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ABSTRACT
Pre-equalization of MIMO systems is required for a wide efriof
applications, e. g. in channel equalization and spatiahdaepro-
duction. However, traditional adaptive algorithms fait fthannel
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circular harmonics which are independent of the partididéening
room. The presented results reveal that a thorough matheahat
method (GSVD) in combination with physical insight (cirarh
monics) gives the theoretical foundation of the WDAF methoat

numbers of some ten or more. Itis shown that the problem besom posed in [1].

tractable by decoupling of the MIMO adaptation problem,.dag
a generalized singular value decomposition. This methadlied
eigenspace adaptive filtering. The required singular vedepend

2. ADAPTIVE PRE-EQUALIZATION OF MIMO SYSTEMS

on the unknown system response to be equalized. An reagonabl e following section briefly reviews adaptive pre-eqatiian of

approximation by data-independent transformations is/el@rfor
the example of listening room compensation yielding theraggh
of wave-domain adaptive filtering.

1. INTRODUCTION

The pre-equalization of MIMO systems by adaptive filterisgai
well-known topic, e.g. in communications for channel edqzal
tion in multi-antenna scenarios. The same problem arisegells
in acoustics for massive multichannel reproduction systench as
wave field synthesis (WFS) or higher order Ambisonics. Tlee th
oretical background of these reproduction methods asstiees
field propagation of acoustic waves. However, reproductips
tems in theaters, studios, and homes are always subjecotstar
reflections at the walls of the listening room. Passive nresslike
damping material will diminish these reflections to someektbut
they are not very effective for low frequencies.

An active measure is the pre-equalization of the loudspesignals
such that their emitted waves together with the unavoidedflec-
tions produce the desired wave field. This process is aldedcal
active room compensation and constitutes an inverse figgniob-
lem. Unfortunately, the response of the listening room tmuatic
excitations is non-stationary and depends on several idgrabil-
ities, like opening of doors, motion of persons, and charigéise
room temperature. Consequently, only adaptive algorithresuit-
able for active room compensation. It will be shown in thipga
that conventional adaptive algorithms are ineffective dopustic
pre-equalization in the context of MIMO systems with a higimm
ber of channels.

An escape to this situation has been shown in a previousicontr

bution [1]. By using a set of spatio-temporal transformagiahe

MIMO systems and outlines the fundamental problems of tradi
tional adaptation algorithms within the context of mas$#d10
systems.

2.1 Description of Scenario

The generic MIMO pre-equalization scenario illustratedhsy dis-
crete time and space block diagram shown in Fig. 1 will be icbns
ered in the following. The matrices of impulse responBg),
F(k) and C(k) describe discrete linear multiple-input/multiple-
output (MIMO) FIR systems. The driving signals are denotgd b
the vectord™) (k) = [dy(k),d2(K),---,dn(K)]T, wheredn(k) de-
notes the signal of the-th channel. The filtered driving signals
are denoted by the vectar™)(k), the output signals by™) (k),
the desired signal by("")(k) and the error between the analyzed
and the desired signal ™ (k). The elements of these vectors are
given according tal™) (k).

The unknown systenR (k) with N-input andM-output channels
and impulse responses,n(k) is pre-equalized by the equalization
filter C(k) with coefficientscyy(k). The fundamental problem
of adaptive pre-equalization is to compute a pre-equatiadilter
such that the overall response 6fk) and R(k) matches the de-
sired system respondg(k) as closely as possible. For few input
and output channels numerous solutions to this problem besa
developed in the past, e. g. [2]. However, algorithms for NIlIglys-
tems with a high number of channels (massive MIMO systenik) st
remain a challenge as will be shown in the following.

2.2 Non-adaptive Computation of Pre-equalization Filters
In order to gain more insight into the solution of the pre-a@ation

MIMO adaptation problem was approximately decoupled. Thisproblem the non-adaptive case will be discussed first. Fsipilr-

resulted in the highly efficient wave-domain adaptive fiftgr
(WDAF) algorithm. This contribution looks at the MIMO pre-
equalization problem from a more theoretical perspectiv ao-
vides the foundations to the WDAF approach from [1].

The paper is organized as follows: Sec. 2 prepares the groyind
discussing a generic MIMO pre-equalization approach. Sex-
tacks the decoupling problem by a generalized singularevelkt
composition (GSVD) which leads to a solution called eigeicsp
adaptive filtering (Sec. 4). However, for perfect decouplithe
singular vectors have to be determined according to the aymin
acoustical characteristics of the systems. Sec. 5 preaprgprox-
imate solution at the example of active listening room conspéon
based on a physical interpretation of the singular vecteoslisten-
ing rooms with moderate reverberation they may be repreddmy

pose a frequency-domain description of the pre-equadizgirob-
lem depicted in Fig. 1 is used.

Performing a discrete-time Fourier transformation (DTH3]) of
the respective signals and systems yields the signal &ftheraly-
sis points in the frequency domain as

1M(w) = R(w) wM(w) (1)
whereR(w) denotes the DTFT transformed matrix of impulse re-
sponses from each synthesis to each analysis poslﬁ@r@w) and

w™) (w) the DTFT transformed signals at the analysis positions and
filtered driving signals respectively.
The erroreM (w) between the desired™ (w) and the actual



1 1 1 1 1
d™ (k) C(k> D wNK) R(k) 1M (k)
NxN MxN
N N N N M
F(k M (k)
M xN
{ 1 -
>(1 )«
a™ (k) 1 (k)
A Vil
>(+ )<
M L/
Figure 1: Block diagram illustrating the generic MIMO pretlization approach.
1M () signal at theM analysis positions can be derived as wherec(k) denotes the vector of all filter coefficients at the time
instantk
M () = a™ (o) — 1M () = R . - R
ez o) T = " @ W = ek &a00 o &yl T, (62)
=F(0)d"(w) -R(w) C(w)d"(w) . ék) = é(lN)(k)T é(ZN)(k)T éﬁ‘N)(k)T ]T. (6b)

Oﬁtimal pre-equalization is obtained by minimizing thigoer  The vectorc],y (k) of estimated filter coefficients at time-instant
0o s suats oo 09 (2103 815k gen a6~ ) (1), a1 whor
P P /1S9 N. denotes the number of filter coefficients. TN&Ng x NcN?

N matrix ®y4 denotes the time and analysis position-averaged auto-
C(w)=R"(w)F(w), (3)  correlation matrix of the filtered driving signals

whereR ™ (w) denotes the pseudoinverseRfw). - Kk T

Calculatin(g t)he pre-equalizpation filters by eE/aI)uation qf B) has Gga(k) = > A Dr(k)Dr(K) , )
two major drawbacks: (1) the filters cannot cope with timeara k=0

system characteristics and (2) the exact solution may redjiters  \where Dg(k) denotes the matrix of filtered driving signals. The
with a high number of coefficients [5]. In order to overcomests  matrix of filtered driving signals is given as follows

drawbacks an adaptive computation of the pre-equalizdtitems

based on a least-squares error (LSE) criterion is derivéderiol- dm(k) = d%nl(k) d%nz(k) o dh N T, (8a)
lowing section. N r\.]) (r\.i)’ . (r\i)7 . (’\j)’ ToT '

din V(K =[ dp1k)" dpa(K)7 - dpy()T ], (8b)
2.3 Least-Squares Error Adaptation of the Pre-Equalization
Flter o et qualizat e =[ afVg a9 - a1, (80

The following section briefly reviews the derivation of thermal ~ wheredm v (k) denotes &\ x 1 vector composed from the result
equation for the adaptive pre-equalization problem intosdi in  of the convolutiondy (k) * rmn(k) of the driving signals with the
Section 2.1. A detailed discussion for acoustic MIMO system system response. TH¢?N. x 1 vector®y, can be interpreted as
can be found e.g. in [2, 6]. The normal equation is the basis fothe time and analysis position-averaged cross-correlatetor be-
the derivation of the filtered-x recursive least squaresritlym (X-  tween the filtered driving signals and the desired signalishwis

RLS). _ _ o defined as
The cost function of the filtered-x RLS algorithm is given as )
) " Bga(k) = 5 AKX Dr(k)a™ (k). ©)
E@K =S A lam(k)?, (4) K0
k=0 m=1

The optimal pre-equalization filter with respect to the dostc-
tion (4) is given by solving the normal equation (5).

where 0< A < 1 denotes an exponential weighting factor. The op-The filtered-x RLS algorithm can be derived from the normaiaeq
timal filter coefficients in the mean-squared error (MSE)sgeare  tion (5) by computing the sums (7) and (9) in a recursive fashind
found by setting the gradient with respect to the estimattst io- by applying the matrix inversion lemma. The filtered-x RL§al
efficientsc of the cost function to zero. The normal equation is thenrithm deviates from the standard RLS algorithm by using argi
derived by expressing the erref") (k) in terms of the filter coeffi-  version of the driving signal for adaptation.

cients, introducing the result into the cost function (49 aalculat-

ing its gradient. The resulting normal equation is given as 2.4 Fundamental Problems of Adaptive InverseFiltering

R ~ Four fundamental problems of adaptive pre-equalizatiom foa
Pyq(K) €(k) = Pga(k) , (5)  concluded from the normal equation (5). These are:



1. non-unigueness of the solution, given above foiR(w) apply to the matrid (w).

2. ill-conditioning of the auto-correlation matrigq(k), The relation given by Eq. (10a) can be inverted by exploiting
3. computational complexity for massive MIMO systems, and unitary property of the joint and right singular matriceshisTre-
4. required a-priori knowledge of the room transfer funatio sults in R(w) = X" () R(w) V() . (12)

The first problem is related to the minimization of the cosidu
tion §(€,k). The optimal pre-equalization filter is given by calcu- Hence each matriR(w) can be transformed into a diagonal matrix
lating the inverse filter to the system response (see Eq. k&)v- R(w) using the joint and right singular matriX (w) and V(w).

ever, minimization of the cost functiofi(¢, k) may not provide the A similar relation as given by Eq. (12) can be derived streiigh
optimal solution in these .terms. [?ependlng on the drlylr@g@b wardly for F( ). The GSVD transforms the matric#(w) and
d®™ (k) there may be multiple possible solutions éthat minimize  (¢) into their joint eigenspace using the singular matriso),
¢(¢,k) [7]. This problem is termed as th®n-uniqueness problem v () andU (w). In general, these singular matrices depend on the
in the following. _ _ matricesR.(w) andF(w). The GSVD is adata-dependent trans-
The second and third fundamental problem is related to th#iso  formation

of the normal equation (5). The normal equation has to beesiolv The SVD can be used to define the pseudoinvisew) of the
with respect to the coefficients of the room compensatioerfilt matrix R (w) [4]

However, due to the dimensionality and potential ill-cdifing

of the auto-correlation matriyq(k) this may become an infeasible
task for a large number of input and output channels. Adulitily

an exact solution may not always exist [2].

The calculation of the filtered driving signals requires \texige

of the system respondR (k). Hence, the system response has to
be identified additionally. There are various on-line idfecgtion
methods for this task. An overview on possible methods can be
found in [2, 8]. However, most of these algorithms are notatxée

of handling the massive multichannel case [7] for the sarasaes  where it is assumed th&(w) andF (w) have both full rank. Equa-
as mentioned above. tion (14) will be used to derive the desired decoupling ofNHMO
The following section will derive a generic framework forepr  adaptation problem.

equalization which explicitly solves the third problem byliging

signal and system transformations. It will be shown addilty 3.2 Decoupling of theMIMO System R.(w)

that the other problems are highly alleviated by the progase: The SVD, as introduced in the previous section, can be used to

proach. The basic idea is to perform a decoupling of the MIM® s .
. : : : transform the MIMO system into a decoupled representatijua-
temsR(«w) andF(«w). This decoupling yields a decoupling of the tion (12) together with the unitary property of the joint anght

MIMO adaptation problem and the auto-correlation ma®i(n)  gjngular matrices can be used to reformulate Eq. (1) asvisllo
as will be shown in the remainder of this paper.

R (@) =V(0)R () X"(w). (13)
Equation (10b) and Eqg. (13) can be combined to derive theviell
ing result

R (w)E(w) =V(0) R (0)F(w) UN(w),  (14)

H M 5 H N
3. DECOUPLING OF THE MIMO SYSTEMS X" ()1 (w) = R(w) V(@) w™(w), (15)
This section shows how the desired decoupling of the tramsée " (w) wM (w)
tricesR(w) and F(w) can be obtained using the concept of the
(generalized) singular value decomposition (SVD). where theM x 1 vectorsi(M)(w) and wM (w) denote the trans-

31 Generalized Sinqular Value Decomposition formed signals at the analysis positions and the transforiniv-
o ) 9 _ P ing signals respectively. Hence, in the context of signals$ sys-
It will be assumed in the following thak(w) andF(w) have the  tems the SVD can be understood as a transformation. The joint
dimensionsM x N with N > M. However, the derived results can and right singular matriceX (w) and V (w) constitute the kernels
be generalized straightforwardly to arbitraviyandN. of this transformation. The transformation of the MIMO syst
The singular value decomposition (SVD) states that any imatr R(w) can be performed by pre- and post-filtering the system with
can be decomposed into two unitary matrices and a diagonal M3/ () andX™ (w). The pre- and post-filters constitute MIMO sys-
trix [4, 9]. The concept of the SVD can be generalized to thgdi  iemgs themselves. Thus, Eq. (1) can be expressed entirehein t
onalization of a pair of matrices. This decomposition iSN®@s  {ransformed domain. The benefit of using this transform doma
?Oerr;ﬁ;a:ﬁ;?i (:S(Ier]d?{lglz)r ;?]lggfﬁff’sm?\?esr:tgg fs)cﬁ(?v\v/sD') [O]. I®VMB  jescription of the system lies in the simplified structureRu).
- = 9 ' As stated in the previous secti@(w) denotes the diagonal matrix
R(w) = X(w)R(w) VT (w) , (10a) ::omptc;]se;j of tf;e sm?jula.lr v:ilé;ﬂe)?ﬂ;(wt) .ﬂl\)ue to I|ts _dlagor.ltjdl struc-
~ H ure, the transformed signals™ (w) at the analysis positions can
F(w) = X(w)F(w) U (w) . (10b) e computed by scalar multiplication of the main diagonairegnts

The matrice&X (), V() andU(w) are unitary matrices with the Rm(®) of R(cw) with the transformed driving signais™ (w)

dimensionsM x M, N x M andN x M, respectively. The matrix . N N

X(w) is the generalized singular matrix &(w) and F(w), the Lm(w) = Rm(w) Win(w) , (16)

matricesV (w) andU(w) the respective right singular matrices of B B

R(w) andF(w). The matriceR(w) andF(w) are diagonal ma- whereLm(w) andWn(w) denote themth component of the vector

trices constructed from the singular valuedRfw) andF (w). The ~ jM (w) andw™ (w) respectively. Hence, the transformation of the

diagonal matrixR(w) is defined as signals and systems using the SVD decomposes the MIMO system
- ) given byR(w) into M single-input/single-output (SISO) systems.
R(w) = dlag{ [GR,]_, OR2, ", O_R,M} } R (11)

wheregr1 > Or2 > --- > or g > 0 denote thdB nonzero singular 4. EIGENSPACE ADAPTIVE FILTERING

valuesorp, of R(w). Thelr total numbeB is given by the rank of  The previous section derived a decomposition of the MIMQesys

the matrixR(w) with 1 <B < M. ForB < M the remaining singu- R(w) into a series of SISO systems by using an SVD based trans-
lar valuesor g+1, Or B+2, -, Or M are zero. Similar definitions as formation. This section derives a decoupling of the entitegdive
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Figure 2: Block diagram illustrating the eigenspace adagtiverse filtering approach to room compensation.

system depicted by Fig. 1 using the GSVD. For this purpose a deerror Em(w) is only dependent on thevth component of the re-
coupling of Eqg. (2) will be derived, resulting in a decoupliof the  spective signals and systems. Thus, Eq. (21) states th&I©®
MIMO adaptive inverse filtering problem. The basic idea islto  adaptive inverse filtering problem can be decomposedNh& SO
agonalize the system transfer matRXw) and the desired system adaptive inverse filtering problems using the GSVD. The aatap
responséF(w) using the GSVD. It will be assumed first that both tion of the pre-equalization filters can be performed indeleatly
transfer matrices are known and have full rank. The resaltsbe  for each of theM transformed components. The transformation of
generalized straightforwardly to the case tBgto) and/orR(w) the systems and signals is performed by transforming théortlie

do not have full rank. joint eigenspace oR(w) and F(w) using the GSVD. Therefore
this approach will be termed &genspace inverse adaptive filter-
4.1 Decoupling of the Adaptive System ing. Please note that the transformation is not dependent on the

The decompositions of the transfer matrid®&w) and R(w) are driving signals. Figure 2 illustrates the eigenspace swerdaptive
given by Eq. (10). It remains to choose a suitable decomipasit 11t€ring approach.

of the compensation filte€(w). The non-adaptive solution for the . o .
pre-equalizpation filter is gi\Een) by Eq. (3). Hegce, an eigewse ex- 4.2 Adaptation of the Decoupled Pre-Equalization Filter

pansion ofC(w) is given by Eg. (14). However, the system transfer In the following the normal equation of the multichannel piilse
matrix R(w) is not known in general and has to be identified addi-pre-equalization problem presented in Section 2.3 will jrecil-
tionally. An expansion of the pre-equalization filter cangdeen by ized to the decoupled MIMO system. Due to the decoupling, the

using Eq. (14) but with unknown expansion coefficie@taw) cost functioné (¢, k) given by Eqg. (4) can be minimized indepen-

dently for each component=1...M. The normal equation in the
C(w) = V(w) C(w) UM (w) (17)  transformed domain is then given as

whereC(w) denotes a diagonal matrix, where some diagonal ele- Pgam(K) Em(K) = Pgam(k) , (22)

ments may be zero. Using Eq. (17) together with Eq. (10ajigiel .

the transformed sign{lﬁM) (w) at the analysis points Whereidd,m(n) denotes the time-averaged auto-correlation matrix
of themrth component of the transformed filtered loudspeaker driv-

™ () = R(w) &(w)d™ (w) (18)  ing signal,®qam(n) the corresponding cross-correlation matrix be-

tween the filtered loudspeaker driving signal and the desiig-

whereI(M)(w) :XH(w)l(M)(w) andd(M)(w) :QH(w)g(N)(w). Qal andem(k) the filter coefficients. The auto-correlation matrix

Decomposition of the desired system response according t®ddm(n) has the dimensionc x Nc. Due to this reduction in di-

Eq. (10b) yields the desired signal in the transformed doraai mensionality, the solution of thél equations given by Eq. (22) is
much more efficient than for the adaptation using the origimet

transformed) signals. Equation (22) corresponds to thekmeivn

single channel normal equation [4]. The cross-channektations

present in®yq(k) have been removed in the transformed domain

by the spatial decoupling of the MIMO systems. Thus, the non-

uniqueness and ill-conditioning problem discussed iniSe@.4

iy - <(M) - - ~ (V) are highly alleviated. There may still be time-domain clatiens

&M (w) = F(w)d™ (w) - R(w) C(w)d"™ (w) , (20)  present in the filtered input signals which cause problemerwh

solving the normal equation (22). However, there are nuoeap-

whereéM™) (w) denotes the error signal for all components in ~ proaches known in the literature on single-channel adafittering

the transformed domain. Sin#&(w), C(w) andF(w) are diago-  to overcome these problems [4].

nal matrices, thenth component of the error signﬁln(w) in the
COMPENSATION

Em(®) = Fm(®) Dm(®) — Rm(@)Cm(w)Dm(®) ,  (21)  sSound reproduction aims at recreating an (virtual) acosstne at
- - . a remote place or at a later time. When realized properly fegter
where Rn(w), Cm(w) and Fm(w) denote them-th component of  auditory illusion of the original scene is created. Howetlee per-
the main diagonal oR(w), C(w) and F(w) respectively. The fectacousticillusion has not been realized by the curyeaviilable

&M (@) = F(w)d™ (@) , (19)

where aM) (w) = XM (w)a™ (w). Equation (18) together with
Eq. (19) allows to decouple Eq. (2) in the transformed domain
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Figure 3: Absolute value of the first eight right singulartees (f = 80

reproduction systems. One source of impairments is thesticauwf
the room were the reproduction system is placed (listermogn).
Most reproduction systems assume an anechoic listening,ran
assumption which is typically not met.

Spatial sound reproduction systems with a large number waf-lo
speakers are increasingly being used. These advanceduepom
systems, like WFS, provide a reasonable amount of contel thve
reproduced wave field. This control can be used to perforimeact
compensation of the listening room acoustics by pre-egatidin of
the loudspeaker driving signals. Hence, in the context dfiatnan-
nel reproduction systems listening room compensationkgestito

the same fundamental problems as discussed in Section Bel. T

concept of eigenspace adaptive filtering provides a saiutionost
of these problems. In general, the computation of the GSMbwi
too complex to benefit from the complexity reduction giverthig
decomposition of the MIMO adaptation problem. However,-pre
suming an efficient transformation $(w) andF (w) with equiv-
alent properties as the GSVD based transformation of thersgs
and signals may result in a highly reduced complexity.

Recently active listening room compensation using wavedaln
adaptive filtering (WDAF) has been proposed [1]. Here a fans
mation based on circular harmonics has been proposed fatethe
coupling of the MIMO adaptation problem. The results présen
in this paper provide a theoretical background to WDAF a$ vl
shown in the following. For this purpose the right singulactors
of a particular measured room transfer matrix are computéd:
considered WFS-based reproduction system consists otalanir
loudspeaker array with diametB; s = 3 m with 48 equidistantly
positioned loudspeakers. The loudspeaker array is platedei
center of the listening room with the size95mx 5.8 mx 3.1 m
at a height of 80 m. The room has a reverberation time of
Tgo =~ 400 ms. A circular microphone array with 48 microphone
positions and a diameter &fyic = 1.50 m is placed concentric in-
side the loudspeaker array. Figure 3 shows the absolute wdlu
the right singular values for this particular scenario. Phesented
results resemble strong similarities with the basis fumdiof cir-
cular harmonics. The basis functions of the circular haiicmare
given by the free-field solutions of the two-dimensional eaqua-
tion in polar coordinates [6]. Hence, a transformation dazethe
circular harmonics provides an optimal decomposition efftee-
field transfer matrix® (w) only. However, for rectangular listening
rooms with not too much reverberation they will also providea-
sonable basis for the representatioRdiw) as illustrated by Fig. 3.
This has also been proven by simulations of various othensand
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180° 180°

Hz) of a circular WFS system sorted by descending singalaes.

loudspeaker setups [6].
The combination of prior physical knowledge and eigensiaaleg-
tive filtering thus yields an efficient practical solution.

6. CONCLUSIONS

A novel framework for efficient pre-equalization of massWMEvIO
systems has been presented. It is based on a decompositioa of
MIMO adaptation problem into a series of single channel &dap
tion problems by decomposing the MIMO system into the joint
eigenspace of the desired system respdi&®) and the system
responseR.(w). The presented concept of eigenspace adaptive fil-
tering provides the framework for wave-domain adaptivefiftg.

It was further shown that the investigation of the singuksters for

a particular problem may lead to efficient algorithms fonactis-
tening room compensation. The same procedure can also edcpp
to other massive multichannel adaptation problems.
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