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1. INTRODUCTION. Traditionally blind source separation (BSS) has often been considered as an inverse problem. In this paper we show
that the theoretically optimum convolutive BSS solution corresponds to blind multiple-input multiple-output (MIMO) system identification.
By choosing an appropriate filter length we show that for broadband algorithms the well-known ambiguities can be avoided. Ambiguities
in instantaneous BSS algorithms are scaling and permutation [1]. In narrowband convolutive BSS these ambiguities occur independently
in each frequency bin so that arbitrary scaling becomes arbitrary filtering [2]. For additional measures to solve the internal permutation
problem see, e.g., [2] and for the arbitrary filtering, e.g., [3]. On the other hand broadband time-domain BSS approaches are known to
avoid the bin-wise permutation ambiguity. However, traditionally, multichannel blind deconvolution (MCBD) algorithms are often used in
the literature [3, 4], which have the drawback of whitening the output signals when applied to acoustic scenarios. Repair measures for this
problem have been proposed in [3] (minimum distortion principle) and [4] (linear prediction). In the following we consider the optimum
broadband solution of mere separation approaches (MIMO systems, see Fig. 1b) as presented, e.g., in [5], and relate it to the known blind
system identification approach based on single-input multiple-output (SIMO) models [6, 7, 8] (Fig. 1a).
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Figure 1: Blind system identification based on (a) SIMO and (b) MIMO models.

2. RELATION BETWEEN BLIND SYSTEM IDENTIFICATION AND BLIND SOURCE SEPARATION. From Fig. 1a and for
e(n) = 0 it follows for sufficient excitation s(n) that

h1(n) ∗ w1(n) = −h2(n) ∗ w2(n) (1)

This can be expressed in the z-domain as H1(z)W1(z) = −H2(z)W2(z). Without loss of generality we assume that H1(z), H2(z) and
the adaptive filters Wi(z) exhibit an FIR structure. Thus, the z-domain representations can be expressed by the zeros z0Hi,ν , z0Wi,µ and
the gains AHi

, AWi
of the filters Hi(z) and Wi(z) respectively:

AH1

M−1
∏

ν=1

(z − z0H1,ν)AW1

L−1
∏

µ=1

(z − z0W1,µ) = −AH2

M−1
∏

ν=1

(z − z0H2,ν)AW2

L−1
∏

µ=1

(z − z0W2,µ) (2)

We assume that H1(z) and H2(z) have no common zeros. Then the equality of (2) can only hold if the filter length is chosen as L = M

and if the zeros z0W1,µ = z0H2,µ and z0W2,µ = z0H1,µ for µ = 1, . . . , L − 1. This leads to the optimum filters W1(z) = αH2(z)
and W2(z) = −αH1(z). It can be seen that the optimum filters can only be determined up to an arbitrary scaling by a scalar constant

α :=
AW1

AH2

=
AW2

AH1

. Note that this holds only for L = M . For L > M the scaling ambiguity would result in arbitrary filtering. For the

SIMO case this scaling ambiguity was similarily derived in [7]. Adaptive algorithms for this SIMO structure have been proposed in the
context of blind deconvolution, e.g., in [6, 7] and for blind identification used for passive source localization, e.g., in [8, 9]. In [6, 9] this
SIMO approach was also generalized to more than two microphone channels.
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Figure 2: Overall system C for the MIMO case, illustrated for P = Q = 2.

Now let us study the relationship of the SIMO-based method to MIMO systems. As shown in Fig. 2 the Sylvester matrix H is defined. The
filter coefficients of the subfilters hij in Fig. 1 are represented in the columns of the submatrices of H [5]. With compatible dimensions,
the corresponding matrix for the overall system C can then be expressed as C = HW. Obviously, to ideally separate the sources, the
cross-channels of the overall system C must be zero, i.e., boff{C} = 0 together with an uncritical external permutation (which can be
easily resolved by using geometrical information). This separation condition has also been rigorously derived from the broadband BSS
update equation in [5]. For simplicity, we rewrite boff{C} = 0 for the case of two sources and two microphones. Expressed by the
convolution operator, we obtain

h11 ∗ w12 = −h12 ∗ w22 (3)

h21 ∗ w11 = −h22 ∗ w21 (4)

By comparing Fig 1 (a) and (b), we see that (3) and (4) can in fact directly be considered as the generalization of the SIMO identification
condition (1) to multiple sources. The similarity of the equations (3), (4) and (1) indicates that BSS performs MIMO system identification.
Similarly to the SIMO case we investigate the solutions of the MIMO conditions (3), (4) with respect to the optimum demixing filter
length L and a potential filtering ambiguity (the solution of the permutation ambiguity has been addressed in [5]). The optimum filter
length L can be determined using the dimensions of the matrix notation in Fig. 2. This was done similarly for the case of deconvolution
in [10]. However, since there are no constraints on the direct paths of C in mere BSS due to the condition boff{C} = 0 we can exclude
the respective elements of H for determining the optimum filter length, i.e., of Q rows of submatrices we only consider Q − 1 rows of
submatrices. This leads to (Q − 1)(M + L) = PL, i.e., Lopt,BSS = Q−1

P−Q+1
M . For P = Q = 2 we obtain Lopt,BSS = M as in the

SIMO case. Interestingly, the general matrix formulation in Fig. 2 can be linked to the results for the deconvolution shown in [10] where the
optimum filter length is Lopt,MCBD = Q

P−Q
(M − 1) and P > Q is required: In [10] the submatrices of H do not contain the additional

rows of zeros (marked by the dashed line in Fig. 2). This results in the modified factor (M − 1) in Lopt,MCBD. However, it can be shown
by taking the pseudo-inverse H

+ = (HT
H)−1

H
T instead of the inverse that the exact deconvolution given in [10] follows rigorously

when choosing L = Lopt,MCBD. For the case of broadband BSS with correct filter length L = Lopt,BSS we can apply the same reasoning
with (3), (4) as in the SIMO case above, showing that the arbitrary filtering reduces to an arbitrary scaling only.

3. CONCLUSIONS. In this paper we have shown that convolutive BSS corresponds to blind MIMO system identification. From this
we can draw the conclusions that (1) for a suitable choice of the filter length arbitrary filtering is prevented with broadband approaches,
(2) the known whitening problem is avoided, and (3) the BSS framework also allows for several new applications, such as simultaneous
localization of multiple sources, e.g. [11].
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