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ABSTRACT

Blind adaptive filtering for time delay of arrival (TDOA) estima-
tion is a very powerful method for acoustic source localization
in reverberant environments with broadband signals like speech.
Based on a recently presented generic framework for blind sig-
nal processing for convolutive mixtures, called TRINICON, we
present a TDOA estimation method for simultaneous multidimen-
sional localization of multiple sources. Moreover, an interesting
link to the known single-input multiple-output (SIMO)-based adap-
tive eigenvalue decomposition (AED) method is shown. We eva-
luate the novel multiple-input multiple-output (MIMO)-based ap-
proach and compare it with the known SIMO-based method in a
reverberant acoustic environment using reference data of the po-
sitions obtained from infrared sensors. The results show that the
new approach is very robust against reverberation and background
noise.

1. INTRODUCTION

A widely used approach to estimate multidimensional source po-
sitions in a flexible way is to employ a two-step procedure [1]:
In the first step, a set of TDOAs are estimated using measure-
ments across various combinations of microphones. The second
step then determines the source positions by geometric conside-
rations. The key to the effectiveness of many localizers is thus an
accurate and robust TDOA estimator. The most widely used and
conceptually simple method for this is to use the generalized cross-
correlation function (GCC) [2]. However, in real acoustic environ-
ments, the room reverberation and the background noise are two
major sources of signal degradation severely affecting the estima-
tion results. In particular, since most methods, such as GCC, are
inherently based on a free-field propagation model, they can lead
to good results if the room reverberation is not very long but their
performance may break down in highly reverberant environments
[3, 4].

To address this reverberation problem, a completely different
approach of TDOA estimation based on blind adaptive filtering
was proposed in [5]. This so-called adaptive eigenvalue decompo-
sition (AED) algorithm may be seen as a major advance in local-
ization since it focuses directly on the impulse responses h1 and
h2 (assumed to be FIR) between a source s and the microphones,
and thus, this approach is inherently based on the real reverberant
propagation model (Fig. 1 (a)). TDOA estimation with AED is
based on blind single-input multiple-output (SIMO) system iden-
tification by exploiting the linear relation, x1(n)∗h2(n)−x2(n)∗
h1(n) = 0, between the microphone signals due to the common
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Fig. 1. TDOA estimation via (a) SIMO and (b) MIMO model-
based blind adaptive filtering.

sound source s, as first proposed in [6, 7]. By minimizing the mean
square of the output signal

e(n) = s(n) ∗ (h1(n) ∗ w1(n) + h2(n) ∗ w2(n)) (1)

by an adaptive algorithm, we ideally obtain independently of s(n)

h1(n) ∗ w1(n) = −h2(n) ∗ w2(n) (2)

so that with proper initialization [5] and filter length the estimated
filters are (see also Fig. 1 (a)) w1(n) = c · ĥ2(n) and w2(n) =

−c · ĥ1(n) with a scaling constant c. The TDOA can then be
calculated from these filters by

τ̂ = arg max
n

|ĥ2(n)| − arg max
n

|ĥ1(n)|
= arg max

n
|w1(n)| − arg max

n
|w2(n)|. (3)

Note that we consider here in this paper only the use of microphone
pairs. However, there are generalizations of GCC [8], AED [7, 8]
(and also of the proposed approach in Sect. 2) to more sensors to
further improve the robustness by this redundancy.

Motivated by the high accuracy of the above-mentioned adap-
tive SIMO filtering approach for single source localization, the
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objective of this paper is to study blind adaptive MIMO filtering
for simultaneous localization of multiple sources in a similar way
in order to maintain the realistic reverberant propagation model.
Fig. 1 (b) shows the corresponding MIMO-based structure. As
with AED, we would like to calculate the Q TDOAs for the Q
sources from the estimated FIR filters wpq . Thereby, we assume in
this paper that we have at least as many microphones as sources,
i.e., P ≥ Q. We further assume that the sources are mutually un-
correlated. In general this assumption holds for speech and audio
signals.

Several different algorithms for blind adaptive MIMO filtering
have been proposed in the literature. In the following, we consider
in this paper the TRINICON framework, first proposed in [10] as
a very general and versatile tool for blind adaptive MIMO filter-
ing, suitable for broadband applications such as speech and audio.
Many known and novel algorithms follow from this information-
theoretic framework as special cases, and so far, promising re-
sults have been obtained for blind source separation (BSS), blind
deconvolution, and also blind dereverberation of speech signals
[10, 11, 12]. For BSS, a real-time broadband implementation for
reverberant environments has been presented in [13]. Moreover, it
has been shown that this system exhibits a high robustness against
diffuse background noise [14]. These properties make the ap-
proach attractive for localization, as shown in the next section.
The close relation between BSS and source localization can be
motivated by considering BSS as a set of ‘blind adaptive beam-
formers’ which inherently include automatic beam steering to the
sources without any prior information. As in case of AED, the
MIMO-based approach yields robust solutions to the TDOA esti-
mation problem when the channels do not share common zeros.
Using multichannel techniques this is well fulfilled in acoustic en-
vironments [15]. Moreover, we will see in Sect. 2.3 that there is
indeed a very close relation to the SIMO-based TDOA approach.

2. TRINICON-BASED TDOA ESTIMATION FOR
PASSIVE ACOUSTIC SOURCE LOCALIZATION

In the context of independent component analysis (ICA), different
approaches exist to blindly estimate the MIMO filtering matrix W
according to Fig. 1 (b) for the above mentioned tasks by criteria
other than traditional MSE. In general, the following source sig-
nal properties can be utilized [9] which are all jointly taken into
account in TRINICON:
(i) Nongaussianity is exploited by using higher-order statistics. A
fundamental and versatile criterion is to minimize the Kullback-
Leibler distance [16] between the joint pdf of the estimated out-
put signals and a certain desired joint pdf (essentially a hypothe-
sized stochastic source model [10]). By factorizing the desired pdf
w.r.t. the different sources and maintaining the temporal dependen-
cies within individual channels, the minimum mutual information
(MMI) criterion follows. MMI is known as the most general ap-
proach for BSS based on ICA. MMI also appears to be a suitable
MIMO generalization of the SIMO-based approach in Fig. 1 (a).
In both cases, the filters are designed so that, ideally, the contri-
butions of (different) sources are (mutually) cancelled out in the
output signal(s). In the case of AED, this is expressed by (2).
(ii) Nonwhiteness is exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore con-
sider multivariate pdfs, i.e., ‘densities including D time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization
of output cross-relations at different time-instants. We assume er-

godicity within blocks of length N so that the ensemble average is
replaced by time averages over these blocks.

2.1. Matrix notation for convolutive mixtures

To express the algorithm for block processing of convolutive mix-
tures in a general way, we first need to formulate the convolution of
the FIR demixing system of length L in the following convenient
matrix form [11]:

y(m, j) = x(m, j)W(m), (4)

where m denotes the block index, and j = 0, · · · , N − 1 is a
time-shift index within a block of length N , and

x(m, j) = [x1(m, j), . . . ,xP (m, j)], (5)

y(m, j) = [y1(m, j), . . . ,yP (m, j)], (6)

W(m) =

⎡
⎣

W11(m) · · · W1P (m)
...

. . .
...

WP1(m) · · · WPP (m)

⎤
⎦ , (7)

xp(m, j) = [xp(mL + j), . . . , xp(mL − 2L + 1 + j)],(8)

yq(m, j) = [yq(mL + j), . . . , yq(mL − D + 1 + j)] (9)

=

P∑
p=1

xp(m, j)Wpq(m). (10)

In (9), D denotes the number of time lags taken into account to
exploit the nonwhiteness of the source signals as shown below.
Wpq(m) denotes a 2L × D Sylvester matrix that contains all co-
efficients of the respective filter:

Wpq(m) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

wpq,0 0 · · · 0

wpq,1 wpq,0

. . .
...

... wpq,1

. . . 0

wpq,L−1

...
. . . wpq,0

0 wpq,L−1

. . . wpq,1

...
. . .

...
0 · · · 0 wpq,L−1

0 · · · 0 0
...

...
...

0 · · · 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

2.2. Coefficient optimization

2.2.1. General Coefficient Update

Based on the natural gradient [9] of the cost function in [10], the
generic TRINICON-based update rule reads:

W(m) = W(m − 1) − µ∆W(m), (12)

∆W(m) =
2

N

∞∑
i=0

β(i, m)

N−1∑
j=0

W(i)

·
{
yH(i, j)Φs,PD(y(i, j)) − I

}
, (13)

with the score function

Φs,PD(y(i, j)) = −∂log p̂s,PD(y(i, j))

∂y(i, j)
(14)

III - 98

➡ ➡



resulting from the hypothesized source model (a factorization of
p̂s,PD(·) among the sources yields BSS, while further factoriza-
tions lead to efficient dereverberation algorithms [10]). In (13),
β is a window function with finite support that is normalized ac-
cording to

∑m

i=0
β(i, m) = 1 allowing for online, offline, and

block-online algorithms [11, 13].

2.2.2. Sylvester constraint and coefficient initialization

When implementing the update rule (13) the Sylvester structure
of ∆W has to be ensured by enforcing a Sylvester constraint SC.
Two possible ways to do so are to select the L filter taps in the first
column or to select the L-th row of ∆W as a reference and gener-
ate the Sylvester structure (11) from it. We denote these two spe-
cial types of constraints as SCC and SCR, respectively. As shown
in [12], the choice of SC affects the way how the natural gradient is
implemented, and selects certain subclasses of TRINICON which
can be related after certain approximations to some known algo-
rithms from the literature. In particular, it can be shown that SCC

leads to very robust algorithms if the different sources in Fig. 1 (b)
are located in different half planes w.r.t. the microphone array (as,
e.g., in car environments). However, in general, if we do not have
such a prior knowledge, SCR as also used for the experiments in
Sect. 3 is preferable.

The choice of SC also affects the applicable methods for co-
efficient initialization. For SCR a proper way is to set all coeffi-
cients, except for wpp,L/2 = 1 to zero, whereas for SCC , we have
to set wpp,0 = 1 instead.

2.2.3. Realizations based on Second-Order Statistics (SOS)

Here, the source models are simplified to sequences of multivariate
Gaussian pdfs described by PD × PD correlation matrices R̂···
within the length-N signal blocks. This leads to the coefficient
update

∆W(m) = 2

∞∑
i=0

β(i, m)W(i)
{
R̂yy(i) − R̂ss(i)

}
R̂−1

ss (i).

(15)
The BSS variant of this generic SOS natural gradient update also
used for multiple TDOA estimation in Sect. 3 follows immediately
by setting

R̂ss(i) = bdiagD R̂yy(i). (16)

This algorithm leads to very robust practical solutions even for a
large number of filter taps due to an inherent normalization by the
auto-correlation matrices, reflected by the inverse of bdiagD R̂yy

in (15). Note that there are also efficient approximations of this
algorithm with a reduced computational complexity allowing al-
ready real-time operation on a regular PC platform [13]. Similarly
to the choice of SC in Sect. 2.2.2, the definition of the estima-
tion method for the correlation matrices (covariance vs. correlation
method) is an important practical aspect. For complexity reasons,
we choose the correlation method for the evaluation in Sect. 3.
Further details on this implementation can be found in [13].

2.3. TDOA estimation and relation to SIMO-based approach

To obtain TDOA estimates for the Q sources from the MIMO filter
matrix W according to Fig. 1 (b), several different methods are
conceivable. Since W can be considered as an estimate of the
inverse of the MIMO system of room impulse responses (at least

in case of deconvolution), one could try to invert the result again,
followed by a detection of the peaks in a similar way as outlined
in Sect. 1. However, from a complexity point of view using an
inversion may not be the desired method.

Here, we consider another way, based on a very interesting
relationship to the SIMO-based method (and blind system identi-
fication in general [17]). Let us define a mixing matrix H with
Sylvester structure in the same way as shown in (7), (11) for W.
With compatible dimensions, the corresponding matrix for the over-
all system C can then be expressed as C = HW [11]. It can be
shown by simple considerations (or directly from the TRINICON
update for all types of applications) that ideally, upon convergence,
we have [11]

boff{C} = 0, (17)

except a channel-wise (external) permutation ambiguity which can
be easily resolved in the localization application (not to be con-
fused with the internal permutation ambiguity, known from nar-
rowband approaches for BSS). boff denotes the blockwise off-
diagonal elements of a matrix. For simplicity, we rewrite this set
of equations (17) for the case of two sources and two microphones.
Expressed by the convolution operator, we obtain

h11 ∗ w12 = −h12 ∗ w22 (18)

h21 ∗ w11 = −h22 ∗ w21 (19)

By comparing Fig. 1 (a) and (b), we see that (18) and (19) can in
fact directly be considered as the generalization of the AED con-
dition (2) to multiple sources. Using a proper coefficient initializa-
tion, (18) is the corresponding equation to estimate the TDOA of
source 1, while (19) gives the TDOA of source 2. Moreover, since
the coefficient initialization, described in Sect. 2.2.2, also corre-
sponds to the one recommended for the AED in [5], we can expect
similar steady-state performances due to this close link. This is
verified in Sect. 3. From these findings, we can express the TDOA
estimates immediately in the same way as in (3) as

τ̂1 = arg max
n

|w12,n| − arg max
n

|w22,n|, (20)

τ̂2 = arg max
n

|w11,n| − arg max
n

|w21,n|. (21)

3. EXPERIMENTAL RESULTS

The audio data used for the evaluation have been recorded at a
sampling rate of 48 kHz in a TV studio with a reverberation time of
T60 ≈ 700 ms. These data are made available as part of an audio-
visual database [18]. This database also includes reference data of
the speaker positions measured using infrared sensors. From the
reference positions reference TDOAs are calculated by geometric
considerations. This allows us to consider both, fixed and mov-
ing speakers in a real acoustic environment. From the database,
we chose two scenes in the same environment with one fixed and
one moving source, respectively. Those are used separately for the
SIMO-based approaches, and a superposition (Fig. 2) is used for
the MIMO-based approach. The distance between the two micro-
phones was 16 cm. For the adaptation algorithms, the filter lengths
were optimized leading to 1024 for the SIMO case (AED) and to
256 for the MIMO case (BSS, (15)). The block length for the GCC
(using a phase-transform (PHAT) weighting rule [2]) has been set
to 1024. GCC and AED have been complemented by a voice-
activity detector. Fig. 3 (a) and (b) show the reference and esti-
mated TDOAs for the fixed and the moving speakers, respectively.
In these first experiments, only one speaker was active (also in case
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Fig. 2. Scenario used for the simulations.

of the MIMO-based approach). Subplot (a) confirms that both of
the blind adaptation algorithms lead to the same accurate TDOA
estimates in this static case, as expected from the considerations
in Sect. 2.3. Note that the TDOA estimates can only attain integer
values. In Fig. 4 we consider the simultaneous estimation of two
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Fig. 3. TDOA estimation for one source.

TDOAs by the proposed MIMO approach. Due to the scenario
in Fig. 2 the two TDOAs exhibit different signs. The estimates
deviate only slightly from the corresponding results of the MIMO-
based approach in Fig. 3 (a) and (b) during some very short time
intervals. This may be explained by the different speech activity
of the two sources which is inevitable. However, the short peaks
in Fig. 4 may be easily removed by appropriate post-processing.
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Fig. 4. Simultaneous TDOA estimation for two sources.

4. CONCLUSIONS

We presented a novel approach for simultaneous estimation of
multiple TDOAs based on blind adaptive MIMO filtering. For
the adaptation, no voice activity detection is required. Some sim-
ilarities to the known SIMO-based approach have been identified.
The experimental results show a robust performance in reverber-
ant environments. Based on the experience with the closely related
broadband BSS application, a robust localization in environments
with diffuse noise can also be expected.
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