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Abstract. This paper addresses the tracking capability of blind source
separation algorithms for rapidly time-varying sensor or source posi-
tions. Based on a known algorithm for blind source separation, which
also allows for simultaneous localization of multiple active sources in
reverberant environments, the source separation performance will be in-
vestigated for abrupt microphone array rotations representing the worst
case. After illustrating the deficiencies in source-tracking with the given
efficient implementation of the BSS algorithm, a method to ensure ro-
bust source separation even with abrupt microphone array rotations is
proposed. Experimental results illustrate the efficiency of the proposed
concept.

1 Introduction

This paper is motivated by the so-called cocktail-party problem which arises when
convolutive mixtures of multiple simultaneously active speakers are recorded by
multiple microphones. In many applications (e.g. hands-free human-machine in-
terfaces, [1]), we need to focus on one single source and try to suppress inter-
fering sources. We address this problem here by blind source separation (BSS)
algorithms which can deal well with unknown microphone and source positions
[2]. Furthermore, BSS provides us with several separated source signals which
may be individually selected for further processing.

We briefly review the generic ICA-based BSS framework for convolutive mix-
tures called TRINICON [3,4], which is also capable of simultaneously localizing
multiple active sources [5,6]. The motivation for considering it here is that most
of the known state-of-the-art BSS algorithms may be seen as certain approxi-
mations of this concept. As a fairly recent and advanced approximate practical
algorithm, we investigate here [7]. This algorithm serves thus as a good repre-
sentative for many of the major ICA algorithms. It is based on a special choice
of Sylvester constraint, the correlation method, the natural gradient, and on an
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approximated normalization. This allows for an efficient implementation, but
may be responsible for the observed deficiencies in certain situations. Although
the investigated algorithm is designed for Q active sources, we consider only
two active sources in this paper. In Section 2, we demonstrate by simulations
that both the separation performance of the considered BSS algorithm as well
as the performance of the BSS-based source localization may significantly de-
grade for rapidly time-varying sensor positions. Analysis of this scenario leads
us to proposing the so-called shadow-BSS system, which runs in parallel to the
main BSS algorithm. Simulation results confirm the efficiency of the proposed
extension.
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Fig. 1. 2-Channel Mixing and Demixing System

Figure 1 illustrates the BSS scheme for two sources with the source signals
si(n), the sensor signals xi(n), and the BSS output signals yi(n), respectively
(i = 1, 2). The unknown mixing system is modeled by M -tap room impulse
responses hij(n) and the demixing system determined by BSS is modeled by L-
tap FIR filters wij(n) (j = 1, 2). The microphone signals and BSS output signals
can then be written as:

xi(n) =
2∑

j=1

M−1∑

κ=0

hji(κ)sj(n − κ) (1)

yi(n) =
2∑

j=1

L−1∑

κ=0

wji(κ)xj(n − κ). (2)

The source separation problem is then solved by appropriately determined
demixing filters. Further details on the adaptation of the demixing filters are
given in, e.g., [7].

As shown in [6], TRINICON-based BSS inherently identifies the (unknown)
mixing system up to a scaling for Q = 2:

wji(n) = −αji · hji(n) and wjj(n) = αii · hii(n), i �= j. (3)

Based on this system identification, the TDOA (Time Difference of Arrival) can
be derived from the demixing filters simultaneously for both active sources from
the main peaks of wij(n) [6].
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2 BSS and Source Localization in Rapidly Time-Varying
Scenarios

We now investigate the separation and localization performance of the chosen BSS
algorithm for rapidly time-varying scenarios. The experimental setup is as follows:
We assume abrupt rotations of a microphone array consisting of two sensors, which
represents a worst case for time-variant scenarios. Dealing with rapidly rotating
microphone arrays is important in many applications of BSS, e.g. when the micro-
phone array is held and moved by a person. Figure 2 illustrates the DOAs (Direc-
tion of Arrival) for two typical scenarios: In the first scenario, the broadside of the
microphone array points between the two sources and the array is rotated by ±30◦.
In the second scenario, one source is located broadside and the other source is on
the side after each turn, where the rotations are ±80◦. Note that the array orienta-
tion is abruptly changed and that the DOA is measured relative to the broadside
direction of the array. We use clean speech signals as sources, which are convolved
by measured impulse responses of a low-echoic chamber (T60 ≈ 50ms) to repre-
sent the microphone array inputs. All simulations are performed with sampling
rate fs = 16kHz and demixing filter length L = 1024.
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Fig. 2. DOAs for two scenarios with abrupt microphone array rotations

Figures 3 and 4 depict both the BSS gain and the results of the source local-
ization obtained with the chosen BSS algorithm for both scenarios, where the
BSS gain in dB represents the suppression of the interfering source in each BSS
channel. The vertical dashed lines indicate the time instants, when the array ori-
entation is changed. The channel-averaged BSS gain for each array orientation is
displayed in the framed boxes. In scenario 1, the chosen BSS algorithm exhibits
the expected good source separation and localization performance: After each
array rotation, the demixing filters allow for good source separation and the es-
timated TDOAs follow the DOAs given by scenario 1. In scenario 2, we observe
that the investigated BSS algorithm is only able to track the first array rotation
(see the time period 10s-20s), but already with a degradation in separation and
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Fig. 3. BSS gain (top) and Estimated TDOAs (bottom) obtained with the chosen BSS
algorithm, Scenario 1
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Fig. 4. BSS gain (top) and Estimated TDOAs (bottom) obtained with the chosen BSS
algorithm, Scenario 2

localization performance. However, the chosen BSS algorithm fails to separate
and locate the two sources after the subsequent array turns: The BSS gain is
even negative and the estimated TDOAs seem to be ”frozen”. The results of the
TDOA estimation suggest that the chosen BSS algorithm is not able to adapt
the demixing filters after the second array rotation. Therefore, we investigate
the demixing filters. The first 32 coefficients of the demixing filters w12(n) and
w21(n) are depicted in Figure 5. The filter coefficients of w11(n) and w22(n)
are not depicted, because they mainly consist of distinct positive peaks at 16
samples, which leads to a delayed but mainly unfiltered contribution of the mi-
crophone signals to the two BSS outputs. The vertical dashed lines indicate again
array rotations. The horizontal dashed lines mark the filter coefficients which are
important for suppressing sources from -80◦, 0◦, and 80◦, respectively. By ap-
propriately placing negative peaks in the demixing filters w12(n) and w21(n),
spatial nulls are formed and source 1 and source 2 are suppressed in BSS output
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2 and in BSS output 1, respectively. We observe that after the second array
rotation, the spatial null in 0◦, which is caused by the negative peak at filter
coefficient 16 in w21(n), is fixed. This spatial null cancels the source located in
broadside direction and thus the source on the side is enhanced. However, the
BSS adaptation does not form a significant negative peak in w12(n) to cancel the
source at ±80◦. Instead, a minor positive peak at filter coefficient 16 is formed,
which basically corresponds to a filter-and-sum beamformer at 0◦ enhancing the
broadside source.
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Fig. 5. Demixing filters obtained with the chosen BSS algorithm in scenario 2

In order to further analyze and understand the encountered problem, we take
a close look at the update rule of the chosen BSS algorithm given in [4]. For each
online block m, matrix W(m), which contains the demixing filters wij(n) in a
so-called Sylvester structure, is updated as follows:

W(m) = W(m − 1) − μ�W(m). (4)

Incorporating the natural gradient, the update �W becomes

�W = 2
∞∑

i=0

β(i, m)W {Ryy − bdiag {Ryy}} · (bdiag {Ryy})−1
, (5)

where the weighting function β(i, m) allows offline and online implementations.
The operator bdiag {Ryy} returns the block-diagonal elements of Ryy, which is
the cross-correlation matrix of the BSS outputs. After abrupt array rotations, the
update �W is then based on badly adapted demixing filters and on BSS output
signals, which will not exhibit any source separation. Due to this improper data,
the chosen BSS algorithm is not able to adapt the demixing filters and thus fails
to track the sources after abrupt array rotations in scenario 2. This deficiency
might be caused by the approximations described in [7].

3 Shadow-BSS

In Section 2, we studied a scenario, where the chosen BSS algorithm was not
able to track abrupt array rotations. However, we could always observe that
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Fig. 6. Block diagram of the Shadow-BSS algorithm

the chosen BSS algorithm is capable to converge to well-separating demixing
filters after blind initialization. Therefore, we propose the usage of a so-called
shadow-BSS system, which is periodically blindly initialized and – in the case
of outperforming the signal separation of the main BSS system – the demixing
filters of the shadow-BSS are transferred for use in the main BSS system. The
shadow-BSS system is motivated by the successful usage of shadow systems in,
e.g., adaptive echo cancellation [8]. The effectiveness of the shadow-BSS scheme
is demonstrated by simulations.

3.1 Algorithm

Figure 6 shows the block diagram of the proposed shadow-BSS system, where
the dependency on time has been omitted for notational convenience. BSS and
BSS(Sdw) denote the main BSS system and the shadow-BSS system. Note that
the demixing filter length in the shadow-BSS system L(Sdw) can be chosen inde-
pendently from L. Both systems use the two microphone signals x1 and x2 and
perform source separation, which leads to the output signals y1,2 and y

(Sdw)
1,2 .

The shadow-BSS system is periodically blindly reinitialized at multiples of pe-
riod T (Sdw). We now investigate the method for replacing the demixing filters
of BSS by the demixing filters of BSS(Sdw), if BSS(Sdw) performs better source
separation.

Based on the two pairs of output signals, the blocks norm(xcorr(.)) compute
the norms of the cross-correlations as follows:

norm {Ryy(m)} =

√√√√
D∑

τ=−D

|Ryy(m, τ)|2 (6)

norm
{
R(Sdw)

yy (m)
}

=

√√√√
D∑

τ=−D

∣∣∣R(Sdw)
yy (m, τ)

∣∣∣
2
. (7)

The parameter τ denotes the time lags of the cross-correlation. The cross-
correlation norms may now be considered as a quantity measuring the separation
performance of BSS and BSS(Sdw). In the case of good source separation, the
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two output signals of a separation system are sufficiently uncorrelated and the
according norm in Equations (6), (7) is small. Hence the ratio of both cross-
correlation norms r(m),

r(m) =
norm

{
R

(Sdw)
yy (m)

}

norm {Ryy(m)} (8)

is used as a decision variable, which indicates the separation system (BSS or
BSS(Sdw)) with the better separation performance. To avoid unnecessary trans-
fers of the demixing filters from BSS(Sdw) to BSS, we can average r(m) with an
exponentially decaying forgetting factor λ(Sdw):

r(m) = λ(Sdw)r(m − 1) +
(
1 − λ(Sdw)

) norm
{
R

(Sdw)
yy (m)

}

norm {Ryy(m)} . (9)

Comparing r(m) to the threshold r
(Sdw)
Th allows for a decision:

r(m) < r
(Sdw)
Th ⇒ Transfer demixing filters from shadow-BSS to BSS

r(m) ≥ r
(Sdw)
Th ⇒ Keep demixing filters of BSS

The sensitivity of the overall system may be adjusted by the threshold r
(Sdw)
Th .

Note that the latter L − L(Sdw) filter coefficients of BSS are set to zero, if the
demixing filters are transferred from shadow-BSS to BSS.

3.2 Simulations

We now present both the separation performance and the results of the TDOA
estimation obtained with the proposed algorithm based on a shadow-BSS system
for scenario 2 described in Section 2. The demixing filter lengths are L = 1024
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Fig. 7. BSS gain (top) and Estimated TDOAs (bottom) obtained with the shadow-BSS
system
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Fig. 8. Demixing filters of BSS influenced by shadow-BSS

and L(Sdw) = 30. Moreover, the configuration of the shadow-BSS system is
T (Sdw) = 2s, λ(Sdw) = 0.6, and r

(Sdw)
Th = 0.8.

Both the separation performance of BSS and the estimated TDOAs depicted
in Figure 7 illustrate that the proposed shadow-BSS system is capable to track
even the worst case of abrupt microphone array rotations. After a few seconds,
the estimated TDOAs represent the true DOAs illustrated by Figure 2. Again,
we investigated the demixing filters of BSS influenced by shadow-BSS, where we
especially focus on the two cross-filters w12(n) and w21(n). As we see from Fig-
ure 8, the spatial nulls formed by the demixing filters now follow the alternating
DOAs of the sources caused by the abrupt array rotations. Finally, it should be
mentioned that no audible artefacts could be observed when the demixing filters
are transferred from shadow-BSS to BSS.

4 Conclusions

In this paper, we first investigated the source separation and localization perfor-
mance of the chosen BSS algorithm in the case of abrupt array rotations. We found
that for certain relevant cases the chosen BSS algorithm was not able to main-
tain the usually high separation performance and thus fails to localize the sources
correctly. We then proposed an extension to BSS, which incorporates a periodi-
cally blindly initialized shadow-BSS system. If the separation performance of the
shadow-BSS system outperforms the main BSS system, the demixing filters were
transferred from the shadow-BSS system to the main BSS system. An appropri-
ate method for comparing the separation performance of both systems was intro-
duced. Finally, we would like to mention that the proposed shadow-BSS system
may also be applied in the case of rapidly moving sources.
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