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Robust Extended Multidelay Filter and Double-Talk
Detector for Acoustic Echo Cancellation
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Abstract—We propose an integrated acoustic echo cancellation
solution based on a novel class of efficient and robust adaptive al-
gorithms in the frequency domain, the extended multidelay filter
(EMDF). The approach is tailored to very long adaptive filters and
highly auto-correlated input signals as they arise in wideband full-
duplex audio applications. The EMDF algorithm allows an attrac-
tive tradeoff between the well-known multidelay filter and the re-
cursive least-squares algorithm. It exhibits fast convergence, su-
perior tracking capabilities of the signal statistics, and very low
delay. The low computational complexity of the conventional fre-
quency-domain adaptive algorithms can be maintained thanks to
efficient fast realizations. We also show how this approach can be
combined efficiently with a suitable double-talk detector (DTD).
We consider a corresponding extension of a recently proposed DTD
based on a normalized cross-correlation vector whose performance
was shown to be superior compared to other DTDs based on the
cross-correlation coefficient. Since the resulting DTD also has an
EMDF structure it is easy to implement, and the fast realization
also carries over to the DTD scheme. Moreover, as the robustness
issue during double talk is particularly crucial for fast-converging
algorithms, we apply the concept of robust statistics into our ex-
tended frequency-domain approach. Due to the robust generaliza-
tion of the cost function leading to a so-called M-estimator, the algo-
rithms become inherently less sensitive to outliers, i.e., short bursts
that may be caused by inevitable detection failures of a DTD. The
proposed structure is also well suited for an efficient generalization
to the multichannel case.

Index Terms—Adaptive filtering, doubletalk, echo cancellation,
frequency domain, robust statistics.

I. INTRODUCTION

N ACOUSTIC echo cancellation (AEC), as illustrated in

Fig. 1, two main problems have to be addressed: 1) system
identification of the loudspeaker-room-microphone path in
order to cancel the acoustic echo d(n) and 2) reliable and fast
control of the adaptation by a double-talk detector (DTD) in
order to avoid a divergence of the adaptive system identification
algorithm during presence of speech v(n) in the receiving room
in addition to the ambient noise w(n).

Many signal processing applications call for adaptive filters
with very long impulse responses. In AEC, thousands of FIR
filter coefficients may be required to sufficiently model the echo
path. Moreover, the input data are often very strongly correlated
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Fig. 1. Adaptive filter and DTD in the AEC application.
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Fig. 2. Relation of EMDF to other algorithms.

which causes slow convergence of most adaptation algorithms,
such as the well-known normalized least-mean-square (NLMS)
algorithm [1]. The requirements are particularly demanding for
high-quality and/or multichannel audio reproduction so that
more sophisticated algorithms taking into account the input
signal correlations have to be used. In this sense, the recursive
seast-squares (RLS) algorithm can be regarded as the optimum
choice since it takes into account all relevant time lags for
decorrelation in the search space of the filter coefficient vector
of length L [1]. This is illustrated in Fig. 2, where these
time-domain algorithms with sample-by-sample updates are
represented by the vertical dashed line on the left. On the other
hand, however, using fast-converging algorithms, such as the
RLS or fast RLS (FRLS) is often considered to be impractical
due to the associated high computational complexity and/or
numerical instability problems.

An attractive solution to these problems is to use frequency-do-
main adaptive filters since, on the one hand, the computa-
tional complexity can be greatly reduced by exploiting the
fast Fourier transform (FFT). On the other hand, the discrete
Fourier transform (DFT) approximately decorrelates the input
signals, which leads to very favorable convergence properties
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of the adaptive algorithms. Frequency-domain methods rely
on block-processing. The horizontal axis in Fig. 2 represents
the block length /V, i.e., the number of new samples used for
each update. In early approaches, the block length was set to
the number of filter taps (see FLMS in Fig. 2). The associated
processing delay, equal to the block length, and the resulting
difficulty to track time-varying statistics of nonstationary sig-
nals, are often considered to be a major handicap. Therefore,
a more flexible structure was introduced, the multidelay filter
(MDF) [2], where the filter length L is partitioned into shorter
length-N sub-filters. While the processing delay can be signif-
icantly reduced with this structure, the major disadvantage of
choosing a block length N that is much shorter than the filter
length L is that the convergence speed is often severely degraded
for strongly correlated signals. We attribute this degradation to
the correlations between these shorter length-/NV blocks, which
are not taken into account in the traditional MDF. Another
related problem due to this approximation is the need of a
relatively “severe” regularization which may additionally slow
down the adaptation compared to the nonpartitioned version.
Extending the work in [3], we study in this paper an extended
MDF (EMDF) and a fast implementation of it to overcome
these problems. After Fig. 2, the objective is to get closer to the
desired upper left region representing fast convergence and low
delay without significantly increasing the computational load
compared to the MDF. The EMDF algorithm in its baseline
version [4] follows directly from a generic partitioned frequency-
domain adaptive algorithm (shaded area in Fig. 2) which can
be rigorously derived from an exponentially weighted least-
squares criterion in the frequency-domain [5]. This generic
frequency-domain framework has led to novel and efficient
implementations of multichannel AEC systems by inherently
taking all interchannel correlations into account. In a similar way,
the EMDF algorithm also contains all interpartition correlations.
In addition to an improved echo cancellation performance,
we also consider in this context the robust operation during
double talk, i.e., during speaker activity in the receiving room.
The robustness issue during double talk is particularly cru-
cial for fast-converging algorithms as inevitable failures of
double-talk detection (Fig. 1) at the beginning or the end of
utterances may then in turn cause fast divergence. Such detection
failures causing outliers ©(n), i.e., short bursts leaking into the
adaptation mechanism from the speech signal v(n) may be seen
as alteration of the statistics of the measurement error (in terms
of system identification). Therefore, we apply the concept of
robust statistics [10], [14] to the extended frequency-domain
approach. According to [10], robustness signifies insensitivity
to a certain amount of deviations from statistical modeling
assumptions due to some fraction € of outliers ¥(n) with some
arbitrary probability density function (pdf) p; (). In other words,
the shape of the true underlying pdf p, (w’) of the remaining
measurement error contributions w’ affecting the coefficient
updates after double-talk detection deviates from the assumed
pdf p,,(w) of the ambient noise (usually Gaussian). This leads
to a super-gaussian pdf showing longer tails according to

Pur (') = (1 = pu(w) + epa(9). ()

To take this modified pdf into account, the cost function
is generalized from a least-squares estimator to a maximum
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likelihood-type estimator, a so-called M-estimator [10]. Due to
this generalization of the cost function, the algorithms may be
designed to become inherently less sensitive to such outliers.
Robust statistics has already been shown to be a very powerful
tool to handle the double-talk situation in the echo cancellation
application [11]-[13]. In this contribution, we show how this
concept can be included in the generic partitioned frequency-
domain algorithm for obtaining a robust EMDF realization.

One of the most widely used DTDs is the Geigel algorithm
[6], which works fairly well when the echo return loss is well
defined. In practice, however, this is generally not the case. The
need for more sophisticated DTDs that do not depend on the
path attenuation is obvious. Alternative methods for double-talk
detection have been presented in, e.g., [7] and [8]. A DTD based
on a normalized cross-correlation vector was proposed in [9],
and it was shown that this DTD performs much better than the
Geigel algorithm and other DTDs based on the cross-correlation
coefficient. In this paper, we show how to extend the ideas of
[9] to the EMDF algorithm. The resulting DTD has an EMDF
structure which leads to an efficient implementation and is very
well matched to the EMDEF-based echo cancellation, as we shall
confirm by experimental results.

To keep the formal presentation short and accessible, we con-
centrate on the single-channel EMDF algorithm in this paper;
the generalization to the multichannel version is obtained anal-
ogously as in [5]. In contrast to interchannel correlations, the in-
terpartition correlations in the EMDF result from a shift-struc-
ture of the data. This structure can be exploited to derive fast
implementations. Using a fast implementation of the EMDF al-
gorithm (FEMDF) the computational complexity can be kept on
the same order as that of the classical MDF.

II. ROBUST GENERIC PARTITIONED FREQUENCY-DOMAIN
ADAPTIVE FILTERING

Here, we present a generic frequency-domain algorithm in its
robust partitioned and constrained single-channel version pro-
viding the basis for the robust EMDF algorithm introduced in
Section III.

A. Definitions and Notation

In this paper, we follow the same notation as in [5], where
a detailed derivation and an analysis of the nonrobust generic
algorithm can be found.

From Fig. 1, it can be seen that the error signal at time n
between the output of the adaptive filter §(n) and the desired
output signal y(n) is given by

L1 )
e(n) =y(n) — Z z(n —£)hy 2)
=0

where i, are the coefficients of the filter impulse response h. By
partitioning the impulse response h of length L into K segments
of integer length N = L/K as in [2], (2) can be written as

K—-1N-1 X
e(n) =y(n) — Z z(n— Nk — £)hNite
k=0 (=0
K—1 X )
=y(n) = ) xp(mhp=y(n) —x"(mh 3
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where
xk(n) = [z(n — Nk),z(n — Nk —1),...,
#(n—Nk—N+1)7 “)

hy = [7LNk7 ANkt1s s }ALNHNA]T (5)

x(n) = [xg (n), %7 (n), ..., xx 1 (n)]". (6)

Superscript © denotes transposition of a vector or a matrix. The
length-N vectors hy, k =0, ..., K — 1 represent sub-filters of
the partitioned tap-weight vector

h=[hl, ... bn% )7 @)

We now define the block error signal of length /N. Based on
(3), we write

e(m) =y(m) = Y Uf(m)h ®)

where m is the block time index, and

e(m) = [e(mN),...,e(mN + N — 1)]* )
y(m) = [y(mN),...,y(mN + N = 1)]"  (10)
Ur(m) = [xk(mN),...,xpg(mN+ N —-1)]. (1)

To derive the frequency-domain algorithm, the block error
signal, (8) is transformed by a DFT matrix to its frequency-do-
main counterpart. The matrices Ug(m),k = 0,..., K — 1 are
Toeplitz matrices of size (N x N). Since a Toeplitz matrix
Uy (m) can be transformed, by doubling its size, to a circulant
matrix of size (2N x 2IV), and a circulant matrix can be diago-
nalized using the (2N X 2N)-DFT matrix Fon with elements
e72mvn/CN)(y n = 0,...,2N — 1), we have

UT(m) = [0nxn, Inxn] Fon Xi(m)Fon Inxn, Onxn]”
—_——— —_—

=W on =W5wn
12)
with the diagonal matrices
Xi(m) = diag{Faon[z(mN — Nk — N),...,
z(mN - Nk+N-1)]"}. (13)

The superscript indices “01” and “10” of the window matrices
WAL o and W1 \ describe the relative positions of the
N x N identity matrix and the NV x N zero matrix within the
windows. This finally leads to the following block error signal:

e(m) =y(m) - WionFoyX(m)Gi, b (14)

Girxp = diag {GoNyns- - Ganun (16)

Gy = Fan Wl vF ! (17)
. T T T

h=[hy,....hy_] (18)

h, = Fyhy. (19)
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B. Optimization Criterion

‘We now formulate a criterion that is minimized with respect
to the filter coefficients in the DFT domain using (14). Mod-
eling the noise with a super-gaussian pdf to obtain an outlier-ro-
bust algorithm corresponds to a nonquadratic optimization cri-
terion [10]-[13]. Following [10], we generalize the block-based
weighted least-squares criterion (e.g., [5]) to a corresponding
M-estimator

(20)

where (i, m) is a weighting function defining different classes
of algorithms [1], e.g., 3(i,m) = (1 — \)A\™ ™% with the forget-
ting factor 0 < A < 1 to obtain an RLS-like algorithm. Note that
plle(n)|/s] = |e(n)|? gives us the corresponding nonrobust al-
gorithm. Moreover, the choice p[(|e(n)|/s)] = — log p.(e(n))
immediately shows the close relation to the ordinary maximum
likelihood estimator. In general, p[-] is a convex function and
s is a real-valued positive scale factor for the :th block as dis-
cussed in [10], [12] (see also Section II-D). One of the main
statements of the theory on robust statistics is that the resulting
algorithm inherits robust properties as long as the nonlinear
function p[ - ] has a bounded derivative [10]. We can easily verify
that the condition of a bounded derivative is not fulfilled for the
classical case p[-] = | - |2

A particularly simple, but efficient, choice of p[ -] for robust-
ness is given by the so-called Huber estimator [10]

p(|z]) = >
kolz| — %2,

where kg is a constant controlling the robustness of the algo-
rithm. Note that, indeed, according to Hampel’s proposition in
[14, pp. 117-119], the choice (21) gives the optimum equi-
variant robust estimator under the assumption of Gaussian back-
ground noise p,,(w) in the error model (1).

for |z| < ko

21
for |z| > ko

C. Adaptation Algorithm

To obtain an adaptation algorithm from the optimization crite-
rion (20), we need to recursively solve the corresponding normal
equation (see [1] for the complex gradient)

7]

V.J(m,h) = 2—~J(m,h) = 0. 22
(m, h) oh (m,h) (22)

In contrast to the nonrobust case leading to an RLS solution,
(22) is a nonlinear system of equations which we nevertheless
would like to tackle in a similar way.

As shown in Appendix I, the complex adaptive Newton algo-
rithm minimizes for 3(i,m) = (1 — A\)A™~* the nonquadratic
criterion (20) by using a recursion of the form

h(m) = h(m—1)—2u(1-X)S } (m)V.J[m, h(m—1)] (23)

where a relaxation parameter 0 < p < 1 is introduced;
..

vJ = 20/057 is the gradient of .J w.r.t. h, and Sy
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is an Elpproximati*on of the expected value of the Hessian
VVH ] =20/0h (VJ)H according to

Sy (m) = ASyr(m—1)+(1=N)VVH J[m,h(m—1)]. (24)

Hence, to proceed with the generic frequency-domain deriva-

tion in generalizNationAof [13], we need to calculate the gradient
and Hessian of J(m, h). To link the block formulation (14) with
(20), we write

e*(n) = e (m)L,_ mN

= [YH(m) h (G2L><L) XH( )F ;J\FflszxN}

(25
where n = mN,...,mN + N —1,-7H = (.:H)~1 ‘and 1; is
a length-N vector containing a 1 in position ¢ and zeros in all
other positions. Then, the gradient is found using the chain rule

mN+N—1
oh" oh" 5

. 1n—mN7

n=mN

mN+N—1
7]

> el |

n=mN 8h
Using (25), it fOIIOWS'

=2

Ie(n)l} sign [e(n)]

S S

V.J= _N (G2LxL)H XH (m)Fan Wik y¥le(m)]
~ " Ns (G2L><L) XH(m)ﬂe(m)] (26)
where
) [le(”;‘N)q sign [e(mN)]
Yle(m)] =

¢F@&¥imkgﬂdmN+N_n]

(12 = /(2]
Onx1
sletm] = Fax | e |

Note that for the Huber estimator with (21), the derivative (27)
results in a simple limiter

P(l2]) = min{[z], ko}. (29)

Combining (23) and (26), the robust frequency-domain up-
date reads

b(m) = B(m

27
(28)

2u(1 = X)
Ns
S5 m) (Gafxp) ™ X (m)gle(m)]

We now derive the Hessian of .J and the estimate Sy from (24).
The Hessian is expressed as

o (VJ)

—1)+
(30)

vVH ] =

40 _
= P 8f1* [ (m )]W?\}XQNFQJ\I/'X( )G2L><L
By applying again the chain rule, followed by recursive aver-
aging using the forgetting factor A\ according to (24), we finally
obtain the estimate

Syr(m) = 4(17;)\) D NG 1) X (1) Ganxan (1)

=0
X( )G2L><L

S

€29
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where

G2N><2N( )

= Fy 8 Wik n ¥'[e(m)] W oy Fon (32)
¥'[e(m)]
:&%{W[Eg?m]~*WPdmNﬁN‘lﬂ}
(33)

and 1)’ is the derivative of 1. For the special case of the Huber
estimator, 9’ (|z|) is 1 for |z| < ko and O else.

Equations (14), (30), and (31) form the main equations of the
generic adaptive algorithm. In the same way as shown in [5]
and summarized in Appendix II, these equations can be refor-
mulated in a practically more useful form involving only DFTs
of length 2NV

Sa,pr(m) = ASay(m —1)
+MXH(m>GQNx2N(m)X(m> (34)
Ky (m) = 83, (m)X* (m) (35)
A e(m) = ):( m) — W oy FonX(m)hy, (m — 1) (36)
hy; (m) =hy (m —1)
+ 20N Gl K migle(m)] 37

with the zero-padded coefficient vector
~ ~T ~T T
h,,(m) = [th,o(m)v . 7h2N,K—1(m)j| (38)

bt = Fax 7]

Due to the formal similarity of (34)—(37) to the RLS algorithm
[1] in the time domain, we call the matrix K (m) the fre-
quency-domain Kalman gain. The Kalman gain plays a key role
in the following sections.

(39)

D. Scale Factor

The scaling factor s is a suitable estimate of the spread of
the random errors. In practice, s needs to be obtained from the
residual error, which in turn depends on h. In the application to
AEC, the scale factor should reflect the background noise level
at the near end, be robust to short error bursts during double
talk, and track long-term changes of the residual error due to
echo path changes. An efficient solution to fulfill these three
requirements along with a detailed derivation was first given in
[12]. In block formulation for a block length N, this estimate
reads

(1) = Austm) + (1 220 S [
s(m = Ass(m — As Y| —=
NB = s(m)
(40)
where s(0) = o, and (3 is a normalization constant, depending
on k.
III. ROBUST EXTENDED MULTIDELAY FILTER (EDMF)

The algorithm (34)—(37) is strictly equivalent to the (robust)
RLS algorithm in the time domain for a block length N = 1.
Unfortunately, the matrix S4 4 (m) in (34) is not sparse, so the
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above generic algorithm still has a high computational com-
plexity due to the matrix inversion in (35).

In the case of the nonrobust frequency-domain method and
the extended multidelay filter (EMDF) [4], [5], it has been
shown that (34) and the associated Kalman gain (35) can very
well be approximated as a matrix of diagonal submatrices
which significantly reduces the complexity of the matrix inver-
sion. To obtain a similarly efficient robust EMDF algorithm,
we approximate the algorithm (34)—(37) in three steps.

A. Approximation 1
To begin with, we approximate ¥'[e(m)] in (32) and (33) by
the conservative choice (in terms of robustness)

W'le(m)] = Yryin(m)Insxn (41)

where ¢/ . (m) is the minimum of ¢’ within the current

length-N block (0" € {0, 1} for the Huber estimator). More-
over, as further explained below, we bound 4, ; (m) by p to

prevent instability of the update (37) so that

R ]

P! (m) = max {u, min
(42)
: -H _
Since Fyx' WL onFon = GOy on/(2N) and WL, oy =
WQ}VX Nw%xz ~» (32) is now approximated as

Pimin (1) QoL

1 GO (43)

GZNXZN(m) =

B. Approximation 2

Now, as in the nonrobust EMDF [4], [5], matrix G5}, ox
may well be approximated by G3),on = Ionxon/2 in (34)
for sufficiently large N, which yields

Vmin(m)
4N

This approximation leads to a blockwise diagonal structure of
matrix Sq 4 (m) in (34) and (35) with diagonal sub-matrices as
illustrated in Fig. 3 for the example of five partitions. The clas-
sical MDF in its robust version is obtained by further approxi-
mating Sq () by dropping the off-diagonal components, i.e.,
the interpartition correlations (grey diagonals in Fig. 3). This
leads to the low computational complexity per output sample,
which is linear in K. However, this additional MDF approxi-
mation often significantly degrades the convergence speed for
highly correlated input data. Another related problem of the
MDF due to this approximation is the need of a relatively high
regularization compared to the nonpartitioned version which
may additionally slow down the adaptation. The EMDF takes
the interpartition correlations into account and, thus, provides a
better approximation to the exact solution of the normal equa-
tion. However, a straightforward implementation leads to a com-
putational complexity, which increases quadratically with the
number K of partitions. Fast schemes, as discussed in Section
V, provide a solution with a complexity that is comparable to
that of the classical MDF.

Ganxan(m) = Linyon. (44)
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C. Approximation 3

In this paper, we further assume that s(m) and ¢, ; (m) vary

slowly over time so that (34) together with (44) can be expressed
as

Sa.u(m) = —%22((:)) S'(m) (45)
where
S'(m) = AS'(m — 1) + (1 = \)XH (m)X(m). (46)

By introducing the ¢)’-independent frequency-domain Kalman
gain, as in the nonrobust case [4]

K(m) = S~} (m)XH (m) 47)
so that
_ Ns*(m
Ky (m) d’ﬁlin(m)K(m) (48)

we obtain a very efficient implementation of an integrated
EMDF-based AEC system, as shown in the following sections.
In particular, synergies in the corresponding DTD introduced in
Section IV become possible. Moreover, as discussed in Section
V, fast calculation schemes for both, the adaptive filtering and
the double-talk detection may be devised.

Note also that the necessity of the bound for ¢/ . (m) in (42)

is explained by its use in the denominator of (48).

IV. EXTENDED MULTIDELAY DOUBLE-TALK DETECTOR

Double-talk detection (DTD) may be seen as a classifica-
tion problem which is solved, in general, by forming a suit-
able (normalized) decision variable &, and comparing it to a
certain threshold 7' [9]. The decision variable is generally re-
lated to a correlation or a coherence, and the threshold must be
a known constant for best performance. Obviously, a fast adap-
tation of the filter coefficients requires particularly fast and reli-
able decisions of the DTD. Following the approach in Sections
IT and III, we propose here a corresponding extended multidelay
double-talk detector (EMD DTD) that is well matched to the
EMDFE.

To simplify the derivation of the DTD, we neglect the effect
of the background noise (i.e., w = 0) for the present. The noise
will be included later. Thus, the microphone signal reads in the
frequency domain

y(m) = Gay xon X(m)hyy, + v(m)

(49)
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where

— Foy {ON“} (50)

y(m) y(m)

and v(m) is defined in the same way in terms of the near-end
speech signal v(n).

To begin with, we consider the single-talk case v = 0. We
have

oy = E{y" (m)y(m)}

= h37Shy;, (51)
where F{ -} denotes the mathematical expectation, and
S = E{X"(m)G3} xonX(m)}. (52)
Thanks to (49) and (52), we have
E{X"(m)y(m)} = Shyp
=:s (53)
and (51) can be re-written as
012, = hg:s
K—1
= Y b B{Xj(m)y(m)}
k=0
K—1
= > his; (54)
k=0
with
st = B{Xj(m)y(m)} (55)
Now, in general, for v # 0
032/ = h;ILs + 012) (56)
where
oy = E{x" (m)v(m)}. (57)

If we divide (54) by (56), we obtain the following decision vari-
able to detect the presence of a near-end signal v(n):

hils h S
52 _ _Ar - = 25 ' (58)
hZLS + 0% Ul/

We easily deduce from (58) that for v = 0, = 1 and for
v # 0,6 < 1. Note also that ¢ is not, in principle, sensitive
to changes of the echo path when v = 0.

In practice, ¢ is estimated as follows:

_1~H
1o by, (m)sg(m)

oy (m)

¢*(m) =

(59)

Here, the estimation of the echo path for the decision
variable is performed by a separate background EMDF
ﬁb’k, k=0,1,..., K — 1. However, it is important in practice
that the statistics of the signal y(n) (containing both the echo
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TABLE 1
RoBusT EMDF aND EMD DTD

Definitions:
W, - Onvxn Onxn
| Onxn Inxn |
G = FynWiF,
I 0
W, _ NxXN NXxN
| OnxnN Onxn |
Gy = FynWioF,,
Gy = diag{Ga,...,G2}
Input:
Xi(m) = diag{Faoy[z(mN — Ni— N),...
Lx(mN — Ni+ N - DT},
k=0,...,K—1
X(m) = [Xo(m),Xi(m), .., Xx_1(m)]

Kalman gain (see Table Il for a fast version):
S'(m) = AS'(m—1)+ (1 = NXH(m)X(m)
K(m) = S~ 1m)XH(m)

Double-talk detector (background filter):

e,(m) = y(m)-GiX(mh,(m—1)
hy(m) = hy(m—1)+2(1 - X)G2K(m)e,(m)
sk(m) = Apsp(m — 1) 4+ (1 — Ap) X3 (m)y (m),
k=0, . K—1
op(m) = Apog(m—1)+ (1= )y " (m)y(m),
_ ZIK 01 —b, ’w(m)sk (m)
52(771) - y(m)
&(m) < T = double-talk, =0
&(m) > T = no double-talk, p/ = u(1 — )

Echo canceller (foreground filter):

e(m) = y(m)—W , FreX(m)h(m - 1)
Yhin(m) =  max [u, ming<p<N—1 {w’ [M] }]
h(m) = h(m-1)+ #=E5GoK (m)yle(m)

stm+1) = Ass(m)
“(’f'ﬂ NIN-1 , [le(n)]
+(1 = Xs) ZT mN [W:‘

and the near-end signal during double-talk) is tracked fast
enough by the background filter, i.e., faster than the statistics of
the update of the foreground filter. Hence, the forgetting factor
Ap (0 € Ap < 1) of the background filter is chosen smaller
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than the forgetting factor A used for the system identification by
the foreground EMDF algorithm. This way, the DTD alerts the
foreground filter before it diverges by freezing its adaptation
during double-talk. Furthermore, for practical reasons, even
though not mathematically stringent, we can use the same
spectral matrix S’(m), and, thus, the same Kalman gain K(m)
for the foreground and background filters. Table I summarizes
the combination of the robust EMDF echo canceller and the
EMD DTD. Fast calculation schemes for the jointly used fre-
quency-domain Kalman gain are discussed next in Section V.

V. FAST IMPLEMENTATIONS OF THE ROBUST EMDF

When reducing the computational complexity of the robust
EMDEF algorithm, it is important to keep in mind that the data
among the partitions are not independent. Due to the formal sim-
ilarity of (36), (37), (46), and (47), with the RLS algorithm in
the time domain [1], [16], corresponding fast implementations
of the Kalman gain (47) can be expected. In [4], it is shown
that all fast calculation schemes known for the RLS can actu-
ally be applied to the EMDF after a slight modification. The
key to fast RLS realizations is the shift-structure of the input
signal vector [1], [16]. In the case of the EMDF, there is a
corresponding shift-structure among the partitions (in each fre-
quency bin v,v = 0,...,2N — 1). Exploiting this property,
the complexity increases only linearly with the number of par-
titions K (instead of quadratically as with the ordinary EMDF
algorithm), and the overall complexitiy is on the same order as
for the classical MDF. Note that this scheme may be seen as a
divide-and-conquer method, similarly to the classical subband
structure [17]. However, the main difference is that the EMDF is
based on a wideband optimization, as reflected by the constraint
matrices in (34)—(37). As an example, a fast EMDF algorithm
based on the so-called fast transversal filter (FTF) structure [16]
is given in Table II. The FTF can be derived by using the a priori
Kalman gain K®)(m) = (S®)~(m — 1)X®H (1), where
X®)(m) is a length K row vector. This a priori Kalman gain
for each block of IV output samples can be computed recursively
by 5K N (complex) multiplications (see Section VI for a more
detailed discussion of the computational complexity). “Stabi-
lized” versions of FTF (with L, respectively K N more multi-
plications) exist in the literature, but with nonstationary signals
like speech, they are not much more stable than their nonstabi-
lized counterparts. A simple remedy is to re-initialize the pre-
dictor-based variables when instability is detected with the use
of the maximum likelihood variable ¢*) which is an inherent
variable of the fast algorithm [16].

VI. COMPUTATIONAL COMPLEXITY

We study the computational complexity in terms of arith-
metic operations, i.e., the number of real multiplications, real
additions, real subtractions, and real divisions. Thereby, each
complex multiplication is realized by four real multiplications
and two real additions, and each complex addition is realized
by two real additions. Moreover, if a Fourier transform of
length N is computed using the FFT routine devised by [18],
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TABLE 1II
FREQUENCY-DOMAIN KALMAN GAIN BY AN FTF-BASED
FAST EMDF IMPLEMENTATION
Arithm.
OPs
X®(m) — Xp(m),v=0,...,2N —1,
k=0,..., K—1
em) = X§%(m)
—aWH (m - 1)XWH (m — 1) 8K
®) _ e (m) |2 -
@y (m) ¢ (m—1) + B mo1) 5
t) (m) 0
M®)(m) K (m—-1)
1 ") (m)
—_— SK 2
* { —a®(m—1) | B m-1 +
() 2 )
BOm) = A(E -1+ BEOE) )
a®(m) = a®(m-1)
(v)*
+K ) (m — 1) ST (be”_*i) 8K +2
e(m) = EBM(m-1)M®(m) 2
K (m) = t®m)+b®(m—-1)M®M(m) | 8K
eM(m) = @ (m) — el (m)M® (m) 7
(v) 2
() — (v) le, 7 (m)]
E,7(m) = A <Eb (m—-1)+ ) 2
v v i(y)*(m)
b (m) = bW (m-1)+K! )(m)m 8K
W
(v) _ K, (m)
Km = S !
K(m) — K®@m),v=0,...2N-1
Total:
40K + 24

it requires (N/2)log,[N] — (5N /4) real multiplications and
(3N /2)logy[N] — (IN/4) — 4 additions, giving a total of

3N

2N log,[N] — 5 4 (60)

operations.

A. EMDF

Table III shows the computational complexity of the algo-
rithm steps of the conventional MDF and FEMDF. For the de-
tailed analysis of the FTF-based fast Kalman gain computation
for FEMDF, we refer to Table II.

Moreover, we consider here as references the well-known
real-valued NLMS [1] and fast RLS (FRLS, real FTF in full-
band version analogously to Table II) algorithms. The number of
real operations per output sample for the different algorithms is
summarized in Table IV. The illustration in Fig. 4 clearly shows
the effectiveness of the proposed approach from the complexity
point of view. Thereby, the two uppermost curves on the loga-
rithmic scale correspond to FRLS and NLMS, respectively. The
complexities of MDF and FEMDF are shown exemplarily for
various block lengths N = 64, N = 512, N = 1024. Note
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TABLE III
COMPLEXITY ANALYSIS FOR MDF/EMDF

Input: Arithmetic OPs
Xig(m) = diag{F[z(mN — Ni— N),...
..o, 2(mN - Ni+N-1)]T}
= Xo(m—k),
k=0,... K—1 AN log,[2N] — 3N — 4
X(m) = [Xo(m),...,Xg-1(m)]
Kalman gain: MDF approx.:
S'(m) = AS'(m-1)
+(1 = V)XH (m)X(m) 6N
K(m) = S~ 1(m)XH(m) 2L
FEMDEF
after Table II:
40L + 24N
Filtering:
em) = y(m)
WO o FonX(m)h(m —1) | 6L — 2N
+4N log,[2N] — 4
e(m) = Foy [eT(m) Oixn]" 4N log,[2N] — 3N — 4
h(m) = h(m-—1)+/GK(m)e(m) 2N + 2L - 8K
+8Llog,[2N]

TABLE IV
NUMBER OF REAL OPERATIONS PER OUTPUT
SAMPLE FOR DIFFERENT ALGORITHMS

Alg. Operations per sample

MDF 10K — 8% — 12 + 4(2K + 3)log,[2N]
FEMDF

(FIF) | 48K — 8L +18 — 12 4+ 4(2K + 3)log,[2N]
NLMS | 4L+7

FRLS

(FTF) |14L+15

that the complexities of FEMDF and MDF are on the same low
order.

B. EMD DTD and Robustness Enhancement

To analyze the complexity of the integrated system after
Table I, we build upon the results from above.

To begin with, we consider the robustness enhancement of the
foreground filter. It consists of an additional real scalar factor
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Fig. 4. Illustration of computational complexities for various block lengths.

TABLE V
COMPLEXITY ANALYSIS FOR EMD DTD

Step Arithm. OPs per

length-N block

ep, hy, (as inTable IM)| 8L, — 3N — 8K — 8

+8(L + N)logy[2N]

sk, k=0,...,K—1 |10KN
o; 4N +2
& 4KN + K

requiring 2 ops per block. Assuming a Huber estimator, i.e.,
[ -] is simply a limiter after (29), the calculation of ¢/ ; and
the estimation of s(n) require another 3N + 4 ops per block,
giving a total of only three additional operations per sample.

As indicated above, the frequency-domain Kalman gain can
be used jointly for DTD and foreground filter. By exploiting this
synergy, the additional operations for the EMD DTD come from
four steps, as summarized in Table V.

This gives a total of 22KN + N — 7K — 6 + 8N (K +

1) log,[2N] additional operations per block, or

TK 6

additional operations per sample. It can easily by verified that
the overall complexity of the system is still well below the com-
plexity of the classical NLMS algorithm. For example, N =
64, K = 50,L = KN = 3200 as used for simulations below,
gives 3951 operations per sample in addition to the 5296 op-
erations per sample needed for the filter update. In contrast, the
classical NLMS update without DTD requires 12 007 operations
for these parameter settings. Moreover, a corresponding DTD in
the time domain would further increase that complexity by the
same order due to the algorithmic similarity of the cancellation
part and the background filter part.
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Fig. 5. Comparison between classical (dashed lines) MDF, (dash-dot) fast

RLS, and (solid lines) EMDF for filter length L = 50 - 64 = 3200.

VII. EXPERIMENTAL RESULTS

In this section, we apply the single-channel robust EMDF al-
gorithm for single-channel AEC with a block length N = 64 for
each partition, and a high sampling rate of 48 kHz. In general,
very high filter orders are needed for this sampling rate. In order
to compare the FEMDF performance also with the FRLS, two
different acoustic scenarios using real recordings are consid-
ered. First, we consider a low reverberation which can be mod-
eled by K = 50 partitions, i.e., a filter length of L = 50 - 64 =
3200. Moreover, in the second case, a more realistic environ-
ment with an impulse response of length L = 150 - 64 = 9600
is considered. As an input signal, we chose classical music (Air
by Bach) in both cases. The signal sequence is highly auto-cor-
related (tonal sounds, which are known as worst case for the
adaptation).

A. Convergence Speed During Single-Talk

To begin with, we compare the performance of different al-
gorithms for L = 3200 without doubletalk (i.e., v(n) = 0) in
Fig. 5. In this case, an echo-to-background noise ratio (EBR)
of 45 dB on the microphone was chosen. The dashed and dash-
dotted lines in Fig. 5 show the echo return loss enhancement
ERLE(n) = d?(n)/(e(n) — w(n))? and the coefficient error
norm ||h—h(n)||2/||k||2 achieved by the conventional MDF and
the fast RLS, respectively, as the extreme cases for a given max-
imum block size (Fig. 2). For the solid lines, the same data and
the same parameters are used with the EMDF algorithm. It is im-
portant to note that the regularization is adjusted in each case to
ensure stable convergence. Several simulations have confirmed
that the EMDF shows a significantly more stable behavior than
the classical MDF due to the more accurate approximation to the
exact recursive solution of the normal equation while the com-
plexity is kept low as demonstrated in Section VI. In Fig. 6, the
corresponding simulation results for filter length L = 9600 and
K = 150 partitions are shown. Here, the FRLS is not consid-
ered due to stability reasons. In contrast, the FEMDF still shows
a very reliable convergence behavior in this case.
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Fig. 6. Comparison between classical (dashed lines) MDF and (solid lines)
EMDF for filter length L = 150 - 64 = 9600.
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Fig. 7. Robustness during double-talk: (dashed line) nonrobust EMDF and
(solid line) robust EMDF. Near-end speech after 2 s.

B. Robustness During Double-Talk

In Fig. 7, we compare the coefficient error norm of the robust
and nonrobust EMDF algorithms in the double-talk case com-
bined with the EMD DTD from Section IV. For simplicity, only
the first acoustic scenario is considered here. The speech signal
on the near end sets in after 2 s. While the convergence in the
single-talk case (from O to 2 s) is unaffected by the robustness
enhancement, the divergence due to inevitable detection failures
is effectively avoided.

C. EMD DTD

In Section IV, we have seen that the EMDF and the EMD
DTD can be very efficiently linked from an algorithmic point
of view. Fig. 8 illustrates that this also holds in terms of de-
tection performance. Again, the speech signal on the near end
sets in after 2 s. The robust EMDF has been applied in the fore-
ground in both cases shown in Fig. 8. While the DTD based on
the conventional MDF (i.e., Table I with MDF as background
filter) cannot keep track of the foreground filter, so that several
false alarms (0 to 2 s) hinder convergence and divergence occurs
after 2 s, the EMD DTD is perfectly matched to the foreground
EMDFE.

VIII. ON THE EXTENSION TO THE MULTICHANNEL CASE

In this section, we briefly outline the efficient applicability
of the EMDF concept to the multichannel case, especially to
multiple strongly cross-correlated loudspeaker channels.
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Fig. 8. DTD performance: robust EMDF combined with (dashed line) MD
DTD and robust EMDF combined with (solid line) EMD DTD in the double-talk
case. Near-end speech after 2 s.
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The key for efficient multichannel AEC is to take into ac-
count not only the auto-correlations in matrix Sq_,, but also all
cross-correlations between the input channels [19]. As shown
in [5], the multichannel extension of frequency-domain adap-
tive filtering inherently exhibits this property and is, thus, very
suitable for stereophonic AEC or even five-channel surround
sound applications. By concatenating the coefficient vectors of
the individual channels in [5] to an overall coefficient vector
ﬁ(m) , as done above for multiple partitions, we can directly link
the multipartition equations (34)—(37) to the multichannel equa-
tions (4.57)—(4.60) of [5] as these sets of equations exhibit the
same structure. As a generalization, we can treat any combina-
tion of filter decompositions leading to such a segmentation of
the coefficient vector, which also includes, e.g., nonlinear AEC
based on the class of polynomial filters [20]. In any case, a com-
bination of different types of segmentations leads to a nesting of
partitions within the matrix Sq s for which the EMDF may fa-
vorably be applied.

In the case of multiple reproduction channels, the EMDF is
particularly attractive compared to the standard MDF as the
MDF not only approximates the auto-correlation matrices ac-
cording to Fig. 3, but also all cross-correlation matrices which
may cause severe degradation of the convergence speed and mis-
alignment. In contrast, the EMDF fully accounts for both, the
auto-correlations and cross-correlations. Fig. 9 shows the results
with the two-channel MDF and the two-channel FEMDF for the
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stereo version of the music signal as above and the same envi-
ronment as used for Fig. 6.

IX. CONCLUSION

We presented a system for AEC based on a novel class of ro-
bust frequency-domain adaptive filtering algorithms. This class
combines several very desirable properties of RLS and conven-
tional FDAF and MDF, particularly for very long adaptive filters
and high sampling rates. Due to the rigorous derivation of the
new algorithm with a block size N < L, we found a natural
way of efficiently taking all cross-correlations between the par-
titions into account. As shown by way of simulations, the algo-
rithm can lead to a significant improvement of the convergence
speed over the MDF, i.e., the conventional frequency-domain al-
gorithm with partitioned blocks. Moreover, we have shown that
the proposed approach also carries over to a very efficient treat-
ment of the double-talk problem by integrating the concept of
robust statistics and introducing an EMDF-based DTD that is
very well matched to the new system. Moreover, we proposed
fast calculation schemes for the frequency-domain Kalman gain
that give a low-complexity EMDF solution, where the compu-
tational complexity can be kept on the same order as that of the
conventional MDF. The concept can be efficiently extended to
the multichannel case.

APPENDIX [
NEWTON UPDATE (23)

Based on a second-order Taylor expansion of (22), a numer-
ical off-line optimization for his given for any choice of 5(4, m)
by the well-known iterative Newton-Raphson algorithm (e.g.,
[15]) which reads in complex form

h(m) = h(m — 1) = 287/ (m)V.Jlm.h(m ~ 1) (61)
with the gradient of .J(mn, h)
VJm,h(m — 1) =Y B(i,m)V.J(i,h)  (62)
i=0

and the Hessian matrix

Sy (m) = VVH.I(m, h) = 20/0h" (V.J (m, )"

=Y B6i,m)VV™I(i,h).
i=0

Several types of robust recursive algorithms can be derived

from these equations for certain choices of 3(i,m) and cer-

tain approximations. To obtain a rank-one (RLS-like) adaptive

Newton algorithm, we choose 3(i,m) = (1 — A\)A™ ¢ with the

forgetting factor A, and use the following two approximations
[15, p. 329]:

(63)

VJ(m—1,h(m—-1))=0 (64)
VVHI(m —1,h(m — 1)) = VVZJ(m - 1,h(m — 2)).
(65)

In (64), we assume that ﬁ(m — 1) is the minimum point of
V.J(m — 1,h) to simplify (62) to
V.J(m,h) = B(m,m)V.J(m,h)

= (1—\V.J(m,h). (66)
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The approximation (65) means that the Hessian varies slowly
with ﬁ which allows a recursive calculation of (63) with the
forgetting factor A. Equation (61) with (66) and (63) with (65)
give directly (23) and (24), respectively.

APPENDIX II
PRACTICAL REFORMULATION (34)—(37)
OF THE GENERIC ALGORITHM

Here, we summarize the steps leading from (30), (31), and
(14) to the practically more useful form (34)—(37). The advan-
tages of this equivalent formulation are that it involves exclu-
sively DFTs of length 2V, and that the relation to some known
algorithms, such as the conventional MDF can be established.

To begin with, we introduce the zero-padded coefficient
vector h,; (m), as defined in (38) and (39). Its relation to the
length-L vector h(m) can be expressed conveniently using
(16) as

hy;,(m) = G3) , h(m). (67)
Using this relation, (36) follows immediately from (14). Next,
the coefficient update (30) is premultiplied by G347 . ; on both
sides so that we obtain

B (m) = By (m — 1) + 20 =2

G318y (m) (G ) T X (m)gle(m)].  (68)
This update equation can be simplified by introducing the matrix
Sd,y, defined in (34). The relation of S4 (M) to Sy (m) from
(31) is obviously given by
H
Sw’(m) = (G%%XL) Sd,w’ (m)G%%xL (69)
Finally, in order to obtain the coefficient update (37) from (68),

we verify the following relation between the inverses of the two
matrices Sq . and Sy

_ _ H
G%OLX2LdeW(m) = Gé%stqp'l (m) (G%%XL) (70)
where
G%%sz = diag{G%?\rwNy ) G%?sz}
G%?\U@N = FZNW%?VXZNFRII
= Gy n (Gven)

W10 _ | Inxy Onxn
2NX2N Onxn Onxn |’

The relation (70) can now be verified by post-multiplying both
sides by Sq 4 (m)G1%, ; and noting that G19,,; G1% , =
G%OL xL-*
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