The TRINICON framework for adaptive MIMO signal processing
with focus on the generic Sylvester constraint
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Abstract property of this ideal separation solution is that it is velgsely
related to the ideal identification solution (c). We therefde-
note (a) and (c) in this paper as the “direct” problems in @sit
to the inverse problem (b) whose ideal solution was discusse
[2]. It was shown that the ideal inversion solution requiges P.
To obtainestimatesf the solutions to (a)-(c) in practice, it
ommonly distinguished betweélind, supervised, and semi-
blind adaptation algorithms. If both the propagation paths and
the original source signals in Fig. 1 are unknown, the demix-
ing system has to be estimated by a blind algorithm (e.g., for
blind source separation (BSS)) for which the method of ietep
dent component analysis (ICA) is typically applied [3]. liher
practical scenarios, in which some or even all interferiogrse

i signals are directly accessible and/or some side infoomain
1 Introductlon the propagation path is known, we can tackle the problersudy
In broadband signal acquisition by sensor arrays, such as ipervisedadaptation algorithms, such as the popular least-mean-
hands-free speech communication systems, the originatsou square (LMS)- or the recursive least-squares (RLS)-tyge-al
signalssq(n), q=1,...,Q are filtered by a linear multiple input  rithms [4]. Well known supervised and semi-blind technisjue
and multiple output (MIMO) system (e.g., the reverberanimy  for “direct” problems are, e.g., acoustic echo cancelta(®EC)
before they are captured as sensor signgl®), p=1,...,P.  and adaptive beamforming, respectively.
The general tasks of the corresponding array signal priveess The TRINICON framework brings together these various
are on the one hand to acquire clean source signals from thie miadaptation techniques. It can be shown that both many of the
turesxp(n), and on the other hand to analyze the acoustic scenayell-known algorithms in the literature but also numerooseti
the most important parameters usually being the sourcéi@usi  and efficient algorithms can be derived as special casesiof th
In this paper, we describe this MIMO mixing system by FIR fil- generic framework. Some of these novel algorithms havedjre
ter models, wherbgp«, kK =0,...,M — 1 denote the coefficients led to efficient real-time systems.
of the model from the-th source signady(n) to the p-th sensor

signalxp(n) according to Fig. 1. Moreover, we assume through- i i i
out this paper tha < P which are known as theverdetermined 2 Adaptlve MIMO Slgnal Processmg

anddeterminectases, respectively, as explained below. Note that pased on TRINICON

In this section we first give a brief overview of the essengial
ements of TRINICON ('TRIple-N ICA for CONvolutive mix-
tures’), a generic concept for broadband adaptive MIMOrfiitp
[5, 6, 7, 8]. Thereby, we restrict the presentation here ke
gradient-based coefficient updates in the time domain.
Various approaches exist to estimate the demixing ma&fix
by utilizing the following fundamental source signal propes
[3] which were all combined in TRINICON as a versatile frame-
work:
(i) Nongaussianityis exploited by using higher-order statistics
for ICA. The minimization of the mutual information (MMI)
among the output channels can be regarded as the most general
in general, the sourcesy(n) may or may not be all simultane- approach to separation problems [3]. To obtain an estintasar
ously active at a particular instant of time. According teegtain  is also suitable for the inverse problem, we use the Kullback
optimization criterion, we are interested in finding a cepend-  Leibler divergence (KLD) [9] between a certaigsiredjoint pdf
ing lengthL FIR “demixing” system with coefficienta/ipqx by  (essentially representing a hypothesized stochasticeanodel
adaptive signal processing. This yields the output signgls). as shown below) and the joint pdf of the actually estimateguatu
Based on this MIMO structure, we may identify the fol- signals.

lowing general signal processing problems from the aboveji) Nonwhitenessis exploited by simultaneous minimization of

This paper gives an overview on TRINICON, a generic frame-,
work for broadband adaptive MIMO filtering, and some of its
applications in array processing for speech capture. The/ao
tions for this framework are to bring together the variousdl
and supervised MIMO adaptation techniques which have beeg c
treated largely independently in the literature so far, rideo to
spotlight their commonalities and relationships, to dethhem in
a rigorous way from first principles, to facilitate the desaf im-
proved systems, and to exploit synergies. In this papereaialp
focus is on new results on the so-called Sylvester constraim
important element of the framework.

mixing system H demixing system W

Figure 1: Setup for blind MIMO signal processing.

mentioned tasks: o output cross-relations over multiple time-lags. We themeton-
(a) Signal separation(noise/interferers): Cancel out all cross- sider multivariate pdfs, i.e., ‘densities includiBgtime-lags’.
channels of the cascaded mixing-demixing system. (i) Nonstationarity is exploited by simultaneous minimization

(b) Deconvolution/Dereverberation In addition to the separa- of output cross-relations at different time-instants. \Wetane
tion, acquire "dry” sources up to a delay and a scaling factor  grgodicity within blocks of lengtiN so that the ensemble average
(c) Identification of the mixing system/source localizatio is replaced by time averages over these blocks.

Theideal MIMO separation filterso solve (a) were derived and Throughout this section, we present the frameworkQor:
discussed in detail in [1] for an arbitrary number of souraed b \yithoyt oss of generality. In practice, the current numbkr
sensors. It can be shown that an ideal signal-independeatbr  gimitaneously active sources is allowed to vary througltioe
band separation solution only exists f@r< P. An important application and only the conditio@ < P has to be fulfilled.



2.1 Optimization Criterion [6, 8]. Using the Sylvester constraint operator the gradén

. . . scent update can be written as
To introduce an algorithm for broadband processing of cenvo P

lutive mixtures, we first formulate the convolution of theRFI S0 ‘
demixing system of length in the following matrix form [8]: AW (m) = SC{0w T (M W)} w—we(m) - )

Depending on the particular realization &(), we are able to
select both, well known and also
novel improved adaptation algo-

y(n) =W 'x(n), @)

wheren denotes the time index, and rithms [10] as we will demon- D
_ T T T strate in Sect. 5. In [1] an explicit 1
x(n) xa(n),..., xp(m)]", @ formulation of agenericSylvester | | K\ g
y(n) = [yi(),...,ysm)]", (3)  constraint was derived to further
B oL 1T 4 formalize and clarify this con- 2L—=> []|L
xp(n) = [Xp(n),....xp(n—2L+1)]", (4)  cept. It turns out that the generic
yq(n) = [yg(n),...,yq(n—D+1)]". (5)  Sylvester constraint corresponds :
—upto the constanb den_otlng
The parameteD in (5), 1< D < L, denotes the number of the width of the submatrices —Figure 2: lllustration

time lags taken into account to exploit the nonwhitenesshef t to a channel-wise arithmetic av-of the generic Sylvester
source signals as shown beloWpg, p=1,....P,q=1,...,P  eragingof elements according toconstraint ~ §C)  after
denote 2 x D Sylvester matriceshat contain all coefficients Fig. 2. [1] for one channel.
of the respective filters in each column by successive shifti

. . T , -
i.e., the first column readfwyg,0.....0] ', the second column 2 3 Natural Gradient-Based Coefficient Up-

© wgq,O,...,O]T, etc. Finally, the PL x PD matrix W com- date

bines all Sylvester matricéd pq. . .
Based on the KLD, the following cost function was intro- It can be shown (after a somewhat tedious but straightfatwar

duced in [7] taking into account all three fundamental signa derivation) that by taking the more efficiematural gradient[3]

properties (i)-(iii): of J(m) with respect to the demixing filter matr®& (m) [8],
2 il 5 roJ
JmMW) = ,%p(.,m)ﬁ AWDSC{WW aw}’ 9
=l
iL+N-1 we obtain a generic TRINICON-based update rule which may be

: XL {log(pspo(yp(i))) —log(Bypo(y(i)))},  (6)  written in the following compact form:
=

where pgspp(-) and gypp(-) are assumed or estimatéD- x e
variate source model (i.e., desired) pdf and output pdhees AW(m) = _%ﬁ('vm)
tively. The indexm denotes the block time index for a block of =
N output samples shifted Hy samples relatively to the previous 2N )
block. Furthermorep is a window function allowing for online, -SCLW(i) N XL y()®ipp(y (i) —1| ¢, (10a)
offline, or block-online algorithms [6]. 1=

2.2 Gradient-Based Coefficient Update with the score function

For brevity and simplicity we concentrate in this subsetim Pspp(y (i) = —w

iterative Euclidean gradient-based block-online coeffitiup- Iy (i)

dates (TR'N'CON-based Newton-type algorithms have been qe(esumng from the hypothesized source mome"() The

veloped in an analogous way but they are omitted here) whiclhoice of Pspp(-) in (10b) depends on the class of signal pro-

can be written in the general form cessing problem to be solved and on the type of source signals
as detailed in the next two sections.

(10b)

wWom) = W(m-1), (7a) _ _
Wim) = WClim—paWim), (=1 ma (70) 3 INCOrporation of Stochastic Source
W(m) = Wims(m), (7c) Models

where 1 is a stepsize parameter, and the superscript index The general update equations (7),(10) provide the poggikl

denotes an iteration parameter to allow for multiple iferst ~ take into account all available information on the statatprop-

(¢ = 1,...,0may) Within each blockm. The downwards point- erties of the desired source signals. To apply the genepabaph
ing hat symbol on top oW in (7) serves to distinguish treon-  ina real-world scenario, appropriate multivariate scarefions
densed PLx Q demixing coefficient matri®W to be optimized, N (10) have to be determined. .

from the corresponding larger Sylvester matk¥ in the cost An efficient solution to this problem, proposed in[S, 6], k5.0

. - XX ; ) tained by assuming so-callegpherically invariant random pro-
function. The matriXW consists of the first column of each sub-
matrix W pq without thel. zeros., cesse¢SIRPs), e.g., [11]. The general form of correlated SIRPs

Obviously, when calculating the gradient G{m, W) w.r.t. of D-th order is given with a properly chosen functis(-) by
w explicitly, we are confronted with the problem of the ditfet 1

o ~ . T/ -1 . .
matrix formulationsW and W. The larger dimensions oW Py,0(yp(i)) = D - fo (yp(l)Rypyp(')YD(J)>
are a direct consequence of taking into account the nonndste detRy,y, (1))
signal property by choosinB > 1. The rigorous distinction be- (11)

tween these different matrix structures is also an essasgect  for the p-th channel, wherdRy ,, denotes the corresponding
of the general TRINICON framework and leads to an importantauto-correlation matrix with the corresponding numberaafsl
building block whose actual implementation is fundamemtal These models are representative for awide class of stocpast

the properties of the resulting algorithm, the so-calladvester cesses. Speech signals in particular can very accuratepbe-
constraint(SC) on the coefficient update, formally introduced in sented by SIRPs [11]. A great advantage arising from the SIRP



model is that multivariate pdfs can be derived analyticéigym
the corresponding univariate pdf together with the (laggeual-
relation matrices. The functiofp(-) can thus be calculated from
the well-known univariate models for speech, e.g., the agiph
density. Using the chain rule, the corresponding scoretiomc
(10b) can be derived from (11), as detailed in [5, 6].

Note that themultivariate Gaussiaris a special case of a

SIRP and thus, most of the popular algorithms based on secon

order statistics (SOS) represent special cases of thespomding
algorithms based on SIRPs [5, 6]. In both cases, by trangfigrm

the model into the DFT domain, various links to novel and ex-

isting popular frequency-domain algorithms can be esthbt
[1, 6].

Another very powerful family of stochastic models are given
by the theory of multivariateobust statisticsvhich was recently
introduced in TRINICON and related to the SIRP model in [12].

Finally, it should be noted that in addition to the model se-

lection the choice of estimation procedure for the corragpag
stochastic model paramete(s.g., correlation matrices in (11),
scaling parameter in [12], etc.) is another important design-
sideration. Similar to the estimation of correlation mzgs in
linear prediction problems [13] we have to distinguish ituat
implementations between the more accurate so-cetiedriance
methodand the approximativeorrelation methodeading to a
lower complexity, e.g., [10].

4.1.2 Blind System Identification (BSI) and Acoustic Source
Localization for Multiple Sources in Reverberant Envi-
ronments

The efficient broadband BSS algorithms also form a powerdtl b
sis for blind system identification and acoustic source lipaa
tion. Under certain conditions [1], such as a suitable chat
Hlter lengthL, the broadband separation problem can be turned
Into a MIMO system identification problem, and vice versaisTh
important link has led to practical localization systemsahtare

not only suitable for multiple simultaneously active samgcbut
also generalize powerful single-source approaches farbev-

ant environments, e.g., [15], to this case [1, 16].

4.1.3 Supervised and Semi-Blind System Identification and
Interference Cancellation

The field of supervised adaptive filtering (see Sect. 1) hagehm
longer history and has been treated largely independertiyn f
the blind case so far [4]. The general broadband approach of
TRINICON allows to connect both theories in a systematic way
by introducing the respective prior knowledge on the mixsgg-

tem, as recently demonstrated in [12] for the important iappl
tion of acoustic echo cancellation. Analogous considenatiare
possible for other applications, e.g., adaptive beamfogmilt

was shown that this connection opens up a great potentighfer

A natural but in practice somewhat more sophisticated exious synergy effects and improved algorithms.

tension would be to incorporate more macroscopic tempaal d
pendencies of the stochastic model parameters by a codelpeok
proach or another stochastic process leading to a hiddekema
like structure (e.g., [9]).

4 Applications to Signal Processing
Problems for Speech Capture

The various classes of array processing problems mentioned
Sect. 1 are also closely related to the choice of stochaigjial
model [7] as we illustrate in this section. Another diffetiating
factor mentioned in Sect. 1 is the degree of “blindness” Wwhic
is defined by the amount of prior knowledge on the mixsayg-
tem and thus, via the relation given by the ideal solution, an th
demixing system [12]. In this way, all major classes of MIMO
adaptation problems having a unique solution may be adeliless
systematically by the TRINICON framework.

4.1 Direct adaptive MIMO filtering problems

4.1.1 Blind Source Separation (BSS)

The separation variant of the generic natural gradient tepda
(10a) follows immediately by setting

P
pspoly (i) =2 [ Peolali))
q:

in (10b). i.e., the original source signals may be colorad, b

(12)

4.2 Inverse adaptive MIMO filtering prob-
lems
4.2.1 Multichannel Blind Deconvolution (MCBD)

Traditionally, ICA-based MCBD algorithms assume i.i.dusme
models, e.g., [17]. This corresponds to a complete facitida
of the hypothesized source mod®lpp(-) in (10b), i.e.,

} P D L
qﬂlﬂlpyqﬁl()’q(lf )

In the SOS case, this translates to a complete whiteningeof th
output signals by not only applying a joint de-cross-catieh,

but also a joint de-auto-correlation, i.8,ss = diagR., over
multiple time-instants, as illustrated in Fig. 3 (b).

\
N\

(a) BSS (c) MCBPD

pspo(y (i) M=

(13)

(b) MCBD

Figure 3: Desired correlation matricdss for BSS, MCBD, and
MCBPD with TRINICON in the SOS case.

4.2.2 Multichannel Blind Partial Deconvolution (MCBPD)

Signal sources which are non i.i.d. should not become iaid.

are assumed to be mutually stochastically independentdo ea the output of the blind adaptive filtering stage. Therefohejr

other. Figure 3(a) illustrates this model of desired sigtatis-
tics for the special case of Gaussian sources, i.e., semaliedl-
statistics, in terms of the desireRD x PD correlation matrix
Rss = bdiagRyy. Thus, by minimizing7(m, W), all cross-
correlations foD time-lags are reduced and will ideally vanish,
while the auto-correlations are untouched to preserve ttine-s
ture of the individual signals. This general class of br@aub
BSS algorithms leads to very robust practical solutions éoea
large number of filter taps due to an inherent normalizatidh®
coefficient update by the auto-correlation matrices [8, Njte
that there are also various efficient approximations of ahj®-
rithm, e.g, [10, 14] still preserving its broadband natumed thus
avoiding the problem of bin-wise permutations in narrowbap-
proaches [8]) but with a reduced computational complexigt t
have allowed some of the first real-time systems of this kind o
regular PC platforms. Moreover, a close link has been astedal

to various popular frequency-domain algorithms [6, 8].

statistical dependencies should be preserved, i.e., tygtatibn
algorithm has to distinguish between the statistical ddpeaies
within the source signals (e.g., by the vocal tract for sheand
the statistical dependencies introduced by the mixingesy&i
(e.g., a reverberant room). We denote the corresponding gen
eralization of the traditional MCBD technique B&ultiChannel
Blind Partial Deconvolution(MCBPD) [7]. Equations (10) in-
herently contain a statistical source model (signal pribge(i)-
(iii) in Sect. 2), expressed by the multivariate densitaas] thus
provide all necessary requirements for the MCBPD approach.
Ideally, only the influence of the room acoustics should be
minimized. In the typical example of speech dereverbenatie
auto-correlation structure of the speech signals can lentaito
account, as shown in Fig. 3 (c). While the room acoustics-nflu
ences all off-diagonals, the effect of the vocal tract isceom
trated in the first few off-diagonals around the main diagona

These first off-diagonals dRyy are now taken over int®ss,



as shown in Fig. 3 (c). Note that there is a close link to linearSylvester constrainfCr or the column Sylvester constraiS€c
prediction techniques [13] which gives guidelines for thenber ~ only leads to a slight degradation of the separation peidoa.
of lags to be preserved. In the one-sided scenario (b) the original Sylvester canstiop-

. . . eratorSC exhibits again the highest separation performance. The
5 Discussion of Different Sylvester approximation byscr still achieves reasonable separation. The
Constraint Realizations

application of the column Sylvester constrafitic is not recom-
mendable for one-sided setups or for the dase2 as mentioned
As mentioned in Sect. 2.2 the actual realization of the Qyare  a0OVe.
constraint is fundamental to the properties of the resyléilyo-
rithm. So far there are two particularly popular and simge r

6 Conclusions
z[':tllg]ations of §C) leading to two different classes of algorithms TRINICON provides a versatile tool to the design of adapsiys-

tems. The “top-down approach” of this framework has led e va
(1) Computing only théirst columnof each channel of the update ious recent advances in the field, but also shows opporgrfibi
matrix to obtain the new coefficient matr®. We denote many new developments in the future. The Sylvester comstrai
this method as§Cc).

represents one of the generic elements of the frameworkhwhic

unify previous algorithmic results from the existing la¢ure and

(2) Computing only the.-th row of each channel of the update
matrix to obtain the new coefficient matr®W. We denote
this method as§CR).

From Fig. 2 in Sect. 2.2 we now see that these realizations+ep
sent certain approximations by neglecting some of the aiéne
within the summation process i ().

In [10, 18] it was shown that with both of the above approx-
imations the update process is significantly simplified. @&lor
over, based o8Cc andSCr we established links for the special
case of MCBD to various existing natural gradient-based-alg
rithms in [18] by additionally distinguishing between thevari-
ance method and correlation method as mentioned in Sect. 3.

However, in general, botSCc andSCr require some trade-
off in the algorithm performance. Whil8Cc may provide a po-
tentially more robust convergence behaviour, it will notrkvéor
arbitrary source positions (e.g., in the case of two sourntey
are required to be located in different half-planes wine. drien-
tation of the microphone array), which is in contrast to tharen
versatileSCg [10].

In this section we compare the performance of the differen
Sylvester constraint realizations by using the generic 8&6ral
gradient algorithm for BSS. For this comparison the coefiti
adaptation is performed in an offline fashion and the caticeia
matrices are estimated by the more accurate covariancentheth
Two different setups in a moderately reverberant roomLfet
256 are examined: (a) two sources positioned in differeift ha
planes (at-70°) and (b) two sources positioned in the same half
plane (at+45°, +-90°).

(1

[2

(Bl
(4

(5]

. 16l

[

8

(a) sources at7(° ng) sources at-45°, +-90°

[

sl
201 S 5 20(- J
i (10]
181 /’ , 4 18+ "
S
161 /’/’ 1 16f oo
I , - [11]
14+ // % b 14t y B
m I om ,
© ©
12 / 1 12f / 1
£ / c , [12]
0ok ;! 1 [y ! E
2 ) 2 e
L J L -~ J
& ¢ i (13]
I 7
L | L [ |
6 /v 6 K
j i’ [14]
1= E 4l 7 : B 4
/ V2
4 p— / p—
27/ 777§8C, 2r ) 777§EC,
4
S == SCa o L= SR [15]
0 50 100 150 200 50 100 150 200

iteration number iteration number

[16]
Figure 4: Comparison of different Sylvester constraint imple-
mentations with the offline generic SOS natural gradienb-alg
rithm.

In the results for the two-sided setup in Fig. 4(a) it can lense
that the original Sylvester constraint opera®f¢ achieves the
highest separation performance in terms of signal-tafietence
ratio improvementASIR  Approximating SC by the row

(17]

(18]

facilitate the development of new efficient algorithms.
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