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Abstract
This paper gives an overview on TRINICON, a generic frame-
work for broadband adaptive MIMO filtering, and some of its
applications in array processing for speech capture. The motiva-
tions for this framework are to bring together the various blind
and supervised MIMO adaptation techniques which have been
treated largely independently in the literature so far, in order to
spotlight their commonalities and relationships, to derive them in
a rigorous way from first principles, to facilitate the design of im-
proved systems, and to exploit synergies. In this paper, a special
focus is on new results on the so-called Sylvester constraint, an
important element of the framework.

1 Introduction
In broadband signal acquisition by sensor arrays, such as in
hands-free speech communication systems, the original source
signalssq(n), q = 1, . . . ,Q are filtered by a linear multiple input
and multiple output (MIMO) system (e.g., the reverberant room)
before they are captured as sensor signalsxp(n), p = 1, . . . ,P.
The general tasks of the corresponding array signal processing
are on the one hand to acquire clean source signals from the mix-
turesxp(n), and on the other hand to analyze the acoustic scene,
the most important parameters usually being the source positions.
In this paper, we describe this MIMO mixing system by FIR fil-
ter models, wherehqp,κ , κ = 0, . . . ,M−1 denote the coefficients
of the model from theq-th source signalsq(n) to thep-th sensor
signalxp(n) according to Fig. 1. Moreover, we assume through-
out this paper thatQ≤ P which are known as theoverdetermined
anddeterminedcases, respectively, as explained below. Note that
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Figure 1: Setup for blind MIMO signal processing.

in general, the sourcessq(n) may or may not be all simultane-
ously active at a particular instant of time. According to a certain
optimization criterion, we are interested in finding a correspond-
ing length-L FIR “demixing” system with coefficientswpq,κ by
adaptive signal processing. This yields the output signalsyq(n).

Based on this MIMO structure, we may identify the fol-
lowing general signal processing problems from the above-
mentioned tasks:
(a) Signal separation(noise/interferers): Cancel out all cross-
channels of the cascaded mixing-demixing system.
(b) Deconvolution/Dereverberation: In addition to the separa-
tion, acquire “dry” sources up to a delay and a scaling factor.
(c) Identification of the mixing system/source localization
The ideal MIMO separation filtersto solve (a) were derived and
discussed in detail in [1] for an arbitrary number of sourcesand
sensors. It can be shown that an ideal signal-independent broad-
band separation solution only exists forQ ≤ P. An important

property of this ideal separation solution is that it is veryclosely
related to the ideal identification solution (c). We therefore de-
note (a) and (c) in this paper as the “direct” problems in contrast
to the inverse problem (b) whose ideal solution was discussed in
[2]. It was shown that the ideal inversion solution requiresQ< P.

To obtainestimatesof the solutions to (a)-(c) in practice, it
is commonly distinguished betweenblind, supervised, and semi-
blind adaptation algorithms. If both the propagation paths and
the original source signals in Fig. 1 are unknown, the demix-
ing system has to be estimated by a blind algorithm (e.g., for
blind source separation (BSS)) for which the method of indepen-
dent component analysis (ICA) is typically applied [3]. In other
practical scenarios, in which some or even all interfering source
signals are directly accessible and/or some side information on
the propagation path is known, we can tackle the problem bysu-
pervisedadaptation algorithms, such as the popular least-mean-
square (LMS)- or the recursive least-squares (RLS)-type algo-
rithms [4]. Well known supervised and semi-blind techniques
for “direct” problems are, e.g., acoustic echo cancellation (AEC)
and adaptive beamforming, respectively.

The TRINICON framework brings together these various
adaptation techniques. It can be shown that both many of the
well-known algorithms in the literature but also numerous novel
and efficient algorithms can be derived as special cases of this
generic framework. Some of these novel algorithms have already
led to efficient real-time systems.

2 Adaptive MIMO Signal Processing
based on TRINICON

In this section we first give a brief overview of the essentialel-
ements of TRINICON (’TRIple-N ICA for CONvolutive mix-
tures’), a generic concept for broadband adaptive MIMO filtering
[5, 6, 7, 8]. Thereby, we restrict the presentation here to simple
gradient-based coefficient updates in the time domain.

Various approaches exist to estimate the demixing matrixW
by utilizing the following fundamental source signal properties
[3] which were all combined in TRINICON as a versatile frame-
work:
(i) Nongaussianity is exploited by using higher-order statistics
for ICA. The minimization of the mutual information (MMI)
among the output channels can be regarded as the most general
approach to separation problems [3]. To obtain an estimatorthat
is also suitable for the inverse problem, we use the Kullback-
Leibler divergence (KLD) [9] between a certaindesiredjoint pdf
(essentially representing a hypothesized stochastic source model
as shown below) and the joint pdf of the actually estimated output
signals.
(ii) Nonwhitenessis exploited by simultaneous minimization of
output cross-relations over multiple time-lags. We therefore con-
sider multivariate pdfs, i.e., ‘densities includingD time-lags’.
(iii) Nonstationarity is exploited by simultaneous minimization
of output cross-relations at different time-instants. We assume
ergodicity within blocks of lengthN so that the ensemble average
is replaced by time averages over these blocks.

Throughout this section, we present the framework forQ =
P without loss of generality. In practice, the current numberof
simultaneously active sources is allowed to vary throughout the
application and only the conditionQ≤ P has to be fulfilled.



2.1 Optimization Criterion
To introduce an algorithm for broadband processing of convo-
lutive mixtures, we first formulate the convolution of the FIR
demixing system of lengthL in the following matrix form [8]:

y(n) = WTx(n), (1)

wheren denotes the time index, and

x(n) = [xT
1(n), . . . ,xT

P(n)]T, (2)

y(n) = [yT
1(n), . . . ,yT

P(n)]T, (3)

xp(n) = [xp(n), . . . ,xp(n−2L +1)]T, (4)

yq(n) = [yq(n), . . . ,yq(n−D+1)]T . (5)

The parameterD in (5), 1 ≤ D < L, denotes the number of
time lags taken into account to exploit the nonwhiteness of the
source signals as shown below.Wpq, p = 1, . . . ,P, q = 1, . . . ,P
denote 2L × D Sylvester matricesthat contain all coefficients
of the respective filters in each column by successive shifting,

i.e., the first column reads
[

wT
pq,0, . . . ,0

]T
, the second column

[

0,wT
pq,0, . . . ,0

]T
, etc. Finally, the 2PL×PD matrix W com-

bines all Sylvester matricesWpq.
Based on the KLD, the following cost function was intro-

duced in [7] taking into account all three fundamental signal
properties (i)-(iii):

J (m,W) = −
∞

∑
i=0

β (i,m)
1
N

·
iL+N−1

∑
j=iL

{

log(p̂s,PD(yp( j)))− log(p̂y,PD(y( j)))
}

, (6)

where p̂s,PD(·) and p̂y,PD(·) are assumed or estimatedPD-
variate source model (i.e., desired) pdf and output pdf, respec-
tively. The indexm denotes the block time index for a block of
N output samples shifted byL samples relatively to the previous
block. Furthermore,β is a window function allowing for online,
offline, or block-online algorithms [6].

2.2 Gradient-Based Coefficient Update
For brevity and simplicity we concentrate in this subsection on
iterative Euclidean gradient-based block-online coefficient up-
dates (TRINICON-based Newton-type algorithms have been de-
veloped in an analogous way but they are omitted here) which
can be written in the general form

W̌0(m) := W̌(m−1), (7a)

W̌ℓ(m) = W̌ℓ−1(m)−µ∆W̌ℓ(m), ℓ = 1, . . . , ℓmax, (7b)

W̌(m) := W̌ℓmax(m), (7c)

where µ is a stepsize parameter, and the superscript indexℓ
denotes an iteration parameter to allow for multiple iterations
(ℓ = 1, . . . , ℓmax) within each blockm. The downwards point-
ing hat symbol on top ofW in (7) serves to distinguish thecon-
densed PL×Q demixing coefficient matrixW̌ to be optimized,
from the corresponding larger Sylvester matrixW in the cost
function. The matrixW̌ consists of the first column of each sub-
matrixWpq without theL zeros.

Obviously, when calculating the gradient ofJ (m,W) w.r.t.
W̌ explicitly, we are confronted with the problem of the different
matrix formulationsW andW̌. The larger dimensions ofW
are a direct consequence of taking into account the nonwhiteness
signal property by choosingD > 1. The rigorous distinction be-
tween these different matrix structures is also an essential aspect
of the general TRINICON framework and leads to an important
building block whose actual implementation is fundamentalto
the properties of the resulting algorithm, the so-calledSylvester
constraint(SC) on the coefficient update, formally introduced in

[6, 8]. Using the Sylvester constraint operator the gradient de-
scent update can be written as

∆W̌ℓ(m) = SC {∇WJ (m,W)}|W=Wℓ(m) . (8)

Depending on the particular realization of (SC), we are able to
select both, well known and also
novel improved adaptation algo-
rithms [10] as we will demon-
strate in Sect. 5. In [1] an explicit
formulation of agenericSylvester
constraint was derived to further
formalize and clarify this con-
cept. It turns out that the generic
Sylvester constraint corresponds
– up to the constantD denoting
the width of the submatrices –
to a channel-wise arithmetic av-
eragingof elements according to
Fig. 2.
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Figure 2: Illustration
of the generic Sylvester
constraint (SC) after
[1] for one channel.

2.3 Natural Gradient-Based Coefficient Up-
date

It can be shown (after a somewhat tedious but straightforward
derivation) that by taking the more efficientnatural gradient[3]
of J (m) with respect to the demixing filter matrixW(m) [8],

∆W̌ ∝ SC

{

WWT ∂J
∂W

}

, (9)

we obtain a generic TRINICON-based update rule which may be
written in the following compact form:

∆W̌(m) =
∞

∑
i=0

β (i,m)

·SC

{

W(i)

[

1
N

iL+N−1

∑
j=iL

y( j)ΦT
s,PD(y( j))−I

]}

, (10a)

with the score function

Φs,PD(y( j)) = −
∂ log p̂s,PD(y( j))

∂y( j)
(10b)

resulting from the hypothesized source model ˆps,PD(·). The
choice of p̂s,PD(·) in (10b) depends on the class of signal pro-
cessing problem to be solved and on the type of source signals,
as detailed in the next two sections.

3 Incorporation of Stochastic Source
Models

The general update equations (7),(10) provide the possibility to
take into account all available information on the statistical prop-
erties of the desired source signals. To apply the general approach
in a real-world scenario, appropriate multivariate score functions
in (10) have to be determined.

An efficient solution to this problem, proposed in [5, 6], is ob-
tained by assuming so-calledspherically invariant random pro-
cesses(SIRPs), e.g., [11]. The general form of correlated SIRPs
of D-th order is given with a properly chosen functionfD(·) by

p̂yp,D(yp( j)) =
1

√

πDdet(Rypyp(i))
fD

(

yT
p( j)R−1

ypyp
(i)yp( j)

)

(11)
for the p-th channel, whereRypyp denotes the corresponding
auto-correlation matrix with the corresponding number of lags.
These models are representative for a wide class of stochastic pro-
cesses. Speech signals in particular can very accurately berepre-
sented by SIRPs [11]. A great advantage arising from the SIRP



model is that multivariate pdfs can be derived analyticallyfrom
the corresponding univariate pdf together with the (lagged) cor-
relation matrices. The functionfD(·) can thus be calculated from
the well-known univariate models for speech, e.g., the Laplacian
density. Using the chain rule, the corresponding score function
(10b) can be derived from (11), as detailed in [5, 6].

Note that themultivariate Gaussianis a special case of a
SIRP and thus, most of the popular algorithms based on second-
order statistics (SOS) represent special cases of the corresponding
algorithms based on SIRPs [5, 6]. In both cases, by transforming
the model into the DFT domain, various links to novel and ex-
isting popular frequency-domain algorithms can be established
[1, 6].

Another very powerful family of stochastic models are given
by the theory of multivariaterobust statisticswhich was recently
introduced in TRINICON and related to the SIRP model in [12].

Finally, it should be noted that in addition to the model se-
lection the choice of estimation procedure for the corresponding
stochastic model parameters(e.g., correlation matrices in (11),
scaling parameter in [12], etc.) is another important design con-
sideration. Similar to the estimation of correlation matrices in
linear prediction problems [13] we have to distinguish in actual
implementations between the more accurate so-calledcovariance
methodand the approximativecorrelation methodleading to a
lower complexity, e.g., [10].

A natural but in practice somewhat more sophisticated ex-
tension would be to incorporate more macroscopic temporal de-
pendencies of the stochastic model parameters by a codebookap-
proach or another stochastic process leading to a hidden-markov-
like structure (e.g., [9]).

4 Applications to Signal Processing
Problems for Speech Capture

The various classes of array processing problems mentionedin
Sect. 1 are also closely related to the choice of stochasticsignal
model [7] as we illustrate in this section. Another differentiating
factor mentioned in Sect. 1 is the degree of “blindness” which
is defined by the amount of prior knowledge on the mixingsys-
tem, and thus, via the relation given by the ideal solution, on the
demixing system [12]. In this way, all major classes of MIMO
adaptation problems having a unique solution may be addressed
systematically by the TRINICON framework.

4.1 Direct adaptive MIMO filtering problems
4.1.1 Blind Source Separation (BSS)

The separation variant of the generic natural gradient update
(10a) follows immediately by setting

p̂s,PD(y( j))
(BSS)
=

P

∏
q=1

p̂yq,D(yq( j)), (12)

in (10b). i.e., the original source signals may be colored, but
are assumed to be mutually stochastically independent to each
other. Figure 3(a) illustrates this model of desired signalstatis-
tics for the special case of Gaussian sources, i.e., second-order
statistics, in terms of the desiredPD× PD correlation matrix
R̂ss = bdiagR̂yy. Thus, by minimizingJ (m,W), all cross-
correlations forD time-lags are reduced and will ideally vanish,
while the auto-correlations are untouched to preserve the struc-
ture of the individual signals. This general class of broadband
BSS algorithms leads to very robust practical solutions even for a
large number of filter taps due to an inherent normalization of the
coefficient update by the auto-correlation matrices [8, 12]. Note
that there are also various efficient approximations of thisalgo-
rithm, e.g, [10, 14] still preserving its broadband nature (and thus
avoiding the problem of bin-wise permutations in narrowband ap-
proaches [8]) but with a reduced computational complexity that
have allowed some of the first real-time systems of this kind on
regular PC platforms. Moreover, a close link has been established
to various popular frequency-domain algorithms [6, 8].

4.1.2 Blind System Identification (BSI) and Acoustic Source
Localization for Multiple Sources in Reverberant Envi-
ronments

The efficient broadband BSS algorithms also form a powerful ba-
sis for blind system identification and acoustic source localiza-
tion. Under certain conditions [1], such as a suitable choice of
filter lengthL, the broadband separation problem can be turned
into a MIMO system identification problem, and vice versa. This
important link has led to practical localization systems which are
not only suitable for multiple simultaneously active sources, but
also generalize powerful single-source approaches for reverber-
ant environments, e.g., [15], to this case [1, 16].

4.1.3 Supervised and Semi-Blind System Identification and
Interference Cancellation

The field of supervised adaptive filtering (see Sect. 1) has a much
longer history and has been treated largely independently from
the blind case so far [4]. The general broadband approach of
TRINICON allows to connect both theories in a systematic way
by introducing the respective prior knowledge on the mixingsys-
tem, as recently demonstrated in [12] for the important applica-
tion of acoustic echo cancellation. Analogous considerations are
possible for other applications, e.g., adaptive beamforming. It
was shown that this connection opens up a great potential forvar-
ious synergy effects and improved algorithms.

4.2 Inverse adaptive MIMO filtering prob-
lems

4.2.1 Multichannel Blind Deconvolution (MCBD)

Traditionally, ICA-based MCBD algorithms assume i.i.d. source
models, e.g., [17]. This corresponds to a complete factorization
of the hypothesized source model ˆps,PD(·) in (10b), i.e.,

p̂s,PD(y( j))
(MCBD)

=
P

∏
q=1

D

∏
d=1

p̂yq,1(yq( j −d)). (13)

In the SOS case, this translates to a complete whitening of the
output signals by not only applying a joint de-cross-correlation,
but also a joint de-auto-correlation, i.e.,R̂ss = diagR̂yy over
multiple time-instants, as illustrated in Fig. 3 (b).

(a) BSS (b) MCBD (c) MCBPD

Figure 3: Desired correlation matriceŝRss for BSS, MCBD, and
MCBPD with TRINICON in the SOS case.

4.2.2 Multichannel Blind Partial Deconvolution (MCBPD)

Signal sources which are non i.i.d. should not become i.i.d.at
the output of the blind adaptive filtering stage. Therefore,their
statistical dependencies should be preserved, i.e., the adaptation
algorithm has to distinguish between the statistical dependencies
within the source signals (e.g., by the vocal tract for speech), and
the statistical dependencies introduced by the mixing systemH
(e.g., a reverberant room). We denote the corresponding gen-
eralization of the traditional MCBD technique asMultiChannel
Blind Partial Deconvolution(MCBPD) [7]. Equations (10) in-
herently contain a statistical source model (signal properties (i)-
(iii) in Sect. 2), expressed by the multivariate densities,and thus
provide all necessary requirements for the MCBPD approach.

Ideally, only the influence of the room acoustics should be
minimized. In the typical example of speech dereverberation the
auto-correlation structure of the speech signals can be taken into
account, as shown in Fig. 3 (c). While the room acoustics influ-
ences all off-diagonals, the effect of the vocal tract is concen-
trated in the first few off-diagonals around the main diagonal.
These first off-diagonals of̂Ryy are now taken over intôRss,



as shown in Fig. 3 (c). Note that there is a close link to linear
prediction techniques [13] which gives guidelines for the number
of lags to be preserved.

5 Discussion of Different Sylvester
Constraint Realizations

As mentioned in Sect. 2.2 the actual realization of the Sylvester
constraint is fundamental to the properties of the resulting algo-
rithm. So far there are two particularly popular and simple re-
alizations of (SC) leading to two different classes of algorithms
[10]:
(1) Computing only thefirst columnof each channel of the update

matrix to obtain the new coefficient matrix̌W. We denote
this method as (SCC).

(2) Computing only theL-th row of each channel of the update
matrix to obtain the new coefficient matrix̌W. We denote
this method as (SCR).

From Fig. 2 in Sect. 2.2 we now see that these realizations repre-
sent certain approximations by neglecting some of the elements
within the summation process in (SC).

In [10, 18] it was shown that with both of the above approx-
imations the update process is significantly simplified. More-
over, based onSCC andSCR we established links for the special
case of MCBD to various existing natural gradient-based algo-
rithms in [18] by additionally distinguishing between the covari-
ance method and correlation method as mentioned in Sect. 3.

However, in general, bothSCC andSCR require some trade-
off in the algorithm performance. WhileSCC may provide a po-
tentially more robust convergence behaviour, it will not work for
arbitrary source positions (e.g., in the case of two sources, they
are required to be located in different half-planes w.r.t. the orien-
tation of the microphone array), which is in contrast to the more
versatileSCR [10].

In this section we compare the performance of the different
Sylvester constraint realizations by using the generic SOSnatural
gradient algorithm for BSS. For this comparison the coefficient
adaptation is performed in an offline fashion and the correlation
matrices are estimated by the more accurate covariance method.
Two different setups in a moderately reverberant room forL =
256 are examined: (a) two sources positioned in different half
planes (at±70◦) and (b) two sources positioned in the same half
plane (at+45◦, +90◦).
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Figure 4: Comparison of different Sylvester constraint imple-
mentations with the offline generic SOS natural gradient algo-
rithm.

In the results for the two-sided setup in Fig. 4(a) it can be seen
that the original Sylvester constraint operatorSC achieves the
highest separation performance in terms of signal-to-interference
ratio improvement∆SIR. Approximating SC by the row

Sylvester constraintSCR or the column Sylvester constraintSCC
only leads to a slight degradation of the separation performance.
In the one-sided scenario (b) the original Sylvester constraint op-
eratorSC exhibits again the highest separation performance. The
approximation bySCR still achieves reasonable separation. The
application of the column Sylvester constraintSCC is not recom-
mendable for one-sided setups or for the caseP> 2 as mentioned
above.

6 Conclusions
TRINICON provides a versatile tool to the design of adaptivesys-
tems. The “top-down approach” of this framework has led to var-
ious recent advances in the field, but also shows opportunities for
many new developments in the future. The Sylvester constraint
represents one of the generic elements of the framework which
unify previous algorithmic results from the existing literature and
facilitate the development of new efficient algorithms.
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