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Abstract

In this paper, we present an efficient real-time implementation of a broadband algorithm for blind source separation

(BSS) of convolutive mixtures. A recently introduced generic BSS framework based on a matrix formulation allows

simultaneous exploitation of nonwhiteness and nonstationarity of the source signals using second-order statistics. We

demonstrate here that this general scheme leads to highly efficient real-time algorithms based on block-online adaptation

suitable for ordinary PC platforms. Moreover, we investigate the problem of incorporating noncausal delays which are

necessary with certain geometric constellations. Furthermore, the robustness against diffuse background noise, e.g., in a

car environment is examined and a stepsize control is proposed which further enhances the robustness in real-world

environments and leads to an improvement in separation performance. The algorithms were investigated in a reverberant

office room and in noisy car environments verifying that the proposed method ensures high separation performance in

realistic scenarios.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Blind source separation (BSS) refers to the
problem of recovering signals from several observed
linear mixtures. In acoustical scenarios the problem
is referred to as the so-called cocktail party
problem, where individual speech signals should
be extracted from mixtures of multiple speakers in a
usually reverberant acoustic environment. Due to
e front matter r 2005 Elsevier B.V. All rights reserved
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the reverberation, the original source signals sqðnÞ,
q ¼ 1; . . . ;Q of our separation problem are filtered
by a linear multiple-input and multiple-output
(MIMO) system before they are picked up by the
sensors. Moreover, in most environments (possibly
spatiotemporally correlated) noise np as, e.g., sensor
or background noise will be picked up by each
sensor xp, p ¼ 1; . . . ;P. In the following, we assume
that the number Q of source signals sqðnÞ (which
may or may not be simultaneously active at a
particular instant of time) equals the number of
sensor signals xpðnÞ, p ¼ 1; . . . ;P. Thus, by the
number of sensors we determine the maximum
number of simultaneously active sources as a
condition for perfect separation. Such scenarios
.
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Fig. 1. Noisy BSS model.
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are encountered, e.g., in speech acquisition in car
environments as discussed later in Section 7 or in
meeting rooms. An M-tap mixing system is thus
described by

xpðnÞ ¼ vpðnÞ þ npðnÞ

¼
XP

q¼1

XM�1
k¼0

hqp;ksqðn� kÞ þ npðnÞ, ð1Þ

where hqp;k, k ¼ 0; . . . ;M � 1 denote the coefficients
of the filter from the qth source to the pth sensor
(Fig. 1).

In BSS, we are interested in finding a correspond-
ing demixing system, where the output signals yqðnÞ,
q ¼ 1; . . . ;P are described by

yqðnÞ ¼
XP

p¼1

XL�1
k¼0

wpq;kxpðn� kÞ, (2)

and where wpq;k, k ¼ 0; . . . ;L� 1 denote the current
weights of the MIMO filter taps from the pth sensor
channel to the qth output channel. BSS is solely
based on the fundamental assumption of mutual
statistical independence of the different source
signals. The separation is achieved by forcing the
output signals yq to be mutually statistically
decoupled up to joint moments of a certain order.
For convolutive mixtures as given by (1), frequency-
domain BSS is very popular since all techniques
originally developed for instantaneous BSS (i.e., for
the special case M ¼ 1 in (1)) may be applied
independently in each frequency bin. This bin-wise
processing, implying a narrowband signal model is
denoted here as narrowband approach and is
described, e.g., in [1]. Unfortunately, this traditional
narrowband approach exhibits several limitations
because ambiguities such as arbitrary permutation
and scaling of the output signals may then also
appear independently in each frequency bin. These
ambiguities and also circular convolution effects
have to be resolved by additional repair measures
as, e.g., shown in [2,3]. In [4] a class of broadband

algorithms was derived, for both the time domain
and frequency domain, i.e., the frequency bins are
no longer considered to be independent for real-
world time-domain signals. These algorithms are
based on second-order statistics simultaneously
exploiting nonwhiteness and nonstationarity and
inherently avoiding the permutation problem and
circular convolution effects. Thus, no geometric
information about the placement of the sensors is
needed. In [5] this concept was also extended to
higher-order statistics.

Furthermore, in [4] it has been shown that the
optimum broadband BSS solution cancels the
components from source sp to all outputs yq, paq.
This leads to an overall system cpq;k ¼PP

j¼1

PM�1
n¼0 hpj;nwjq;k�n where all cross-terms are

cancelled, i.e., cpq;k ¼ 0, paq. In [6] a set of
equations was formulated based on the overall
system cpq;k which resembles the conditions used in
single-input multiple-output (SIMO) blind system
identification [7]. Using this link it could be shown
in [6] that the broadband BSS approaches actually
perform blind MIMO system identification and thus,
for a suitable choice of the demixing filter length L,
avoid the filtering ambiguity (only an arbitrary
scaling is possible). Traditionally, also multichannel
blind deconvolution (MCBD) algorithms are ap-
plied to the BSS problem (e.g., [2,8]). There, due to
the deconvolution, a temporal whitening of the
output signals is observed in addition to the
arbitrary filtering. Due to the system identification
of our broadband approach, rather than a temporal
deconvolution in MCBD-based BSS approaches,
such whitening is also prevented.

In this paper we propose an efficient realization of
one of these broadband algorithms based on
second-order statistics which has led to a robust
real-time implementation whereas current state-of-
the-art real-time implementations are based on
narrowband frequency-domain algorithms as, e.g.,
[9,10]. Based on the theoretical results in [11] we
present two implementations of the efficient broad-
band algorithm. The first one uses causal demixing
filters which are sufficient for several applications
and proved to be very robust. The second imple-
mentation is more general and allows the adapta-
tion of noncausal filters. As shown later, the
necessity of noncausal filters arises in certain
geometric constellations. In a practical BSS system
another important aspect is its performance in noisy
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environments [1,12] which can be improved by
suitable stepsize control techniques (e.g., [13]). In
this contribution, we present a combination of
online and offline processing which is termed block-
online adaptation and investigate the influence of
noise considering a theoretical link to a narrowband
cost function based on the generalized coherence
[14]. We also propose a suitable stepsize control
which improves convergence and is robust to
varying reverberance and noise conditions. Finally,
the efficiency of this algorithm is demonstrated by
experimental results for reverberant rooms and car
environments with background noise for different
geometric setups.

2. Generic block time-domain BSS algorithm

In [4,5,15] a generic BSS framework for con-
volutive mixtures has been presented. The real-time
implementation presented in this paper is based on
an efficient version derived from a special case of
this framework based on second-order statistics and
thus we briefly review this second-order case in
Sections 2.1 and 2.2. In Section 2.3 a new iterative
procedure based on a combination of offline and
online updates to a so-called block-online algorithm
is presented.

2.1. Matrix formulation

A block processing broadband algorithm simul-
taneously exploiting nonwhiteness and nonstatio-
narity of the source signals is obtained by the
following matrix formulation [15]. First, we intro-
duce a block output signal matrix

YqðmÞ ¼

yqðmLÞ � � � yqðmL� Lþ 1Þ

yqðmLþ 1Þ . .
.

yqðmL� Lþ 2Þ

..

. . .
. ..

.

yqðmLþN � 1Þ � � � yqðmL� LþNÞ

2
666666664

3
777777775
;

ð3Þ

and reformulate the convolution (2) as

YqðmÞ ¼
XP

p¼1

XpðmÞWpq, (4)

with m being the block time index and N denoting
the block length. The N � L matrix YqðmÞ incorpo-
rates L time-lags into the correlation matrices in the
cost function defined in Section 2.2, as is necessary
for the exploitation of the nonwhiteness property.
To ensure linear convolutions for all elements of
YqðmÞ, the N � 2L matrices XpðmÞ and 2L� L

matrices Wpq are given as

XpðmÞ ¼

xpðmLÞ � � � xpðmL� 2Lþ 1Þ

xpðmLþ 1Þ . .
.

xpðmL� 2Lþ 2Þ

..

. . .
. ..

.

xpðmLþN � 1Þ � � � xpðmL� 2LþNÞ

2
6666664

3
7777775,

(5)

Wpq ¼

wpq;0 0 � � � 0

wpq;1 wpq;0
. .
. ..

.

..

.
wpq;1

. .
.

0

wpq;L�1
..
. . .

.
wpq;0

0 wpq;L�1
. .
.

wpq;1

..

. . .
. ..

.

0 � � � 0 wpq;L�1

0 � � � 0 0

2
66666666666666666664

3
77777777777777777775

, (6)

where the matrices XpðmÞ, p ¼ 1; . . . ;P in (4) are
Toeplitz matrices due to the shift of subsequent
rows by one sample each. The matrices Wpq exhibit
a Sylvester structure, where each column is shifted
by one sample containing the current weights wpq ¼

½wpq;0;wpq;1; . . . ;wpq;L�1�
T of the MIMO sub-filter of

length L from the pth sensor channel to the qth
output channel. Superscript T denotes transposition
of a vector or a matrix. To allow a convenient
notation of the algorithm combining all channels,
we write (4) for all channels simultaneously as

YðmÞ ¼ XðmÞW, (7)

with the matrices

YðmÞ ¼ ½Y1ðmÞ; . . . ;YPðmÞ�, ð8Þ

XðmÞ ¼ ½X1ðmÞ; . . . ;XPðmÞ�, ð9Þ

W ¼

W11 � � � W1P

..

. . .
. ..

.

WP1 � � � WPP

2
6664

3
7775. ð10Þ
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2.2. Optimization criterion

The definition of Yq in (3) leads to the short-time
correlation matrix RyyðmÞ ¼ YHðmÞYðmÞ of size
PL� PL which is composed of channel-wise L�

L submatrices Rypyq
ðmÞ ¼ YH

p ðmÞYqðmÞ each con-
taining L time-lags. Based on these correlation
matrices we use a cost function first introduced in
[15] which inherently includes all L time-lags of all
auto-correlations and cross-correlations of the BSS
output signals and thus is a generalization of [16]:

Jðm;WÞ ¼
X1
i¼0

bði;mÞflog det bdiagYHðiÞYðiÞ

� log det YHðiÞYðiÞg. ð11Þ

Here H denotes conjugate transposition and b is a
weighting function with finite support that is
normalized according to

Pm
i¼0 bði;mÞ ¼ 1 allowing

offline, online or block-online (see Section 2.3)
realizations of the algorithm. In Section 2.3, it is
shown that for a properly chosen bði;mÞ the
nonstationarity of the source signals is utilized for
the separation. The bdiag operation on a parti-
tioned block matrix consisting of several subma-
trices sets all submatrices on the off-diagonals to
zero. In our case, the block matrices refer to the
different signal channels and are of size L� L. The
cost function becomes zero if and only if all block-
offdiagonal elements of YHY, i.e., the output cross-

correlations over all time-lags, become zero (see
Fig. 2). Therefore, in addition to the nonstationar-
ity, (11) explicitly exploits the nonwhiteness prop-
erty of the output signals. In [5] it was shown that
the cost function (11) also follows from an
information-theoretic approach aiming at minimum
mutual information between the output channels.

In order to express the update equations of the
filter coefficients exclusively by Sylvester matrices
W, we take the generalization in [4] of the natural
L

L

auto-correlation Ry1y1

cross-correlation
Ry2y1

Each diagonal
represents
one time-lag

Fig. 2. Illustration of (11) for the 2� 2 case.
gradient [17] with respect to W

rNG
W Jðm;WÞ ¼ 2WWH qJðm;WÞ

qW�
, (12)

and ensure the Sylvester structure of the result by
selecting only the non-redundant values using a
Sylvester Constraint ðSCÞ. A detailed discussion of
SC will be given in step 3 of Section 3. In [4,15] it
was shown that the natural gradient derivation of
(11) leads to

rNG
W Jðm;WÞ ¼ 2

X1
i¼0

bði;mÞQði;WÞ, ð13Þ

Qði;WÞ ¼WfRyyðiÞ � bdiagRyy ðiÞgbdiag
�1Ryy ðiÞ.

ð14Þ

Note that the submatrices Rypyp
in (14) have to be

properly regularized prior to inversion. Regulariza-
tion strategies and two simple ways to impose the
Sylvester constraint SC for the natural gradient are
discussed in Section 3. In the following we will
discuss how to obtain an iterative optimization
procedure from the natural gradient (13), (14).
2.3. Coefficient update rule

The weighting function bði;mÞ in (13) allows for
different iterative optimization procedures of the
algorithm, e.g., offline or online [5]. The concept of
a general weighting function is already well-known
from supervised adaptive filtering [18]. There, the
weighting function bði;mÞ ¼ ð1� lÞlm�i�0;mðiÞ al-
lows to derive the recursive least-squares (RLS)
algorithm, i.e., the online solution, from the
corresponding offline least-squares (LS) solution.
The parameter l denotes the exponential forgetting
factor ð0olo1Þ and �a;bðiÞ is a rectangular window
function, i.e., �a;bðiÞ ¼ 1 for apipb and �a;bðiÞ ¼ 0
elsewhere. In this paper, we want to use the same
methodology to obtain a recursive block-by-block
solution based on the offline minimization (were all
data is required) by natural gradient descent given
by

WjðmÞ ¼Wj�1ðmÞ � ~mDWjðmÞ; j ¼ 1; . . . ; jmax,

(15)

where j denotes the iteration number, ~m is the
stepsize and the update DWjðmÞ corresponds to the
natural gradient rNG

W Jðm;WjðmÞÞ given in (13)
together with some Sylvester constraint, discussed
in Section 3. Here, the weighting function bði;mÞ is
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Fig. 3. Weighting function bði;mÞ for block-online implementa-

tion depicted for choosing the current composite block m ¼ 2.
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chosen as

bði;mÞ ¼
1� l

K

Xm

m0¼0

lm�m0�m0K ;m0KþK�1ðiÞ, (16)

and is shown in Fig. 3. The horizontal axis shows
the block index i with each block having a length of
N samples. Note that in Sections 2.1 and 2.2 the
variable m denoted the current block of length N.
When specifying bði;mÞ as given in (16), the current
block m has to be extended to contain K subsequent
blocks of length N with a blockshift of L samples
each to allow the exploitation of the nonstationar-
ity. This leads to a length of the current block m of
KLþN � L samples and m is termed composite
block. Moreover, also the summation index m0 ¼

0; 1; . . . ;m in (16) refers to the composite block. As
shown in Appendix A we can derive an approximate
recursive formulation of the offline update (15) by
using the weighting function bði;mÞ given in (16).
This leads to a so-called block-online method where
an online update and an offline update are
combined similar to the approach in [10]. The
advantage of this approach is that it allows a faster
convergence and better tracking behaviour at
moderate computational complexity.

According to Appendix A, the offline part is
calculated iteratively for the current composite
block m without exploiting any previous composite
blocks (see Fig. 3) as:

~W
j
ðmÞ ¼ ~W

j�1
ðmÞ � m ~Qðm; ~W

j�1
ðmÞÞ,

j ¼ 1; . . . ; jmax, ð17Þ

~Qðm; ~W
j�1
ðmÞÞ ¼

1

K

XmKþK�1

i¼mK

Qði; ~W
j�1
ðmÞÞ, (18)

where the stepsize m ¼ 2ð1� lÞ ~m and ~W
j
ðmÞ is the

demixing filter matrix after j iterations based on
data of the mth composite block. Eq. (18) contains
K update terms Qði; ~W

j�1
ðmÞÞ which are determined

using (14). This simultaneous optimization for K

blocks allows to exploit the nonstationarity of the
source signals as for each block the source statistics
change and thus new conditions are generated. A
high number of iterations jmax allows a fast
convergence of the natural gradient descent without
introducing an additional algorithmic delay but at
the cost of an increased computational complexity.
In practice, the maximum number of iterations jmax

is usually chosen to 5 . . . 10 iterations to keep the
complexity at a moderate level. The applicable
initialization of ~W

j�1
ðmÞ for m ¼ 0 and j ¼ 1 results

from the chosen Sylvester constraint as discussed in
steps 3 and 4 of Section 3. The demixing filter
matrix ~W

jmax
ðmÞ of the current block m which is

obtained from the offline part after jmax iterations
(see Fig. 3) is then used as input of the online part of
the block-online algorithm which is written recur-
sively as

WðmÞ ¼ lWðm� 1Þ þ ð1� lÞ ~W
jmax
ðmÞ. (19)

This yields the final demixing filter matrix WðmÞ of
the current composite block m containing the filter
weights wpq(m) used for separation. The demixing
filter weights wpqðmÞ of the current block are then
used as initial values for the offline algorithm (17) of
the next block.

Analogously to supervised block-based adaptive
filtering [19], the approach followed here can also be
carried out with overlapping data blocks in both,
the online and offline part to further increase the
convergence rate and to reduce the signal delay. The
overlap factors aoff for the offline part and aon for
the online part with 1paoff ; aonpL should be
chosen suitably to obtain integer values for the time
index.

3. Approximated version and efficient

implementation

In this section, we address implementation details
concerning the update term Qði;WÞ of the ith block
of length N in (18) which lead to an efficient
implementation suitable for real-time processing.
All steps are summarized in Table 1 where a pseudo-
code for the proposed algorithm is given.

Step 1: Estimation of the correlation matrices
using the correlation method.
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Table 1

Pseudo code of efficient block-online broadband algorithm implementation based on Sylvester constraint SCC exemplarily shown for the

update Dw11ðmÞ in the 2� 2 case

Online part:

1. Get KLþN new samples xpðmKLÞ; . . . ;xpððmþ 1ÞKLþN � 1Þ

of the sensors xp; p ¼ 1; 2 and online block index m ¼ 0; 1; 2; . . .

Offline part:

Compute for each iteration j ¼ 1; . . . ; jmax:

2. Compute output signals yqðmKLÞ; . . . ; yqððmþ 1ÞKLþN � L� 1Þ,

q ¼ 1; 2 by convolving xp with filter weights wj�1
pq from previous iteration

3. Generate K blocks of N samples ½yqðiLÞ; . . . ; yqðiLþN � 1Þ� with off-

line block index i ¼ mK ; . . . ;mK þ K � 1 to exploit nonstationarity

Compute for each block i ¼ mK ; . . . ;mK þK � 1:

4. Calculate the signal energy of each blockm

s2y1 ðiÞ ¼ ry1y1
ði; 0Þ ¼

PiLþN�1
n¼iL y2

1ðnÞ

5. Compute 1st column of cross-correlation matrix Ry2y1
ðiÞ by

ry2y1
ði; uÞ for u ¼ �Lþ 1; . . . ; 0 according to (21)

6. Normalize by elementwise division with regularized signal energy

ry2y1
ði; uÞ=ðs2y1 ðiÞ þ dy1

Þ for u ¼ �Lþ 1; . . . ; 0

7. Compute the matrix product ~W
j�1

12 ðmÞ
Ry2y1

ðiÞ

s2y1 ðiÞþdy1

as a convolution

according to Fig. 4a(Sylvester constraint SCC). Each filter weight

update Dw
j
11;k, k ¼ 0; . . . ;L� 1 is thus calculated as:

~Qðm; ~W
j�1

11 ðmÞÞ ¼
1
K

P
i

Pk
n¼0 w

j�1
12;nðmÞry2y1

ði; k� nÞ=ðs2y1 ðiÞ þ dy1
Þ

8. Update equation for the offline part (Note that also an adaptive and

DFT bin-wise stepsize according to Section 6 can be applied):

~W
j

11ðmÞ ¼
~W

j�1

11 ðm� 1Þ � m ~Qðm; ~W
j�1

11 ðmÞÞ

Onlinepart:

9. Compute the recursive update of the online part yielding the demixing

filter W11ðmÞ used for separation:

W11ðmÞ ¼ lW11ðm� 1Þ þ ð1� lÞ ~W
jmax
11 ðmÞ

10. Compute Steps 4–9 analogously for the other channels and use the

demixing filter WpqðmÞ as the initial filter for the offline part

~W
0

pqðmþ 1Þ ¼WpqðmÞ

R. Aichner et al. / Signal Processing 86 (2006) 1260–1277 1265
In principle, there are two basic methods for the
block-based estimation of the short-time output
correlation matrices Rypyq

ðiÞ for nonstationary sig-
nals: the so-called covariance method and the correla-

tion method, as they are known from linear prediction
problems [20].1 In the generic framework in Sections
1It should be emphasized that the terms covariance method and

correlation method are not based upon the standard usage of the
2.1 and 2.2 the more accurate covariance method was
introduced by the definition Rypyq

ðiÞ ¼ YH
p ðiÞYqðiÞ. By

assuming stationarity within each block i we can
approximate the covariance method by the correla-
tion method which exhibits lower computational
(footnote continued)

covariance function as the correlation function with the means

removed.
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complexity. This leads to a Toeplitz structure of the
L� L matrix Rypyq

ðiÞ which can be expressed as

Rypyq
ðiÞ ¼

rypyq
ði; 0Þ � � � rypyq

ði;L� 1Þ

rypyq
ði;�1Þ . .

.
rypyq
ði;L� 2Þ

..

. . .
. ..

.

rypyq
ði;�Lþ 1Þ � � � rypyq

ði; 0Þ

2
66666664

3
77777775
,

(20)

rypyq
ði; uÞ ¼

PiLþN�u�1
n¼iL ypðnþ uÞyqðnÞ for uX0PiLþN�1
n¼iL�u ypðnþ uÞyqðnÞ for uo0

8<
: .

(21)

Step 2: Approximation of the normalization and
regularization strategy.

A straightforward implementation of (14) to-
gether with (20), (21) leads to a complexity of OðL2Þ

due to the inversion of P auto-correlation Toeplitz
matrices Ryqyq

of size L� L which are normalizing
the update (as also known from the recursive least-
squares (RLS) algorithm in supervised adaptive
filtering [18]). Thus, for an efficient implementation
suitable for reverberant environments requiring a
large filter length L we use an approximated version
of (14) which was first heuristically introduced in
[21,22] and theoretically derived in [4]. The efficient
version is obtained by approximating the auto-
correlation submatrices in the normalization term
by the output signal powers, i.e.,

Ryqyq
ðiÞ �

XiLþN�1

n¼iL

y2
qðnÞ

 !
I ¼ s2yq

ðiÞI (22)

for q ¼ 1; . . . ;P. Thus, the matrix inversion is
replaced by an element-wise division. This is
comparable to the normalization in the well-known
normalized least mean squares (NLMS) algorithm
in supervised adaptive filtering approximating the
RLS algorithm [18].

In blocks with speech pauses and low background
noise the output powers s2yq

are very small and thus
the parameter estimation becomes very sensitive.
For a robust adaptation s2yq

is replaced by a
regularized version s2yq

þ dyq
. The basic feature of

the regularization is a compromise between fidelity
to data and fidelity to prior information about the
solution [23]. As the latter increases robustness, but
leads to biased solutions, we use similarly to
supervised adaptive filtering [24] a dynamical
regularization

dyq
¼ dmaxe

�s2yq
=s2

0 (23)

with two parameters dmax and s20. This exponential
method provides a smooth transition between
regularization for low output power s2yq

and data
fidelity whenever the output power is large enough.

Step 3: Efficient implementation of the matrix–
matrix multiplication.

In the remaining channel-wise matrix product of
Wpt and the Toeplitz matrices Rytyq

=ðs2yq
þ dyq

Þ,
p; q; t ¼ 1; . . . ;P, taq in the filter update QðiÞ in (14)
we can exploit the Sylvester structure of Wpt for an
efficient implementation. As already mentioned in
Section 2.2, we have to ensure by a suitable
Sylvester constraint SC that the update Qði;WÞ
exhibits again a channel-wise Sylvester structure in
the form of (6). As discussed in [11] there are two
simple realizations of SC leading to different filter
updates Dwpq;k of the FIR filter taps wpq;k and thus
to two algorithms with different properties:

(1) Computing only the first column of the update
matrix DWpq (whose structure is defined analo-
gously to (6)) and replicating these elements to
obtain a Sylvester structure. This is denoted as SCC

and is illustrated in Fig. 4a. Note that in general,
when exploiting more than L time-lags, any column
could be chosen. However, in [4, Section II-D] it
was shown that the most efficient version is
obtained by choosing the first column.

(2) Computing only the Lth row of the update
matrix DWpq and replicating the filter weights is
denoted SCR (Fig. 4b). It should be noted that when
implementing SC row-based, the Lth row has to be
chosen as only this row contains all filter updates
Dwpq;k, k ¼ 0; . . . ;L� 1.

It can be seen that for both, SCC and SCR the
matrix-matrix multiplication boils down to a
matrix-vector product. Furthermore, it can be
shown that due to the structure of the respective
matrix these products denote linear convolutions of
the filter weights wpt with the elements of the scaled
Toeplitz correlation matrix Rytyq

=ðs2yq
þ dyq

Þ. De-
pending on the chosen Sylvester constraint different
correlation sequences are used for the convolution.
The version using SCC convolves the filter weights
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Fig. 5. Setups for BSS requiring: (a) only causal delays and (b)

causal and noncausal delays for the demixing system W.
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with the one-sided sequence of correlation elements
rytyq
ði; uÞ, u ¼ 0; . . . ;�Lþ 1 whereas SCR allows

to use the two-sided sequence rytyq
ði; uÞ,

u ¼ �Lþ 1; . . . ;L� 1. These two implementation
schemes have an effect on the properties of the
resulting algorithm (see experiments in Section 7)
and on the suitable initialization of Wpq as will be
discussed in the following. Moreover, by imple-
menting the linear convolution expressed by the
matrix-vector product as a fast convolution using
fast Fourier transforms (FFTs) the computational
complexity can be reduced to OðlogLÞ.
Step 4: Appropriate initialization.

Depending on the BSS setup different initializa-
tion methods are desirable. This can be seen when
regarding BSS as a blind interference cancellation
technique similarly to conventional adaptive beam-
forming: In the acoustic scenario in Fig. 5a causal
filters are sufficient to achieve interference cancella-
tion and thus an initialization with a unit impulse at

the first tap wpp;0 ¼ 1 is sufficient. However, for the
source locations in Fig. 5b in the BSS case one
noncausal demixing filter w12 or w21 is required.
Similarly to the supervised filtering algorithms used
in adaptive beamforming [25] the problem of
noncausality can be solved in the BSS context by
initializing the FIR filters wpp;k with a shifted unit

impulse. An appropriate shift is determined by the
array geometry and the resulting maximum possible
delay of the arriving signals between the sensors. In
[11] the shift of the unit impulse was set to L=2.

The choice of initialization method also deter-
mines the suitable Sylvester constraint SC. In the
case of causal mixtures (Fig. 5a), i.e., initialization
with wpp;0 ¼ 1 both Sylvester constraints SCC and
SCR are possible. Our experiments showed that
algorithms based on SCC are slightly more robust.
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As described above, for noncausal mixtures it is
necessary to initialize with a shifted unit impulse as,
e.g., wpp;L=2 ¼ 1. When evaluating the matrix
product resulting from SCC (Fig. 4a) for such an
initialization it can be seen that all Dwpq;k for
0pkpL=2� 1 would be equal to zero, i.e., these
filter coefficients could not be adapted. Thus, for the
initialization with a shifted unit impulse only SCR

can be applied. Then, similarly to adaptive beam-
forming also noncausal delays are possible as
becomes obvious by simply evaluating (6) for
successive iterations. A more detailed examination
of the Sylvester constraints SCC and SCR and the
resulting links between the generic update (13), (14)
and various MCBD algorithms can be found in [11].

It can be concluded that if no a priori information
about the location of the sources is available then
the Sylvester constraint SCR together with an
initialization using a shifted unit impulse should
be applied due to its increased generality. If it is
known that the sources are in two halfplanes (e.g.,
car environment with array at the rear mirror), then
also the more robust SCC can be used. In Table 1
able 2

omputational complexity for the block-online broadband algorithm im

Ar

ompute offline part for each iteration j:

erform filtering of xp with Wj
pqðm

0Þ:

FT of demixing filter with FFT length KLþN P2

FT of sensor signals xp Pð

ompute convolution in DFT domain ð4P

FFT to obtain time-domain signals yq Pð

Compute for each block i ¼ 1; . . . ;K :

Calculate scaling factor s2yq
ðiÞ after (22) Pð

Calculate cross-correlations rypyq
ði; uÞ

for u ¼ �Lþ 1; . . . ;L� 1:

FFT of output signals yq with length 2N PK

Compute cross-power spectral densities 3ðP

IFFT to obtain cross-correlations ðP

normalizerypyq
ði; uÞ using s2yq

ðiÞ 2ðP

Calculate matrix product as convolution:

FFT of demixing filters wpq;k of length 2L P2

FFT of cross-correlations of length 2L ðP

Compute convolution in DFT domain P2

IFFT P2

add Qði; ~W
j�1
Þ for K blocks after (18) P2

ffline update rule (17) 2P

nline update rule (19) 3P
the algorithm has been summarized and the pseudo-
code is given exemplarily for the update Dw11ðmÞ.
As mentioned in Section 2.3, overlap factors can be
introduced in the offline and online part. This is
done by simply replacing the time index iL and mKL

in Table 1 by i L=aoff and m KL=aon, respectively.

4. Computational complexity

The computational complexity of the proposed
algorithm is studied in terms of arithmetic opera-
tions, i.e., the number of real multiplications and real
additions. Divisions are usually counted as multi-
plications, assuming inverted constants and subtrac-
tion is addition by negated number. Thereby, each
complex multiplication is realized by 4 real multi-
plications and 2 real additions and each complex
addition is realized by 2 real additions. Moreover, the
discrete Fourier transform of length N is computed
using the FFT routine devised by [26] which requires
2N log2½N� � ð3N=2Þ � 4 operations.

Table 2 shows the computational complexity of
the block-online broadband algorithm as presented
plementation

ithmetic OPs for K blocks and P channels

ð2ðKLþNÞlog2½KLþN� � 3ðKLþNÞ=2� 4Þ

2ðKLþNÞlog2½KLþN� � 3ðKLþNÞ=2� 4Þ
2 þ PÞðKLþN þ 2Þ

2ðKLþNÞlog2½KLþN� � 3ðKLþNÞ=2� 4Þ

N þ ðK � 1Þð4Lþ 2ÞÞ

ð4N log2 ½2N� � 3N � 4Þ
2 � PÞKðN þ 1Þ

2 � PÞKð4Nlog2½2N� � 3N � 4Þ=2
2 � PÞKL

ð4Llog2½2L� � 3L� 4Þ
2 � PÞKð4Llog2½2L� � 3L� 4Þ=2

ð8P� 10ÞKðLþ 1Þ

Kð4Llog2½2L� � 3L� 4Þ

ðK � 1ÞL

2L
2L
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in Section 3 and summarized in Table 1. In Fig. 6,
the complexity resulting from the expressions in
Table 2 is illustrated as a function of filter length L

and for P ¼ 2; 3; 4 source and sensor signals.
Additionally, the dependency of the complexity on
the number K of simultaneously processed blocks to
exploit the nonstationarity is illustrated by compar-
ing K ¼ 4 (solid) to K ¼ 8 (dashed) in Fig. 6. The
overlap factor of the online part has been chosen as
aon ¼ K to ensure a blockshift of L samples
independent of the choice of K. The number of
iterations and the block length have been chosen as
in the simulations below: jmax ¼ 5;N ¼ 2L. The
curves illustrate that, essentially, the complexity
depends logarithmically on the filter length L,
linearly on the number of blocks K, but quad-
ratically on the number of channels P. For
comparison it should be noted that the well-known
(single-channel) NLMS algorithm used in super-
vised adaptive filtering [18] has a complexity of
4Lþ 7 arithmetic operations. Thus, for example,
the complexity of the two-channel BSS algorithm
for K ¼ 4 and L � 2000 corresponds, according to
Fig. 6 approximately to that of a single-channel
NLMS algorithm for the same filter length.

5. Performance in noisy environments

In Section 2.2, it was pointed out that the
broadband algorithm minimizes the cross-correla-
tions Rypyq

, paq for all time lags (see also Fig. 2). In
[4,5,15] it was shown that the broadband algorithm
and thus also the broadband cost function (11) can
be formulated equivalently in the frequency-do-
main. By such a formulation there are still linear
convolutions computed, so that the frequency bins
are still linked together by certain constraint
matrices and thus the ambiguities of the narrow-
band approaches mentioned in Section 1 are still
avoided. In [15] it was shown that the broadband
algorithm is minimizing the cross-power spectral
densities SðnÞypyq

, paq for each frequency bin
n ¼ 0; . . . ; 2L� 1. Therefore, for the purpose of
examining the noise-robustness of the proposed
broadband algorithm with respect to the frequency
domain we can, similarly to [15] and without loss of
generality, express the cost function with respect to
the nth frequency bin

JðnÞðmÞ ¼
Xm

i¼0

bði;mÞflog det diagSðnÞyy ðiÞ

� log det SðnÞyy ðiÞg, ð24Þ

where SðnÞyy is the P� P cross-power spectral density
matrix in the nth frequency bin. Moreover, we can
approximate (24) by a Taylor series as shown in
[15], to obtain

JðnÞðmÞ �
X1
i¼0

bði;mÞ 1�
detSðnÞyy ðiÞQP
p¼1 SðnÞypyp

ðiÞ

8<
:

9=
;, (25)
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where the term in brackets denotes the generalized

coherence introduced in [14]. Note that for P ¼ 2 the
generalized coherence corresponds to the well-
known coherence gy1y2

between the output channels
y1 and y2. It can be seen that the cost function (25)
becomes zero if and only if the cross-power spectral
densities of the output signals SðnÞypyq

, i.e., the off-
diagonal elements of SðnÞyy are zero. Thus, the
iterative broadband algorithm tries to minimize
the coherence gy1y2

for all frequency bins n (see
Fig. 7). To evaluate the influence of noise we express
SðnÞyy in terms of SðnÞxx and decompose this matrix
according to (1) into its speech signal and noise
components (assuming orthogonality of speech and
noise)

SðnÞyy ¼WðnÞ
H
SðnÞxxW

ðnÞ ¼WðnÞ
H
ðSðnÞvv þ SðnÞnn ÞW

ðnÞ. (26)

For noise which is spatially uncorrelated (e.g.,
sensor noise), SðnÞnn corresponds to a diagonal matrix
whereas for spatiotemporally correlated noise (e.g.,
diffuse noise) the matrix SðnÞnn is not sparse. In [6] it
was shown that when choosing an appropriate
demixing filter length L, arbitrary filtering by
the broadband BSS algorithm is prevented. This
means that the iterative algorithm mainly affects
the cross-power spectral densities SðnÞypyq

. Thus, with
the initialization discussed in Section 3 the dia-
gonal noise term, i.e., the spatially uncorrelated
noise of SðnÞnn of the initial block leads to a bias of
SðnÞypyp

which cannot be removed by the BSS
algorithm. For a given SNR this bias will be more
severe for spatially uncorrelated noise whereas for
spatially correlated noise the initial bias is distrib-
uted among all elements of SðnÞyy . It should be noted
that the spatially correlated noise components
appearing at the cross-power spectral densities
SðnÞypyq

will be minimized by the BSS algorithm
leading to an SNR gain at the outputs. In Fig. 7
this becomes obvious when comparing gn1n2

and
gy1y2

.
To increase robustness of BSS algorithms against

uncorrelated noise, bias removal techniques have
been introduced (see, e.g., [1,12]), mainly consisting
in the estimation and subtraction of an estimated
diagonal, i.e., spatially uncorrelated noise matrix
SðnÞnn from SðnÞyy . To deal with spatiotemporally
correlated and slowly time-varying noise, we pro-
pose to use the minimum statistics approach [27] for
the estimation of the noise characteristics. This
method is based on the observation that the power
of a noisy speech signal frequently decays to the
power of the background noise. Hence by tracking
the minima we obtain an estimate for the auto-
power spectral density of the noise. However, due to
the spatial correlation not only the auto- but also
the cross-power spectral densities of the noisy signal
xp and the background noise np are required. They
are estimated and averaged recursively for each
frequency bin whenever we detect a minimum (i.e.,
speech pause) of the noisy speech signals. Thus, for
slowly time-varying noise statistics this method
gives an accurate estimate of the noise spectral
density matrix used for the bias removal. Note that
for multiple active speakers this estimation problem
is more difficult than for a single speaker due to
fewer speech pauses.

6. Stepsize control

In general for adaptive algorithms the choice of
the stepsize is important. In an offline processing
scheme several trials can be run to maximize the
stepsize up to the stability margin. However, for an
online procedure usually the stepsize has to be
chosen very conservatively to prevent instability
problems. To make the adaptation more robust in
real-world environments a stepsize control is desir-
able. In supervised adaptive filtering usually a
closed-form solution for the stepsize is derived
based on an observable reference signal. So far, in
the BSS community there is little literature on this
topic due to the absence of a reference signal. In the
instantaneous mixing case some adaptive stepsize
methods have been proposed (e.g., [13,28]) which
are mainly relying on second order derivatives.
However, for the convolutive mixing case such
gradient stepsizes are computationally complex. In
the neural networks community iterative methods
for stepsize determination based on online measure-
ments of the state of the adaptive system are more
common and can be found in textbooks as, e.g.,
[23,29]. We propose to use a simple but effective
strategy for updating the stepsize in our real-
time BSS system based on a method presented in
[23, p. 146, 30]. The procedure is to increase the
stepsize if the value of the cost function JðmÞ is
decreased compared to Jðm� 1Þ (indicating con-
vergence) and to decrease it rapidly if the current
value of JðmÞ exceeds the previous one Jðm� 1Þ,
by more than a prespecified ratio (indicating
divergence). In the last case the current demixing
filter update may be discarded ðDWðmÞ ¼ 0Þ. After
starting with a small stepsize mð0Þ its modifications
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are described by

mðmþ 1Þ

¼

a � mðmÞ if JðmÞoJðm� 1Þ; a41;

b � mðmÞ if JðmÞXc �Jðm� 1Þ;

bo1; c41;

mðmÞ otherwise

8>>>>><
>>>>>:

ð27Þ

where for a wide range of applications the values
a ¼ 1:1, b ¼ 0:5, c ¼ 1:3 provided robust behavior.
Moreover, to avoid instabilities, in practice the
adaptive stepsize should be restricted to a finite
range ½mmin;mmax�. In (27) the cost function J given
in (11) has to be evaluated for each block m. It can
be seen in (11) that this involves the computation of
the determinant of a large PL� PL matrix YHY. To
avoid this additional computational complexity we
use the already computed cross-correlation se-
quences rypyq

ðm; uÞ, paq instead. By taking the L2-
norm of the cross-correlation sequence a scalar
value is obtained which is used to replace J for the
decision process in (27).

In the preceding section the influence of noise was
examined and it was shown in Fig. 7 that the noise
characteristics change depending on the frequency
region. Thus it is desirable to use a frequency-
dependent adaptive stepsize mðnÞðmÞ. This stepsize
can be calculated for every frequency bin n ¼
0; . . . ; 2L� 1 according to the algorithm given in
(27) where J will be replaced by the narrowband
frequency-domain cost function JðnÞ. The advan-
tage of using this bin-wise approach is that JðnÞ can
be approximated by the generalized coherence as
shown in (25) which can be calculated with little
additional computational complexity. For applying
the bin-dependent stepsize, the update DWðmÞ is
transformed by an FFT, multiplied in each
frequency bin by mðnÞðmÞ and transformed back into
the time-domain using an IFFT.

Furthermore, more sophisticated schemes which
apply individual adaptive stepsizes to different
filters are possible. This can be useful if, e.g., only
one speaker is moving and thus, only a few
demixing filters WpqðmÞ are highly affected.

7. Experimental results

In this section, we present the experimental
results for the proposed algorithm which is im-
plemented in a real-time system on a standard PC
platform. In a previous conference contribution [31]
results for moving speakers were presented. Here,
we want to first examine different stepsize control
techniques (Section 6). Then, results for two
reverberant enclosures and two geometric setups
(see Fig. 5) are presented. They show the applic-
ability of the two Sylvester constraints SCC and
SCR with regard to causal and noncausal acoustical
scenarios. Furthermore, experimental results in a
car environment are given and the influence of the
background noise is shown. In the end the output
signal quality is examined.

The experiments have been conducted using
speech data convolved with measured impulse
responses of two rooms (Section 7.1) and a car
environment (Section 7.2), respectively. A two-
element microphone array with an inter-element
spacing of 20 cm was used for the recordings
(P ¼ 2). Sentences spoken by a male and female
speaker sampled at f s ¼ 16 kHz were selected as
source signals (Q ¼ 2). To evaluate the perfor-
mance, the signal-to-interference ratio (SIR) aver-
aged over both channels was calculated in each
block which is defined as the ratio of the signal
power of the desired speaker to the signal power
from the interfering speaker.

7.1. Reverberant rooms

The impulse responses were measured in two
rooms, a low reverberation chamber with a rever-
beration time T60 ¼ 50ms and an office room
ð580 cm� 590 cm� 310 cmÞ, with T60 ¼ 250ms.
The loudspeaker-microphone distance is 1m for
the low reverberation chamber and 2m for the office
room. For the first experiment, the evaluation of the
proposed stepsize control, the speech signals arrived
from �45� and þ45�. The parameters of the
algorithm were chosen as L ¼ 1024, N ¼ 2048, K ¼

8; aon ¼ 8 resulting in an algorithmic delay of 1024
samples ð64msÞ. The latency of the system includes
an additional hardware dependent delay of the
audio interface which was about 25ms in this
system. The offline-part was calculated for jmax ¼

5 iterations and for the online part the forgetting
factor l ¼ 0:2 was chosen. According to Section 6
three different stepsize controls have been investi-
gated:
(1)
 A fixed stepsize m ¼ 0:01 which was maximized
up to the stability margin.
(2)
 An adaptive stepsize mðmÞ based on (27)
identically chosen for all frequency bins. The
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parameters have been chosen as a ¼ 1:1,
b ¼ 0:5, c ¼ 1:3, mmin ¼ 0:0001, mmax ¼ 0:01
and the initial value mð0Þ ¼ 0:01.
(3)
 A bin-selective stepsize control mðnÞðmÞ updated
for each frequency bin n ¼ 0; . . . ; 2L� 1 accord-
ing to the procedure in (27). The parameters are
chosen analogously as for mðmÞ.
In Fig. 8 the experimental results for all three
stepsize controls are shown exemplarily for the low
reverberation chamber. It can be seen that the
algorithm converges quickly due to the block-online
structure and that an adaptive stepsize improves the
convergence and also the maximum achievable SIR.
This could be verified also for other enclosures and
reverberation times. Moreover, the bin-selective
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. 8. Evaluation of different stepsize controls (T60 ¼ 50ms).
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Fig. 9. SCC versus SCR for two geometric setups ðT60 ¼ 50msÞ:
stepsize control mðnÞðmÞ outperforms the time-do-
main stepsize mðmÞ. Thus, in the following we use
the bin-selective stepsize. A further advantage of the
adaptive stepsizes is that they prevent divergence of
the demixing filters in the real-time system. This
allows the choice of a relatively large stepsize mðmÞ
or mðnÞðmÞ compared to a fixed learning rate m.

To investigate the effect of the chosen Sylvester
constraint and to show the necessity of noncausal
filters, we use two different geometric setups as
already depicted in Fig. 5. In the first setup the
speakers are located at �45� which implies that no
noncausal delay is necessary and thus, both SCC

and SCR can be applied (see Section 3, Steps 3 and
4). In the second setup, the angle between the
sources is only 45� and the two sources are located in

one half plane. In the enclosure with T60 ¼ 50ms the
angles were chosen as þ45� and þ90� whereas for
the office room ðT60 ¼ 250msÞ the speakers were
located at þ15� and þ60�. For both enclosures the
second scenario requires one noncausal filter w12 or
w21 and thus, an initialization with a shifted unit
impulse is required which means that only SCR can
be used. In the experiments a shift of 20 samples is
used.

In Figs. 9 and 10 it can be seen that the maximum
achievable performance depends on the reverbera-
tion time. BSS can be seen as blind MIMO system
identification [6] and thus more reverberation
increases the number of filter taps to be identified.
Moreover, we compare the performance for both
Sylvester constraints SCC and SCR. For causal
scenarios, i.e., source locations in two half planes of
the room (Fig. 5a) it can be observed that SCC is
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Fig. 10. SCC versus SCR for two geometric setups ðT60 ¼ 250msÞ: (a) Sylvester constraint SCC , (b) Sylvester constraint SCR.
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sufficient and gives good results (Figs. 9a and 10a).
As noted above, for noncausal setups the algorithm
using SCC cannot converge and thus the SIR would
fluctuate around 0dB. In Figs. 9b and 10b the
performance of the algorithm using SCR is depicted
for causal and noncausal setups. Despite the added
generality of SCR there is no significant loss in
performance for causal scenarios compared to using
SCC . In addition we can now treat noncausal
scenarios, i.e., setups where sources are located in
one half plane (Fig. 5b). Note that this case is in
general more difficult for two reasons: On the one
hand a noncausal filter is needed as discussed above.
On the other hand the sources are usually closer
together which makes the mixing system more ill-
conditioned and in general reduces the maximum
achievable SIR.

In Fig. 11 it can be seen that the reduction of
maximum achievable performance for smaller dis-
tances between the sources is independent of the
causality problem and therefore applies also to
causal setups. Thus, the separation performance of
algorithms using SCC and SCR are comparable.
The advantage of algorithms based on SCC is the
increased robustness, whereas SCR-based algo-
rithms are more general due to the possibility of
adapting noncausal demixing filters.

7.2. Car environment

The two-element array was mounted at the rear
mirror which was directed towards the driver in a
Skoda Felicia car. The reverberation time was
T60 ¼ 50ms. The male and female speaker signals
were convolved with the measured impulse re-
sponses of the car from the driver and co-driver
positions, respectively. The angles of both speakers
relative to the normal axis of the array were
approximately þ25� and �65�. Car noise was
recorded while driving through a suburban area at
a speed of 60 km=h. This noise type exhibits diffuse
sound field characteristics, i.e., it is spatially
correlated for low frequencies but uncorrelated for
higher frequencies. More details on car noise
characteristics can be found, e.g., in [32]. Further-
more, spatiotemporally uncorrelated white noise
was used. The speech mixtures were additively
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Fig. 12. BSS performance for noisy data ðSNR ¼ 0 dBÞ.
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mixed with each noise type at an SNR of 0 dB. The
parameters of the algorithm have been chosen
analogously to Section 7.1. Due to the geometric
setup causal filters are adequate. Therefore, we
chose the slightly more robust Sylvester constraint
SCC .

In Fig. 12 the influence of car noise and
spatiotemporally uncorrelated noise on the BSS
algorithm is shown. Compared to the noiseless case
(solid) the separation performance of the noisy cases
is reduced. However, especially for the car noise
even for a low SNR of 0 dB good separation results
are obtained. It should be noted that due to the
background noise we can observe masking effects
which, from a perceptual point of view, lead to a
similar perceived suppression of the interfering
speaker in the noisy case compared to the noise-
less case. The reduced SIR is caused by the bias of
the cross-correlation matrices introduced by the
noise term (Section 5). It can be seen that diffuse car
noise affects the BSS algorithm less than the white
noise. The reason is that for a given SNR the bias of
the correlation matrices is distributed among all
elements of Ryy in the case of diffuse noise, whereas
for spatiotemporally uncorrelated noise mainly the
auto-correlation matrices Rypyp

are affected.
Due to the minimization of the cross-correlation

of the outputs also the spatially correlated noise
term is partially suppressed. Thus, for diffuse car
noise the BSS algorithm achieves—in addition to
the SIR improvement—also an average SNR
improvement for both channels of 7:3 dB. The
SNR for every channel is computed as the ratio of
the signal power of the desired speaker to the power
of the noise signal. Then, the SNR improvement in
dB is calculated as: 10 log10ðSNRoutput=SNRinputÞ.
For spatiotemporally uncorrelated noise, however,
no SNR improvement can be observed as the noise
signals are uncorrelated between the sensors and
thus the BSS criterion cannot achieve any noise
reduction.

7.3. Output signal quality

As pointed out in Section 1 a common problem of
traditional MCBD algorithms (e.g., [2,8]) applied to
speech signals is the reduced signal quality due to
whitening of the desired signal. In contrast to those
algorithms the proposed method performs blind
MIMO system identification for cancellation of the
interfering signal components as shown in [6]. Thus,
the whitening effect is avoided which will be
examined in this section by exemplarily considering
the influence of the demixing system on one
individual source. In Fig. 13 the spectrum of the
source signal s1 picked up by the first microphone is
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compared to the spectrum of the corresponding
signal component obtained at the BSS output y1. As
in general BSS is not aiming at dereverberation, it is
desirable that the spectrum of the desired source
signal at the microphone is not distorted by the BSS
processing. The results in Fig. 13 are shown
exemplarily for the BSS output signals obtained
by the experiment described in Fig. 10a where two
sources in the office room ðT60 ¼ 250msÞ are
located at �45�. It can be seen in Fig. 13 that for
both, using long-term and short-term power spec-
tral densities, the spectra of the desired signal at the
microphone and at the BSS output match very well.
These results confirm that this broadband BSS
algorithm avoids the whitening effect.

8. Conclusions

In this paper, we presented a low-complexity real-
time implementation of a BSS algorithm based on a
general class of broadband algorithms. Depending
on the application, the resulting system allows to
adapt causal or noncausal FIR demixing filters,
which account for the reverberation of the mixing
system. Moreover, a stepsize control is presented
which enhances the robustness against reverbera-
tion and background noise as was verified by several
experiments in real-world scenarios.

Appendix A. Derivation of block-online update rule

A numerical offline optimization for W is given
for any choice of bði;mÞ by

WjðmÞ ¼Wj�1ðmÞ � ~mDWjðmÞ; j ¼ 1; . . . ; jmax.

(A.1)

From (A.1) a recursive block-online algorithm can
be derived by inserting the natural gradient (13) and
the block-online weighting function (16) which leads
to

DWjðmÞ ¼ rNG
W Jðm;WÞj�1 ðA:2Þ

¼ 2
X1
i¼0

1� l
K

Xm

m0¼0

lm�m0�m0K ;m0KþK�1ðiÞ

� Qði;Wj�1ðm0ÞÞ ðA:3Þ

¼ 2ð1� lÞ
Xm

m0¼0

lm�m0 1

K

�
Xm0KþK�1

i¼m0K

Qði;Wj�1ðm0ÞÞ. ðA:4Þ
The last sum of (A.4) is now denoted as the offline
update term

~Qðm0;Wj�1ðm0ÞÞ ¼
1

K

Xm0KþK�1

i¼m0K

Qði;Wj�1ðm0ÞÞ, (A.5)

which contains K update terms Q and corresponds
to (18). This simultaneous optimization for K blocks
allows to exploit the nonstationarity of the source
signals as for each block the source statistics change
and thus new conditions are generated.

The iterative offline update (A.1) can also be
expressed in an explicit manner

WjmaxðmÞ ¼W0ðmÞ � ~m
Xjmax

j¼1

DWjðmÞ, (A.6)

where W0ðmÞ denotes the initialization of the offline
algorithm at the mth block. Together with (A.4) and
(A.5) the offline update can be written as

WjmaxðmÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼:WðmÞ

1�l

¼W0ðmÞ � 2 ~mð1� lÞ
Xm

m0¼0

lm�m0

�
Xjmax

j¼1

~Qðm0;Wj�1ðm0ÞÞ. ðA:7Þ

The matrix WðmÞ denotes the final demixing matrix
containing the FIR filters which are used to separate
the sensor signals in the mth block. Additionally a
scaling factor 1� l is introduced in (A.7) to ensure
an unbiased estimation of the demixing matrix
WðmÞ in the final update rule below in (A.14). To
allow for an efficient implementation, we choose the
initialization W0ðmÞ at the current block as
W0ðmÞ ¼

Pm
m0¼0 l

m�m0W0ðm0Þ which leads to

WðmÞ ¼ ð1� lÞ
Xm

m0¼0

lm�m0 W0ðm0Þ � 2 ~mð1� lÞ

 

�
Xjmax

j¼1

~Qðm0;Wj�1ðm0ÞÞ

!
. ðA:8Þ

Comparing (A.7) with (A.8) we can see that in (A.7)
for every offline iteration j ¼ 1; . . . ; jmax, processing
of all the data up to the current block m is required.
However, by the above chosen initialization it is
possible to exchange the order of online and offline
part leading to (A.8). In (A.8) the offline iterations
denoted by the term in brackets are calculated first
and then the online averaging is performed by the
outer sum. This reordering allows for an efficient
implementation.
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The exchange of the order of online and offline
part is an approximation which is also used to
obtain an efficient recursive algorithm when deriv-
ing the RLS algorithm from the Newton–Raphson
method [33, p. 329] and [34]. Analogously to [33,34]
it is assumed that the minimum of rNG

W Jðm� 1;WÞ
is at Wðm� 1Þ leading to the following approxima-
tion:

rNG
W Jðm� 1;Wðm� 1ÞÞ ¼ 0. (A.9)

Eq. (A.4) can be written recursively and can be
approximated using (A.9) yielding

DWjðmÞ

¼ lDWjðm� 1Þ þ 2ð1� lÞ ~Qðm;Wj�1ðmÞÞ;

ðA:10Þ

� 2ð1� lÞ ~Qðm;Wj�1ðmÞÞ. ðA:11Þ

This last expression corresponds to the offline
update in (17). Inserting (A.11) into (A.6) leads to
the following explicit formulation of an approxi-
mated offline update ~W

jmax
ðmÞ which does not

exploit the preceding blocks:

~W
jmax
ðmÞ ¼W0ðmÞ � 2ð1� lÞ ~m

Xjmax

j¼1

~Qðm;Wj�1ðmÞÞ.

(A.12)

Now, we see that (A.8) can be expressed using the
approximated offline update

WðmÞ ¼ ð1� lÞ
Xm

m0¼0

lm�m0 ~W
jmax
ðm0Þ ðA:13Þ

¼ lWðm� 1Þ þ ð1� lÞ ~W
jmax
ðmÞ. ðA:14Þ

Thus, the final algorithm combines the offline part
given by the recursive formulation of (A.12)
together with (A.5) and the online part given by
(A.14), and is summarized in Section 2.3.
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