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Abstract

In this paper the robustness of a previously introduced localization algorithm for multiple acoustic
sources is investigated and compared to two popular single-source localization algorithms. To
show the versatility of the proposed method, experiments are conducted in various environments
with different reverberation times and background noises.In addition, moving speakers are used
to show the tracking capability. The application to binaural hearing aids shows the applicability
of the algorithm to realistic adverse environments such as,e.g., a cafeteria.

1 Introduction

In the literature on passive acoustic source
localization the most common approach is
the estimation of time differences of arrival
(TDOA) which comprises two steps. First
the temporal signal delays between different
pairs of microphones (TDOA) are estimated.
In a second step the position in the three-
dimensional space or in a two-dimensional
plane is calculated using the TDOA estimates.
Under the assumption that the microphone
positions are known a-priori the second step
reduces to a purely geometrical problem. In
the following we address the TDOA esti-
mation for single-source localization and our
recently proposed multiple-source localization
and investigate their behaviour in noisy and
reverberant environments.

2 TDOA estimation in reverberant and
noisy environments

The most widely used and conceptually simple
method to estimate the TDOA is to use the
generalized cross-correlation function (GCC)
[1]. The basic principle of this technique
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consists of the maximization of the inverse
Fourier transformation of a weighted cross-
power spectral density, i.e.,

τ = arg max
τ
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{
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(1)

whereτ is the TDOA between the sensor sig-
nalsx1 andx2 andSx1x2

(f) denotes the cross-
power spectral density (PSD) at frequencyf .
The normalization by the magnitude of the
PSD in (1) is commonly referred to as the
phase transform (PHAT) technique. The un-
derlying model for the GCC is based on free-
field wave propagation and, thus, in reverber-
ant environments the performance degrades.

To address the reverberation problem, a
completely different approach to TDOA es-
timation based on blind adaptive filtering was
proposed in [2]. This so-called adaptive eigen-
value decomposition (AED) algorithm blindly
identifies the impulse responsesh1 and h2

(assumed to be FIR) between a sources and
the two microphones and thus, this approach
is inherently based on a dispersive propagation
model (Fig. 1a). By minimizing the mean
square of the output signal

e(n) = s(n) ∗ (h1(n) ∗w1(n)+h2(n) ∗w2(n))
(2)
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Fig. 1. TDOA estimation via (a) SIMO and (b) MIMO
model-based blind adaptive filtering.

ideally the relationw1(n) ∗h1(n) = −w2(n) ∗
h2(n) is obtained which leads to a single-input
multiple-output (SIMO) system identification.
It can be shown that the impulse responses can
be identified up to a scalar constantc resulting
in w1(n) = c · ĥ2(n) and w2(n) = c · ĥ1(n).
The TDOA can then be calculated as

τ = arg max
n

|w1(n)| − arg max
n

|w2(n)|. (3)

In [3] the adaptive SIMO filtering approach
for single source localization was extended to
blind adaptive multiple-input multiple-output
(MIMO) filtering for simultaneous localiza-
tion of multiple sources. Fig. 1b shows the
corresponding MIMO-based structure. For the
case of two sources and two microphones it
was shown in [3] that by applying the TRINI-
CON framework presented in [4] it is possible
to calculate the TDOAs for both sources from
the estimated FIR filterswpq(n), p, q ∈ {1, 2}
by evaluating

τ1 = arg max
n

|w12(n)| − arg max
n

|w22(n)| (4)

τ2 = arg max
n

|w11(n)| − arg max
n

|w21(n)| (5)

Here, it is assumed that the number ofsi-
multaneously active sources does not exceed
the number of microphones. Furthermore, it is
assumed that the sources are mutually uncor-
related which generally holds for speech and
audio signals. The adaptation algorithm used
for the FIR filterswpq(n) is a broadband blind
source separation algorithm derived from the
framework in [4]. The adaptation algorithm

and its real-time implementation is explained
in detail in [5] where also a pseudo-code is
included. It should be pointed out that due to
the fact that the algorithm is based on time-
domain optimization utilizing the broadband
signal model, this approach aims at blind
MIMO identification and thus the localization
performance is not affected by spatial alias-
ing. Therefore no constraints are put on the
sensor geometry and large spacings allowing
for a good spatial resolution of the localization
results can be chosen.

In literature also localization experiments
based on narrowband blind source separation
algorithms have been reported (e.g., [6]). Due
to the narrowband approach these methods
have to adhere to the spatial sampling theorem
and thus the sensor geometry is limited to
small spacings. Moreover, these narrowband
algorithms rely on the far-field approximation.

It was shown in [5] that the broadband
adaptation algorithm is very robust against re-
verberation and background noise. Therefore,
we will investigate the effect of reverbera-
tion and background noise on the localization
performance in the next section. Moreover,
the localization performance is investigated
in applications where the sensor geometry is
only known approximately such as, e.g., with
binaural hearing aids. There, additionally head
shadowing effects occur introducing further
signal delay.

3 Localization experiments in adverse
environments

In the experiments, the two point sources
which should be localized were emulated by
loudspeakers. The speech signals have been
recorded with two microphones with a sensor
spacing of 0.8 m at a sampling frequency
fs = 16 kHz in different scenarios. Moreover,
in Sect. 3.2 one experiment with a moving
speaker is presented (for more experiments
with moving speakers see [3]). The block size
for the GCC-PHAT algorithm (1) has been
chosen to 1024 samples and for the other
algorithms to 2048 samples. For the MIMO
adaptation algorithm a block-online update
procedure usingK = 8 blocks andjmax = 5



iterations has been used as described in [5].
The blockshift for the GCC algorithm was
512 samples and for the other algorithms 1024
samples. The filter length for the AED and
MIMO algorithms is 1024 taps.

3.1 Reverberant environments

The localization results for a lecture room
with a reverberation time ofT60 ≈ 1 sec
and a living room withT60 ≈ 250 msec are
shown in Fig. 2 and 3, respectively. In the
beginning only one male source is active and
after approximately 3 sec a second female
speaker starts speaking. The speakers were
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Fig. 2. Results for a living room withT60 ≈ 250 msec.
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Fig. 3. Results for a lecture room withT60 ≈ 1 sec.

positioned relative to the microphone array
axis at +35◦ and −15◦ for the living room
and+50◦ and−15◦ for the lecture room. The
distance between speakers and microphones
was approx. 4 m. It can be seen that for
moderate reverberation also the GCC works
reasonably well for localizing one source
(Fig. 2). Large reverberation, however, needs a

convolutive model and thus only the AED and
the MIMO localization provide good results
(Fig. 3). It can be observed that the MIMO
approach accurately tracks the two sources
which are simultaneously active after approx.
3 seconds whereas the AED switches to the
second source and the GCC jumps between
the TDOA of both sources.

3.2 Noisy environments

To assess the robustness against background
noise separate noise scenarios have been
recorded in a city center to capture various
kinds of complex real-life noise sources and to
allow for different SNR levels. Speech signals
convolved with impulse responses recorded in
a quiet public space using the same array have
been added to the noise. In the recordings
reflections from buildings have been observed
which ideally would again require a con-
volutive model. In public spaces, however,
usually the background noise is the dominat-
ing problem. The speakers of equal average
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Fig. 4. Experimental results for city center with SNR=-5dB.

power were positioned at+50◦ and−40◦ at a
distance of 5 m to the array. The background
noise contained mainly noise originating from
street traffic and pedestrians walking by. For
the results in Fig. 4, the SNR was chosen
to −5 dB. The results show that both, the
AED and the MIMO algorithm are very robust
against background noise. The AED algorithm
continuously localizes source 2 whereas the
GCC algorithm oscillates between the TDOAs
of both sources and exhibits also several out-
liers due to the background noise.
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Fig. 5. City center with one fixed and one moving speaker
and additional background noise.

In a further experiment a second person
was walking by with a trolley suitcase and
after approx. 1.5 sec the speaker from the fixed
position at+50◦ started speaking. Moreover,
again background noise was present. In Fig. 5
it can be seen that the AED algorithm local-
izes the fixed speaker very well, whereas the
GCC algorithm again switches between the
speaker and the person with the trolley. The
MIMO-based algorithm can accurately track
both, the speaker and the moving person with
the trolley and thus shows the effectiveness of
the algorithm to time-variant scenarios.

3.3 Application to binaural hearing aids

One application of localization algorithms is
the estimation of the position of the desired
source for steering a beamformer in multiple-
microphone hearing aids. Recently also blind
source separation algorithms have been ap-
plied to binaural hearing aids as they can
adapt without position estimates. However,
for a distinction between target source and
interfering sources it is desirable to estimate
the direction of arrival of all sources from the
adapted filters of the blind source separation
algorithm. Hearing aids have to work in ad-
verse environments such as cafeterias where
usually large reverberation together with a
high background noise level is encountered.
An additional difficulty is given by shadowing
effects which are caused by the head, espe-
cially if binaural algorithms are considered.
In Fig. 6, the localization results in a cafeteria
with background babble noise with SNR=5 dB
are presented. A male speaker arrives from
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Fig. 6. Results for binaural hearing aids in cafeteria with
T60 ≈ 2 sec and SNR=5dB.

90◦ and after approx. 3 sec a second female
speaker at0◦ is active. Both TDOAs can be
accurately estimated by the MIMO algorithm.
The value of τ2 adapts first to background
noise effects and after 4 sec locates the sec-
ond speaker. The GCC exhibits again many
outliers and the AED algorithm accurately
estimates the TDOA of the male speaker.

4 Conclusions

In this paper we have shown the robustness
of a previously proposed acoustic multiple
source localization algorithm with respect to
reverberation, background noise, and shadow-
ing effects caused by objects placed between
the sensors.

References
[1] C.H. Knapp and G.C. Carter, “The generalized correla-

tion method for estimation of time delay,”IEEE Trans.
Acoust., Speech, Signal Processing, vol. 24, pp. 320–327,
Aug. 1976.

[2] J. Benesty, “Adaptive eigenvalue decomposition for
passive acoustic source localization,”J. Acoust. Soc. Am.,
vol. 107, pp. 384–391, Jan. 2000.

[3] H. Buchner, R. Aichner, J. Stenglein, H. Teutsch, and
W. Kellermann, “Simultaneous localization of multiple
sound sources using blind adaptive MIMO filtering,” in
Proc. ICASSP, Mar. 2005, vol. 3, pp. 97–100.

[4] H. Buchner, R. Aichner, and W. Kellermann, “TRINI-
CON: A versatile framework for multichannel blind
signal processing,” inProc. ICASSP, Montreal, Canada,
May 2004, vol. 3, pp. 889–892.

[5] R. Aichner, H. Buchner, F. Yan, and W. Kellermann, “A
real-time blind source separation scheme and its appli-
cation to reverberant and noisy acoustic environments,”
Signal Processing, 2006, to appear.

[6] H. Sawada, R. Mukai, S. Araki, and S. Makino, “Di-
rection of arrival estimation for multiple source signals
using independent component analysis,” inProc. ISSPA,
Paris, France, 2003.


