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ABSTRACT

Based on a recently presented generic framework for multichannel
blind signal processing for convolutive mixtures we investigate in
this paper the problem of incorporating acausal delays which are
necessary with certain geometric constellations. Starting from a
generic update equation which is applicable to blind source separa-
tion (BSS), multichannel blind deconvolution (MCBD), and multi-
channel blind partial deconvolution (MCBPD) for dereverberation
of speech signals, two formulations of the natural gradient are de-
rived. It is shown that one expression is applicable to mere causal
filters whereas the other one also allows an implementation of non-
causal filters. Moreover, proper initialization methods for both
cases are given. For the implementation of the aforementioned
algorithms cross-relation estimation techniques known from lin-
ear prediction are discussed. Based on these results, relationships
between traditional MCBD algorithms can be established. Exper-
imental results of different acoustic scenarios show the applicabil-
ity of the presented algorithms.

1. INTRODUCTION

The task to perform blind signal processing on convolutive mix-
tures of unknown time series arises in several application domains.
In this paper we deal with the so-called cocktail party problem,
where we want to recover the speech signals of multiple speakers
who are simultaneously talking in a room. The room may be very
reverberant due to reflections on the walls, i.e., the original source
signals sq(n), q = 1, . . . , Q are filtered by a linear multiple input
and multiple output (MIMO) system H before they are picked up
by the sensors. In the following, we assume that the number Q of
source signals sq(n) equals the number of sensor signals xp(n),
p = 1, . . . , P .

As one technique to recover the speech signals, BSS can be
seen as blind interference cancellation similarly to conventional
adaptive beamforming. In the acoustic scenario in Fig. 1a causal
filters are sufficient to achieve interference cancellation whereas
for the source locations in Fig. 1b usually one noncausal demixing
filter w12 or w21 is required as will be shown below. Due to the su-
pervised filtering algorithms used in adaptive beamforming [1] the
problem of acausality can there be solved by initializing the beam-
former FIR filters with a unit impulse at the L/2-th tap (L denotes
the filter length). However, unlike for supervised beamforming,
accounting for the causality problem requires structural changes
for the adaptation mechanism in unsupervised algorithms. The in-
vestigation of this problem is the main target of this paper and will
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Fig. 1. Setups for BSS requiring (a) only causal delays and (b)
causal and acausal delays for the demixing system W.

be based on a generic framework presented in [2] which contains
several different BSS, MCBD, and acoustic dereverberation algo-
rithms. In this paper we will only consider time-domain algorithms
as they are not exhibiting typical frequency-domain narrowband
limitations as, e.g., circular convolution effects and permutation of
the sources within individual frequency bins. Moreover, for esti-
mation of the cross-relation matrices in the update equations we
discuss the covariance method and correlation method as they are
known from linear prediction problems [3]. We show that by the
use of both methods several well-known algorithms can be incor-
porated in this framework and thus relationships between existing
algorithms can be established.

2. GENERIC TRINICON-BASED UPDATE RULE

For generality, we investigate the acausality problem in the frame-
work presented in [2] and thus, we briefly summarize it in the fol-
lowing. There, a versatile algorithm called TRINICON (’Triple-
N ICA for convolutive mixtures) was presented which utilizes all
of the following source signal properties to blindly estimate the
demixing matrix W for the above-mentioned tasks of BSS, MCBD,
and MCPBD:
(i) Nongaussianity is exploited by using higher-order statistics for
independent component analysis (ICA). ICA approaches can be
divided into several classes where the minimization of the mutual
information (MMI) among the output channels can be regarded
as the most general approach for BSS. To obtain an estimator not
only allowing spatial separation but also temporal separation for
MCBD, the Kullback-Leibler distance (KLD) [5] between a cer-
tain desired joint pdf (essentially representing a hypothesized sto-
chastic source model) and the joint pdf of the actually estimated
output signals is used [2].
(ii) Nonwhiteness is exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore con-



sider multivariate pdfs, i.e., ‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization
of output cross-relations at different time-instants. We assume er-
godicity within blocks of length N so that the ensemble average is
replaced by time averages over these blocks.

For block processing we first need to formulate the convolu-
tion of the FIR demixing system of length L in the following ma-
trix form [4]:

y(m, j) = x(m, j)W(m), (1)

where m denotes the block index, and j = 0, · · · , N − 1 is a
time-shift index within a block of length N , and

x(m, j) = [x1(m, j), . . . , xP (m, j)], (2)

y(m, j) = [y1(m, j), . . . , yP (m, j)], (3)

W(m) =





W11(m) · · · W1P (m)
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

 , (4)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(5)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (6)

=

P
∑

p=1

xp(m, j)Wpq(m). (7)

D in (6) denotes the number of lags taken into account to exploit
the nonwhiteness of the source signals as shown below. Wpq(m)
denotes a 2L×D Sylvester matrix that contains all coefficients of
the respective filter:
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In [2] the natural gradient of a cost function J (m) with re-
spect to the demixing filter matrix W(m) was taken

∆W ∝ WW
H ∂J

∂W∗

=: W∆T, (9)

where ∆T corresponds to the gradient descent in the tangent search
space which is projected back to the original manifold of the Eu-
clidean space by the multiplication with W (for more details see,
e.g., [6]). This leads to the following generic TRINICON-based
update rule which can be written equivalently to [2] as:

W(m) = W(m − 1) − µ∆W(m), (10)

∆W(m) =
2

N

∞
∑

i=0

β(i, m)W(i)

·

N−1
∑

j=0

{

y
H(i, j)Φs,PD(y(i, j)) − I

}

, (11)

where β is a window function with finite support that is normalized
according to

∑m

i=0
β(i, m) = 1 allowing for online, offline, and

block-online algorithms [4]. The desired score function

Φs,PD(y(i, j)) = −
∂log p̂s,PD(y(i, j))

∂y(i, j)
, (12)

results from the hypothesized source model, where p̂s,PD(·) is the
assumed or estimated PD-variate source model (i.e., desired) pdf
and D denotes the memory length, i.e., the number of time-lags to
model the nonwhiteness of the P signals as above. The generic up-
date equation (11) can be applied to BSS if the desired source pdf
p̂s,PD(·) is assumed to be the factorized output signal pdf p̂yq,D(·)
among the sources

p̂s,PD(y(i, j))
(BSS)
=

P
∏

q=1

p̂yq ,D(yq(i, j)). (13)

As the factorization is only done among the channels, the source
signals are only determined up to an unknown filtering, i.e. the
algorithm is not dereverberating the signals picked up by the mi-
crophones. A complete factorization leads to an update equation
with univariate pdfs

p̂s,PD(y(i, j))
(MCBD)

=

P
∏

q=1

D−1
∏

d=1

p̂yq,d(yq(iL − d + j)), (14)

and thus to the traditional MCBD approach. It should be noted that
due to the temporal whitening of the output signals, this approach
is not suitable for audio signals.

In [2] it has been shown that also a partial factorization of
p̂s,PD(·) is possible which was denoted as multichannel blind par-
tial deconvolution (MCBPD) and allows to distinguish between
the vocal tract and the reverberant room. Ideally, only the influ-
ence of the room acoustics should be minimized leading to a dere-
verberation without affecting the quality of the audio signals.

3. RELATED ALGORITHM CLASSES AND CAUSALITY
PROBLEM IN TIME-DOMAIN BSS

In Fig. 1 it can be seen that depending on the source location
acausal delays may be required for blind signal processing in acous-
tic environments. Based on Fig. 2 we will give an overview in the
following sections on how different realizations of the generic al-
gorithm deal with this causality problem. Moreover links between
existing MCBD algorithms and also between existing approaches
and the generic update (11) become apparent (see Fig. 2).

3.1. Enforcing the Sylvester Constraint SC

When implementing the update rule (11) the Sylvester structure of
∆W has to be ensured by using a Sylvester constraint SC. This
constraint can be enforced by selecting the L filter taps in the first
column of ∆W as a reference and generate the Sylvester structure
in the form of (8) from it [4, 7]. This implementation is denoted by
SCC . Another option for enforcing the Sylvester constraint is to
select the L-th row of ∆W as a reference (denoted by SCR) and
generate the Sylvester structure in the form of (8).

The choice of SC affects the way how the matrix multipli-
cation of W∆T in (9) is implemented. This can be seen when
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Fig. 2. Overview of links between the generic algorithm (11) and
existing MCBD algorithms.

writing (9) element-wise. When using the first column, i.e., SCC ,
then the matrix multiplication (9) results in

∆W̃u =

u
∑

v=0

W̃v∆T̃u−v, (15)

where W̃u denotes the P × P demixing filter matrix for the u-th
filter tap (u = 0, . . . , L − 1) and ∆T̃u−v denotes the (u − v)-
th tap of the P × P gradient descent update in the tangent space.
Eq. (15) is a convolution of purely causal sequences and thus the
index u − v lies within the range 0 ≤ u − v ≤ L − 1. Therefore,
the resulting elements of ∆W̃ are sequences of the same length
as those of W̃ and ∆T̃, respectively. Such an operation is called
self-closed as the dimension of the manifold, i.e., the length of the
sequences which are the elements of ∆W̃ does not change. The
definition of the natural gradient given in (15) was also used in [8]
for an MCBD algorithm based on univariate pdfs (see also Fig. 2).

The second option is to use the L-th row of ∆W in (11) to
generate the Sylvester structure, i.e., to enforce the Sylvester con-
straint SCR. This leads to the following element-wise natural gra-
dient formulation of the matrix multiplication in (9):

∆W̃u =

L−1
∑

v=0

W̃v∆T̃u−v. (16)

It can be seen that the only difference to (15) is the upper limit
of the sum. As a consequence the index of ∆T̃u−v lies within
−L + 1 ≤ u − v ≤ L − 1. Thus, the length of the sequence ∆T̃

does not correspond to that of W̃ and ∆W̃. Therefore, with the
convolution in (16) the sequence ∆W̃ is not self-closed.

The definition of the natural gradient in (16) can be traced
back to [9] where it was used in the actual implementation of a
sample-by-sample based MCBD algorithm. However, the deriva-
tion of the MCBD algorithm in [9] assumed doubly infinite filters
and thus, the sequence length of all variables in (16) was doubly
infinite resulting in a self-closed convolution. As shown in (16),
the subsequent truncation to finite filters of length L violates the
self-closedness. In experiments we could observe that algorithms
based on SCC , i.e., (15) are more robust than algorithms based on
SCR (16).

3.2. Appropriate initialization methods

The choice of the Sylvester constraint SC also affects the applica-
ble initialization methods. In scenarios where also acausal delays
are necessary (see Fig.1b) it is desirable to shift the unit impulse
similarly to adaptive beamforming [1] and use the initialization
wpp,L/2 = 1. However, for the update (15), i.e., SCC the coeffi-
cients of the demixing filter W(0) should be initialized with zeros
except for wpp,0 = 1. Note that an initialization with wpp,L/2 = 1
would lead to the problem that due to the summation index in (15)
all ∆Wu for 0 ≤ u ≤ L/2 − 1 would be equal to zero, i.e.,
these filter coefficients could not be adapted. Thus, the initial-
ization of the first tap of the demixing filter is required. When
algorithms based on (15) should be applied to scenarios as shown
in Fig.1b the algorithm has to be extended using a filter decompo-
sition approach to incorporate acausal delays as it was shown for
traditional MCBD algorithms in [6]. A generalization of this filter
decomposition approach to the generic update equation (11) based
on multivariate pdfs is well possible.

When enforcing the Sylvester constraint by using SCR, the
algorithm can also be initialized using wpp,L/2 = 1. Thus, simi-
larily to adaptive beamforming also acausal delays are possible in
this case as becomes obvious by simply evaluating (8) for succes-
sive iterations.

3.3. Covariance method vs. Correlation method

Similarily to linear prediction problems [3] we have to distinguish
in actual implementations of the update equation (11) between two
methods to estimate the cross-relation matrices defined by

RyΦ(y)(i) =

N−1
∑

j=0

y
H(i, j)Φs,PD(y(i, j)). (17)

The definition (17) corresponds to the so-called covariance method.
The covariance method can be approximated by the correlation
method when stationarity within each block of length N + D −
1 is assumed. This leads to a Toeplitz structure of the matrix
RyΦ(y) and therefore, also to a lower complexity in calculating
(17) and (11). Further details on the implementation of the corre-
lation method for the BSS case of the generic update (11) can be
found in [7].

By distinguishing between covariance and correlation method,
we can establish a link to the algorithms presented in [11] and
[12]. The method in [11] can be obtained from the generic update
equation (11) when the pdf contained in the score function Φs,PD

is factorized according to (14) so that univariate pdfs are obtained
(see also Fig. 2). Moreover, in [11] the covariance method is used
with N = 2L, i.e., the 4L most recent x-values are used for the
calculation of RyΦ(y) . By enforcing the Sylvester structure of
∆W with SCR we obtain the identical update as in [11].

In [12] a similar block-based algorithm is proposed with the
difference that a signal truncation is introduced and therefore only
2L x-values are used. In the pseudo-code in [12] it can be seen
that this truncation corresponds to using the correlation method on
a block of 2L x-values. Therefore, this algorithm can be obtained
from the generic update equation by enforcing the Sylvester con-
straint SCR in addition with univariate pdfs and the usage of the
correlation method.

In Fig. 2 the relationship between existing MCBD algorithms
based on univariate pdfs and the BSS, MCBD and MCBPD algo-
rithms incorporating multivariate pdfs which are directly derived



from the generic update equation (11) are depicted. Several exam-
ples of implementations for the latter class can be found in [2, 4, 7].

3.4. Algorithms based on second order statistics

From the generic update equation (11) also second order statistics
(SOS) algorithms can be derived by inserting the Gaussian pdf in
the score function (12). In the case of BSS algorithms (13) the
multivariate Gaussian pdf has to be used:

p̂yq,D(yq(i, j)) =
1

√

(2π)Ddet(Ryqyq )
e
−

1

2
yqR

−1

yqyq
yH

q (18)

where Ryqyq (i) = 1
N

∑N−1

j=0
yH

q (i, j)yq(i, j). This leads to a
BSS algorithm which is not whitening the output signals and with
the following update equation

∆W(m) = 2

∞
∑

i=0

β(i, m)W(i) {Ryy(i)

−bdiag Ryy(i)} bdiag−1
Ryy(i), (19)

where Ryy(i) = 1
N

∑N−1

j=0
yH(i, j)y(i, j). The structure in

Fig. 2 is also maintained for second order statistics algorithms.

4. EXPERIMENTAL RESULTS

For our experiments we used a BSS algorithm based on SOS (19)
which was implemented by using a block-on-line update rule as
described in [7]. For the algorithm the correlation method was
used to estimate Ryy and the following parameters were chosen:
L = 1024, N = 2048, and D = 1024 with a sampling frequency
of 16 kHz. The experiments were conducted in a room with a
reverberation time T60 = 50 ms. A two-element microphone array
with a spacing of 21 cm was used. To evaluate the performance
we used the signal-to-interference ratio (SIR) defined as the ratio
of the signal power of the target signal to the signal power from
the jammer signal. A scenario which requires only causal filters
(source positions ±70o) and one which requires causal and acausal
filters (source positions +45o and +90o) were evaluated. The two
different realizations based on the Sylvester constraints SCC and
SCR have been used. In Fig. 3 it can be seen that when only causal
filters are required, both realizations lead to similar results. For the
scenario requiring acausal delays only the algorithm using SCR

is applicable as discussed in Sect. 3. It can be seen that it also
leads to good separation results for acausal filters. Moreover, the
algorithm has been successfully applied to source localization of
multiple sources [13].

5. CONCLUSIONS

We examined the problem of acausality in time-domain BSS and
MCBD algorithms. Based on a generic framework we showed
how different realizations can incorporate acausal demixing fil-
ters. Proper initialization methods and cross-relation methods have
been discussed and experimental results have been presented. More-
over an overview of the relation to existing algorithms has been
given.
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