the SIR was calculated over
the entire signal length whereas for online implementations it
was continuously calculated for each block. In the following
the SIR is averaged over both channels.

For choosing the demixing filter length it can be shown by
considering matrix dimensions of according to [1]
that for deconvolution, ideally, ,
where and are the number of sensors and sources, respec-
tively. denotes the length of the mixing system. Analogous
considerations for BSS under the condition due to

Fig. 7. Comparison of different offline realizations.

the filtering ambiguity yield .
For the special case considered here as an example,
this gives as in system identification. There
an estimate for the demixing filter length needed to model the
room impulse reponses for a given accuracy of dB is given by

. Experimental results confirmed
that this can be carried over to the BSS scenario yielding a rough
estimate for . Thus, for a desired maximum SIR of 25 dB we
choose and the block length of .

The Sylvester constraint is realized here by picking the
first column as discussed in Section II-B. Concerning the initial-
ization of it can be shown using (11), (26) that by applying
this specific realization the first coefficients of the filters

must be nonzero. Thus, we use a unit impulse for the first
filter tap in each . The filters , are set to zero.

B. Experimental Results

In our experiments we compared offline and online realiza-
tions and we examined the effect of taking into account dif-
ferent numbers of time-lags for the computation of the cor-
relation function (17). Comparing different offline algorithms
in Fig. 7 shows that the stochastic gradient (67) (dotted) and
natural gradient (66) (dashed) narrowband approximations of
the generic frequency-domain algorithm exhibit the fastest ini-
tial convergence. Note that the dotted curve corresponds to the
well-known algorithm after [14] and may be seen as a reference
for SOS-based BSS. This is mainly due to the decomposition of
the update equation in its frequency components and hence we
have an independent update in each frequency bin. The complete
decoupling is prevented and therefore also the internal permu-
tation problem is mostly resolved by considering the constraint

(53) similar as in [11], [41]. However, especially
for a large filter length , some frequency bins will still be per-
muted and thus the narrowband algorithms converge to a lower
maximum SIR than their broadband counterparts.

The generic broadband algorithm (26) [or its equivalent fre-
quency-domain formulation (62)] (solid) achieves nearly the
same convergence speed as the narrowband frequency-domain
algorithms. This confirms that time-domain algorithms can also
exhibit a stable and robust convergence behavior for very long
unmixing filters. However, in the generic time-domain algo-
rithm this comes with an increased computational cost, as an in-
version of a large matrix is required due to the RLS-like normal-
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Fig. 8. Effect of taking into account different numbers of lagsD.

Fig. 9. Comparison of different online realizations.

ization (Section II-E). Moreover, similar to the RLS in super-
vised adaptive filtering the inverse matrices have to be regular-
ized properly. The approximated version of the generic time-do-
main algorithm (dash-dotted) shows a slower convergence as the
RLS-like normalization is replaced by a diagonal matrix which
corresponds to an NLMS-like normalization (32). Note that the
broadband algorithms exhibit a higher maximum SIR as they
inherently avoid the internal permutation problem.

The relation between the number of lags used for com-
puting the correlation function , i.e., the exploitation of
nonwhiteness, and the SIR is shown in Fig. 8 for an example.
As adaptation algorithm an offline version of the approximated
time-domain algorithm (32) has been applied and 200 iterations
have been computed.

When utilizing only nonstationarity , the sources
cannot be separated. Including nonwhiteness is espe-
cially beneficial for the first lags, which can be explained by the
strong correlation of speech signals within the first few lags. By
considering these temporal correlations, additional information
about the mixtures is taken into account for the simultaneous di-
agonalization of . A further increase of up to
is still improving the maximum SIR as the temporal correla-
tion of the room impulse response is exploited in the adaptation.
This confirms the theoretical finding in Section II-D that
yields the optimum performance.

Different online realizations are shown in Fig. 9. Again, it
can be seen that the approximated frequency-domain algorithm
(dashed) exhibits superior initial convergence speed compared
to the approximated time-domain algorithm (dash-dotted) due
to its NLMS-like normalization. However, this effect can be

mitigated by using a block-online adaptation (see Section V-C)
of the approximated time-domain algorithm (solid), while in
case of the approximated frequency-domain algorithm such im-
provement from online to block-online adaptation has not been
found. For the simulation examples, , ,

, and iterations were chosen, as these settings
also work very well in real-time on current regular PCs [23].
Experiments taking into account also diffuse background noise
in a car environment can be found in [24].

VII. CONCLUSION

A generalization of second-order BSS algorithms for convo-
lutive mixtures was presented. This generalization extends pre-
vious work in two directions. First, both, nonstationarity and
nonwhiteness of the source signals are explicitly taken into ac-
count. Secondly, a general broadband formulation and optimiza-
tion of a novel cost function was introduced. This approach al-
lows rigorous derivations of both known and novel algorithms in
time and frequency domain and provides a deeper understanding
and solution of the internal permutation ambiguity appearing in
traditional narrowband frequency-domain BSS. Experimental
results have shown that this rigorous theoretical approach leads
directly to superiour practical BSS algorithms for reverberant
acoustic environments in both, time and frequency domains.

APPENDIX

Here, we prove the derivative

(72)

of the first term in the cost function (18) defined by

(73)

We apply the chain rule for matrices expressed by its elements

(74)

In this formulation, the upper indices denote the channel-selec-
tive submatrices, and the lower indices denote the elements of
the respective submatrix, e.g., is the -th element of
the -th submatrix of . Due to the chain rule, we now first
take the derivative of w.r.t.

(75)

For this we can use the known expression

(76)

for a real matrix according to, e.g., [28], [29]. In our case,
since we assume , this equation further simplifies, as

(77)
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For the second part in (74) we need to express (75) element-
wise

(78)

Here, the Kronecker symbol corresponds to the
operator zeroing the elements of all off-diagonal submatrices for

, and . The derivative of this second part
reads

(79)

Note that according to the Wirtinger calculus [20] matrix in
is treated as a constant in the partial derivative.
Now we plug (75)—(77), and (79) into the chain rule (74) so

that we obtain

(80)

This result corresponds directly to (21).
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