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Abstract— This paper addresses the TDOA extraction problem for
localizing multiple sources in noisy and reverberant environments with
emphasis on speech excitation. TDOAs are estimated by performing
blind adaptive MIMO system identification using a gradient-based BSS
variant of the TRINICON framework. We present a novel method to
improve the TDOA estimation for signals with lowpass-like spectral
characteristics such as speech, for which the standard approach achieves
only imperfect system identification. To this end, we propose to combine
the BSS algorithm with decorrelation filters, thereby achieving a greatly
improved wideband identification of the acoustical system. The approach
is verified in a number of scenarios, where it provides more accurate
TDOA estimates for the speaker localization at a negligible additional
computational cost.

I. INTRODUCTION

Acoustic Source Localization can be achieved with a two-step pro-
cedure consisting in, first, estimating relative temporal signal delays
between one or several pairs of microphones and, in a second step,
using the estimated delays (the Time Differences of Arrival (TDOA))
to calculate the position of each source. A novel TDOA estimation
approach was proposed in [1] which accounts for multipath prop-
agation in reverberant acoustical environments and covers scenarios
with multiple sources. Using a gradient-based coefficient optimization
variant of the TRINICON framework [2] exploiting Second-Order-
Statistics (SOS), this method was originally developed as a Blind
Source Separation (BSS) technique for convolutive mixtures [3]. It
was then shown in [1] that this approach can also be used to perform
the TDOA extraction via blind adaptive Multiple-Input-Multiple-
Output (MIMO) system identification of the acoustical system. The
method has already successfully been used in complex scenarios
as described, e.g., in [4] for the multidimensional localization of
multiple sound sources, or in [5], where it was combined with a
particle filter for source tracking purposes.

BSS algorithms belong to the class of unsupervised adaptive
algorithms as opposed to the supervised algorithms like the simple
Normalized Least-Mean-Square (NLMS) algorithm [6], where a
reference signal is available to drive the coefficient optimization. In
the supervised case, it is well known that gradient-based methods
suffer from convergence problems when applied to correlated signals
like speech. Because of the lowpass-like spectral envelope of speech,
and since the TDOA extraction [1] relies on the algorithm’s ability
to identify the acoustical system, it is of interest to evaluate how
the spectral envelope of the excitation influences the (unsupervised)
gradient-based BSS algorithm’s TDOA extraction performance.

After a brief review on the BSS-based blind adaptive MIMO
system identification and TDOA extraction in Sect. II, we will define
in Sect. III a system identification performance measure adapted to
the BSS context. In Sect. IV the simulation environment will be
presented, and results showing how the excitation’s spectral support
influences the algorithm will be discussed in Sect. V. Finally, focusing
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Fig. 1. MIMO model for the TDOA extraction using BSS.

on speech excitation signals, we will see in Sect. VI how suitable
decorrelation filters can be advantageously applied to improve the
robustness of the multiple speaker localization scheme. In this study,
we particularly consider the illustrative case of fixed decorrelation
filters.

II. TDOA ESTIMATION USING BLIND ADAPTIVE MIMO SYSTEM

IDENTIFICATION

Fig. 1 shows the general setup for the BSS-based TDOA extraction
[1]. Because of the reverberation in the acoustical environment, the
source signals sq(κ), q = 1, . . . , P , are filtered by a MIMO mixing
system H modeled by Finite Impulse Response (FIR) filters hqp(κ)
between the q-th source and the p-th sensor. The signal mixture is
then picked up by the sensors xp(κ), p = 1, . . . , P , together with
some background or sensor noise np(κ). As the figure indicates, we
assume in this study that the number of active sources is less or equal
to the number of microphone signals (i.e., the P sources in the figure
might or might not all be simultaneously active). Furthermore, the
sources are assumed to be mutually independent, which in general
holds for speech and audio signals.

To separate the source signals sq(κ) without access to the acous-
tical mixing system H, the BSS algorithm forces the output signals
yq(κ) to be statistically decoupled by suitably adapting the weights of
the BSS demixing system W, which refers to the FIR demixing filters
wpq(κ) between the p-th sensor and the q-th output. In the presence
of broadband excitations, the BSS algorithm ideally converges to
a solution where the overall system C = HW with FIR filters
cpq(κ) between the p-th source and the q-th output, is diagonal up
to an unknown but uncritical permutation of the BSS outputs [3]
(the uncritical permutation problem will be ignored in the rest of the
paper). For P =2, this solution is obtained when the two following
conditions are fulfilled [1]:

h11(κ) ∗ w12(κ) = −h12(κ) ∗ w22(κ), (1)
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h21(κ) ∗ w11(κ) = −h22(κ) ∗ w21(κ), (2)

(“∗” denotes convolution) such that the BSS algorithm performs a
blind adaptive MIMO system identification of the acoustical mixing
system H. The TDOAs can then be calculated after each coefficient
update by identifying the direct propagation path between the two
sources and the two microphones [1]:

τ̂1 = arg max
κ

|w12(κ)| − arg max
κ

|w22(κ)|, (3)

τ̂2 = arg max
κ

|w11(κ)| − arg max
κ

|w21(κ)|. (4)

Note that an exact estimation of the mixing system H is not necessary
for all filter taps to perform a successful TDOA estimation since we
only need to identify the tap corresponding to the direct propagation
path in each filter, as can be seen from (3) and (4). Moreover, to
improve the spatial resolution of the localizer at a low computational
cost, fractional delays can be obtained by performing an interpolation
of the demixing filters in (3) and (4) before performing the TDOA
estimation, without increasing the sampling rate for the BSS opera-
tions.

III. PERFORMANCE MEASURES

Traditionally, BSS algorithms are assessed by measuring the gain in
Signal-to-Interference Ratio (SIR) obtained after applying the adap-
tive BSS demixing system W. Following the notations introduced in
Sect. II, but omitting the sample index κ like in the rest of the paper,
the SIR gain is evaluated at each BSS output yq as follows:

SIRoutq = 10 log10

‖ sq∗cqq ‖2

‖∑P
p=1
p�=q

sp∗cpq ‖2
, (5)

SIRinq = 10 log10

‖ sq∗hqq ‖2

‖∑P
p=1
p�=q

sp∗hpq ‖2
, (6)

SIRgainq
= SIRoutq − SIRinq . (7)

However, the performance of the BSS-based TDOA extraction does
not depend on the SIR gain but on the ability of the algorithm to
correctly identify the acoustical system, as described in Sect. II. For
TDOA estimation purposes, a useful measure to express the effect of
BSS is therefore the gain in System-Error-Norm (SEN) evaluated at
each BSS output yq as follows:

SENoutq = −10 log10

‖ cqq ‖2

‖∑P
p=1
p�=q

cpq ‖2
, (8)

SENinq = −10 log10

‖ hqq ‖2

‖∑P
p=1
p�=q

hpq ‖2
, (9)

SENgainq
= SENinq − SENoutq . (10)

Comparing (5)-(7) and (8)-(10), we see that the SIR only differs
from the SEN by a minus sign and by the fact that it includes the
source signals in the performance measure. The SIR can actually
be seen as a frequency-weighted version of the SEN, assigning
weight to frequency regions according to the spectral support of the
source signals. The SIR therefore measures how well the acoustical
system could be identified at frequencies of importance for the source
separation task. It is also of interest to note the analogy existing
between, SIR (5)-(7) and SEN (8)-(10) defined for the BSS problem
on the one hand, and the well-known Echo Return Loss Enhancement
(ERLE) and the coefficient misalignment used for Acoustic Echo
Cancellation (AEC) in the context of supervised adaptive system
identification problems on the other hand. The misalignment in the
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Fig. 2. Power spectral density of the first source signal estimated via the
Welch method (window size 40ms, overlap 20ms, total observation time 21s).

supervised case, also sometimes called SEN, should not be confused
with the SEN defined in (8)-(10) which is valid in the context of BSS
and does not directly provide a measurement of the misalignment
between desired and estimated systems but evaluates how far the
overall system C deviates from the desired BSS solutions, i.e., any
diagonal overall systems.

IV. SIMULATION ENVIRONMENT

For the simulations considered in the rest of the paper, excitation
signals sq of duration 21s were used. Room impulse responses were
measured in three different environments labeled R1, R2 and R3 in
the following, with reverberation times T60 approximately equal to
250ms, 400ms and 1000ms, respectively, and sensor spacing 21cm.
The microphone signals xq were obtained by convolving the source
signals sq with the measured impulse responses and by adding some
noise nq when required. The TDOA extraction was performed at
a sampling rate of 16kHz for P = 2 sources and fractional time
delay estimates were obtained using an interpolation factor of three to
realize a spatio-temporal resolution corresponding to 48kHz sampling
rate (Sect. II).

A total of 33 scenarios were considered, with varying source
signals, SNR and room reverberation. In each scenario, 77 trials
were performed to simulate different source positions. The results
presented in the next sections refer to the performance obtained
with the BSS algorithm averaged in each scenario over the 77 trials
and over the two BSS outputs, in terms of SEN gain, absolute
TDOA estimation error and success rate (successful TDOA extraction
assumed for an absolute estimation error smaller than 1/3 sample).

V. INFLUENCE OF THE EXCITATION’S SPECTRAL SUPPORT ON

THE BSS LOCALIZATION PERFORMANCE

To assess the influence of the excitations’ spectral support on the
algorithm, simulations were performed with three types of excitation,
each with a different spectral support. Since the SOS-based BSS
algorithm [1] needs non-stationary signals, we started from two
speech signals denoted in the rest of the paper as signals sSP,1 and
sSP,2. Signals sSP-LP,1 and sSP-LP,2 were then generated by applying
a fifth-order lowpass Butterworth filter fLP (cut-off frequency 1kHz)
on the two speech signals, while signals sSP-HP,1 and sSP-HP,2 were
obtained by filtering sSP,1 and sSP,2 using a first-order highpass FIR
filter fHP(z)=(1−0.95z−1)/1.95. Fig. 2 shows the power spectral
density of the three types of excitation (here exemplarily for the first
source). We see that signals sSP-LP,q have a pronounced lowpass-like
spectral characteristic whereas signals sSP-HP,q present a much flatter
spectrum. Though clearly lowpass-like, the original speech signals
sSP,q offer a compromise between the two previous excitation types.

Tab. I shows the steady-state performance (averaged over the last
six seconds of the simulations) obtained with the BSS algorithm
in the noiseless case as well as in the noisy case with additive
spatio-spectrally white noise at 5dB and 15dB SNR. To obtain

2975



TABLE I
STEADY-STATE EVALUATION OF THE MULTIPLE SOURCE LOCALIZATION SCHEME FOR EXCITATION SIGNALS WITH VARYING SPECTRAL SUPPORTS

Microphone
input SNR

(White Noise)

SENgain in dB Absolute TDOA estimation
error in samples

TDOA estimation success
rate in %

R1 R2 R3 R1 R2 R3 R1 R2 R3
SP-LP

+∞
0.5 0.4 0.2 0.522 0.719 0.885 42.07 18.23 22.31

SP 3.0 2.0 0.8 0.103 0.120 0.136 100.00 97.30 94.48
SP-HP 14.8 9.6 4.6 0.106 0.096 0.095 100.00 99.70 100.00
SP-LP

15dB
0.4 0.4 0.2 0.522 0.736 1.020 40.65 20.63 24.58

SP 1.9 1.4 0.7 0.107 0.125 0.191 99.93 96.37 93.58
SP-HP 10.6 7.0 3.8 0.102 0.096 0.091 100.00 99.73 100.00
SP-LP

5dB
0.2 0.2 0.1 0.653 0.880 1.694 39.16 21.47 19.79

SP 0.7 0.6 0.3 0.114 0.144 0.624 99.42 91.39 81.18
SP-HP 4.3 2.5 1.8 0.101 0.286 0.153 100.00 97.63 99.27

TABLE II
STEADY-STATE EVALUATION OF THE MULTIPLE SPEAKER LOCALIZATION SCHEME WITH (SP,fHP) OR WITHOUT (SP) DECORRELATION FILTERS

Noise type
and

microphone
input SNR

SENgain in dB Absolute TDOA estimation
error in samples

TDOA estimation success
rate in %

R1 R2 R3 R1 R2 R3 R1 R2 R3
SP

+∞ 3.0 2.0 0.8 0.103 0.120 0.136 100.00 97.30 94.48
SP,fHP 14.8 9.6 4.6 0.106 0.096 0.095 100.00 99.70 100.00
SP

W
hi

te 15dB
1.9 1.4 0.7 0.107 0.125 0.191 99.93 96.37 93.58

SP,fHP 4.3 2.6 1.7 0.101 0.326 0.302 100.00 96.67 97.53
SP

5dB
0.7 0.6 0.3 0.114 0.144 0.624 99.42 91.39 81.18

SP,fHP 0.5 0.3 0.3 2.254 3.136 3.219 78.00 65.20 65.31
SP

V
en

til
at

io
n

15dB
2.7 2.5 1.0 0.257 0.204 0.691 97.76 97.45 92.27

SP,fHP 14.1 9.2 4.5 0.106 0.096 0.095 100.00 99.71 100.00
SP

5dB
0.8 0.6 0.5 2.419 2.121 1.375 76.75 76.47 86.69

SP,fHP 12.0 7.7 3.9 0.104 0.099 0.093 100.00 99.91 100.00

a comparable convergence time for each type of excitation and
allow a fair comparison, the BSS adaptation step-size was chosen
differently for each type. A preliminary study actually showed that
source signals with a flatter spectrum require a larger step-size than
signals with, e.g., a lowpass-like spectrum because the adaptation
energy is distributed among a broader range of frequencies. As
expected, Tab. I clearly shows that the performance offered by the
BSS algorithm depends highly on the nature of the excitation signal
under consideration. In particular, the lowpass-like signals sSP-LP,q

suffer from a lack of spectral diversity compared with, e.g., the more
broadband signals sSP-HP,q . This results also in very poor (because
concentrated to the low-frequency region) system identification of
the acoustical system (the SEN gain is much worst in all scenarios)
and a very low TDOA estimation success rate. Results obtained
with the speech signals sSP,q also show much lower SEN gain
values than those observed for signals sSP-HP,q . Yet the impact
on the localization performance is limited for rooms R1 and R2,
as can be seen from the low absolute TDOA errors and the high
success rates obtained with signals sSP,q . Tab. I shows therefore
that the localization of speakers using the BSS algorithm is feasible
and accurate in scenarios with low to moderate reverberation and
noise level. In more adverse environments however (room R3 or
lower SNR), we notice a significant improvement of the localization
accuracy when the system is excited with the highpass-filtered signals
sSP-HP,q . This is due to the spectral flattening introduced by the
highpass filter fHP which allows the BSS algorithm to correctly
identify the acoustical system over the entire frequency range.

VI. USING BSS WITH DECORRELATION FILTERS FOR ROBUST

SPEAKER LOCALIZATION

For speaker localization purposes, one way to overcome the
problems introduced by the lowpass-like spectral characteristics of

speech is to partially pre-whiten the microphone signals using a
decorrelation filter on each sensor signal before applying the BSS
demixing system W. This should result in forcing the BSS algorithm
to perform a wideband system identification of the acoustical system
H. Since speech signals have a lowpass-like spectral envelope, the
decorrelation filters should be highpass filters.

Because the BSS algorithm described in Sect. II performs its
coefficient update only based on the output signals yq , as illustrated
in Fig. 1, and because in some applications the BSS outputs yq are
transmitted together with the estimated TDOAs to a far-end user
or are used for further processing (see, e.g., [4]), a better solution
consists in moving the (linear) decorrelation filters to the BSS outputs,
as depicted in Fig. 3 where the decorrelation filters fD,q are not in
the signal path of zq anymore. This way, the signals yq can serve as
spectrally flattened signals for the BSS adaptation while the signals
zq can be directly transmitted to a far-end user. This approach is
similar to the technique used to improve the performance of the
NLMS algorithm in the supervised adaptive filtering case (see, e.g.,
[7] for AEC applications) but here neither inverse decorrelation filters
nor inverse modeling by the adaptive filters are required.

The results presented in Sect. V indicate that the first-order high-
pass filter fHP used to generate the signals sSP-HP,q can effectively
serve as a fixed linear decorrelation filter, common to each BSS out-
put. Comparing the signals yq transmitted to the algorithm depicted
in Fig. 1 when the highpass-filtered excitation signals sSP-HP,q =
sSP,q∗fHP are applied

yq =

P∑
i=1

(
P∑

j=1

sSP-HP,j∗hji + ni

)
∗ wiq

= fHP ∗
(

P∑
i=1

P∑
j=1

sSP,j∗hji∗wiq

)
+

P∑
i=1

ni∗wiq, (11)
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Fig. 3. MIMO model for the TDOA extraction using BSS in combination
with decorrelation filters.

and those transmitted to the algorithm depicted in Fig. 3 for the
regular speech excitation signals sSP,q and fD,q =fHP, q=1, . . . , P ,

yq = fHP∗
(

P∑
i=1

P∑
j=1

sSP,j∗hji∗wiq +

P∑
i=1

ni∗wiq

)
, (12)

we see that both cases are actually equivalent in the noiseless case
(ni = 0). In this case, and using simply fHP as a decorrelation filter,
we can therefore expect the same convincing results as those obtained
in Sect. V for signals sSP-HP,q . However, in noisy environments,
applying the decorrelation filters in (12) acts on both speech and
noise terms, which is not the case in (11). Since speech has most
of its energy in the low frequency regions, it follows for a noise
with some energy at high frequencies (e.g., a white noise) that the
(highpass) decorrelation filters can deteriorate drastically the SNR in
the signals yq transmitted to the BSS algorithm, which is however
not the case for a noise with a lowpass-like spectrum.

The above analysis is confirmed by the experimental results pre-
sented in Tab. II which shows the steady-state performance obtained
for the speech excitation signals sSP,q with the BSS algorithm
described in Sect. II (labeled SP in the table) and with the BSS
algorithm combined with decorrelation filters fHP as described in
Fig. 3 (labeled SP,fHP in the table) for the case of P = 2
sources. With spatio-spectrally white noise, the decorrelation filters
cause a substantial deterioration of the SEN gain and introduce an
unacceptable increase in TDOA estimation error, confirming that the
approach was unadapted in this case. However in the noiseless case
as well as in the presence of a ventilation noise with lowÃijass-like
spectrum, the gain offered by the simple use of a fixed (highpass)
decorrelation filter was striking, allowing a remarkable TDOA esti-
mation success rate approaching or reaching 100% even in highly
reverberant environments and with a ventilation noise at 5dB SNR.

All the results presented until now concerned the steady-state
behavior of the algorithm. To provide a better idea on the positive
impact of the decorrelation filters, Fig. 4 shows the evolution over
time of the algorithms’ performance with the 5dB SNR ventilation
noise. The results have been averaged over the three rooms R1, R2
and R3 and over all positions and BSS outputs. The SIR gain is also
depicted to show that the improved system identification obtained
using the decorrelation filters also helped improving the separation
performance of the BSS algorithm in such adverse environments.

VII. CONCLUSION

We studied the influence of the excitation’s spectral support on
a previously presented TRINICON-based BSS algorithm capable of
providing TDOA estimates for several sources via blind adaptive
MIMO system identification of the acoustical system. Focusing on
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Fig. 4. Performance of the BSS-based multiple speaker localization scheme
with (thick lines) or without (thin lines) decorrelation filters in a 5dB SNR
ventilation noise environment.

the speaker localization task, experimental results showed that the
algorithm’s performance was affected by an imperfect system identi-
fication, due to the lowpass-like spectral characteristics of speech.
The observed performance degradation is limited in moderately
reverberant and noisy environments but is significant in more adverse
scenarios. Conclusions drawn from this experimental study lead
us to consider a new approach combing the BSS algorithm with
decorrelation filters to spectrally flatten the BSS output signals.
The case of a fixed first-order highpass decorrelation filter at each
output was then studied. Further experimental evaluations showed
that the approach highly improves the robustness of the multiple
speaker localization scheme in a clean speech scenario or in the
presence a lowpass-like background noise. Since most natural noise
types show some lowpass-like spectral enveopes (e.g., ventilation or
traffic noises), the approach can be advantageously applied in many
realistic scenarios, without requiring extra computations other than
the decorrelation filtering.
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